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Abstract. The present study aimed to investigate the effect of 
arsenic trioxide (As2O3)  on human gastric cancer SGC-7901 
cells. SGC-7901 cells were treated with different concentra-
tions of As2O3  in the cell growth media for 24, 48 and 72 h, 
and the growth rates were determined by WST-1 cell prolifera-
tion assays. Analyses of nuclear morphological changes were 
performed with DAPI fluorescence staining. Cell apoptosis 
rates as assessed by flow cytometry were determined after 
cells were grown in media for 48  h containing different 
As2O3  concentrations. The protein expression patterns of the 
apoptosis factors, Bax, Fas and caspase-8, and anti-apoptosis 
factors, Akt, p-Akt, mTOR and p-mTOR, were evaluated by 
western blot analysis following treatment of the cells with 
different As2O3  concentrations in the cell growth media for 
48 h. As a result, As2O3 inhibited the growth of human gastric 
cancer SGC-7901 cells in concentrations >5 µmol/l for longer 
than 24 h. Flow cytometric analysis revealed that the apoptosis 
of SGC-7901 cells occurred in an As2O3 concentration-depen-
dent manner after 48 h (P<0.001). Expression levels of Bax, 
Fas and caspase-8 were increased, whereas expression levels 
of Akt, p-Akt, mTOR and p-mTOR were decreased in the 
SGC-7901 cells after a 48-h incubation with different As2O3 
concentrations. In conclusion, As2O3 induced human gastric 
cancer SGC-7901 cell apoptosis in a time- and concentration 
dependent manner by inhibiting the activity of anti-apoptosis-
related factors.

Introduction

Gastric carcinoma (GC) remains the third leading cause of 
cancer-related mortality in men worldwide (1). To date, there 
are few effective clinical treatments for this highly malignant 
tumor, and conventional adjuvant treatments have limited 
effects on the survival of patients with advanced gastric 
cancer  (2). Much research has been conducted to identify 
efficient chemotherapeutic agents for the cure and preven-
tion of GC, and recently apoptosis has been shown to play a 
significant role in the treatment of GC cells.

Arsenic trioxide (As2O3) is an arsenic compound that has 
been used as a medicinal agent for more than 2400 years (3). 
In the 1970s, Chinese researchers were the first to discover its 
ability to cure acute promyelocytic leukemia (APL) (4). Since 
then other research groups have demonstrated worldwide 
that As2O3 also inhibits the growth of various solid tumors, 
including esophageal carcinoma (5,6), breast (3,7,8), bladder (9), 
lung  (10) and liver cancer  (11), multiple myeloma  (12), 
neuroblastoma  (13), colon  (14) and ovarian cancer  (15). It 
has been shown that As2O3 regulates proliferation, inva-
sion, differentiation, angiogenesis and apoptosis of cancer 
cells (16). However, the precise mechanism of As2O3-related 
apoptosis induction of cancer cells is not fully understood. 
Recent experiments confirm that As2O3 affects the activities 
of protein kinase B (Akt), c-Jun N-terminal kinases (JNK), 
nuclear factor κB (NF-κB), glutathione and calcium signaling, 
reactive oxygen species (ROS), caspases, as well as pro- and 
anti-apoptotic proteins (17-20). It was noted that As2O3 can 
reduce the activation of the Akt/mTOR pathway by reducing 
Akt, p70S6K and rpS6 phosphorylation in human leukemia 
cells (21). The PI3K/Akt/mTOR pathway is a crucial regulatory 
cascade that is central to a variety of physiological functions, 
including cell cycle regulation, survival, protein synthesis, 
metabolism, motility, apoptosis, proliferation and angiogen-
esis (22,23). The phosphoinositide 3-kinase (PI3K) activates 
Akt, a serine/threonine kinase, which phosphorylates the 
mammalian target of rapamycin (mTOR) repressor tuberous 
sclerosis complex  2  (24), which in turn activates mTOR 
downregulation of autophagy inducing autophagy-related 
(Atg) proteins (25,26). Recently it has been demonstrated that 
As2O3 suppresses PI3K/Akt activity and induces JNK activa-
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tion thereby enhancing chronic B-lymphocytic leukemia cell 
apoptosis (27).

The major apoptosis pathways are the extrinsic pathways 
(death receptor) and intrinsic pathways (mitochondrial) (28). 
The common effector for extrinsic apoptotic pathway initia-
tion is FASL, which regulates apoptosis via binding to FASR, 
a member of the tumor necrosis factor (TNF) receptor family 
of proteins. Deregulation of the FAS pathway has been 
implicated in various malignancies and diseases (29). After 
stimulation of the death receptor pathway by the FAS ligand, 
conformational changes to the FAS receptor lead to cleavage 
of pro-caspase 8 into its activated form, which then cleaves 
other effector caspases eventually leading to apoptosis. During 
the apoptotic process, Bcl-2-associated X (Bax) inhibits the 
anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein (30) and 
permeabilizes the mitochondrial outer membrane, leading to 
cytochrome c release (31).

In the present study, we explored the effects of As2O3 on 
expression levels of FAS, caspase-8 and Bax proteins in human 
gastric cancer SGC-7901 cells. Then we further analyzed the 
role of As2O3 in the Akt/mTOR pathway in As2O3-exposed 
cells.

Materials and methods

Materials. As2O3 solution was purchased from YiDa Pharmacy. 
The stock solution of arsenic trioxide was 8 mM and was 
stored at 4˚C. RPMI-1640 medium and FBS were purchased 
from Hyclone. Anti-Akt polyclonal antibodies  (9272) 
were purchased from Cell Signaling Technology. Anti-
phospho-Akt (s473), anti-mTOR, anti-phospho-mTOR (s2448), 
anti-Bax, anti-caspase-8 and anti-FAS polyclonal antibodies 
were purchased from ImmunoWay. Anti-β-actin monoclonal, 
goat anti-mouse and goat anti-rabbit secondary antibodies 
conjugated to horseradish peroxidase were purchased from 
Santa Cruz Biotechnology.

Cell culture and treatment. Human SGC-7901 gastric cancer 
cells were cultured in RPMI-1640 medium containing 10% 
FBS in a 5% CO2 humidified atmosphere chamber at 37˚C. For 
the experiments, FBS was reduced to 2%, and exponentially 
growing cells were incubated for the indicated time periods 
with different concentrations of As2O3 (0, 2.5, 5, 7.5, 10, 12.5 
and 15 µmol/l).

WST-1 proliferation assay. The effect of As2O3 on in vitro 
growth inhibition of SGC-7901 cells was measured using 
the WST-1 Cell Proliferation and Cytotoxicity Assay Kit 
(Beyotime Institute of Biotechnology) according to the 
manufacturer's protocol. SGC-7901 cells were seeded in 
96-well plates at a density of 1.0x104 cells per well in 200 µl 
RPMI‑1640 medium containing 10% FBS for 24 h. Then the 
cells were exposed to different concentrations of As2O3 (0, 
2.5, 5, 7.5, 10, 12.5 and 15 µmol/l) in RPMI-1640 medium 
containing 2% FBS for 24, 48 and 72 h. Finally 20 µl of WST-1 
solution was added to each well, and the cells were incubated 
for another 1 h. The absorbance at 450 nm was measured 
using a microplate reader (Finnpipette MK3 Multiskan). The 
amount of the formazan dye, which is generated by activities 
of dehydrogenases in the cells, is proportional to the number of 

living cells. Inhibitory rates of cellular growth were calculated 
with the following formula: Inhibitory rate (%) = (1 - A value 
of experimental group/A value in the control group) x 100%. 
The 0 µmol/l group was used as the control group. A graph 
with inhibitory cell growth rates (y-axis) against the concen-
trations of As2O3 (x-axis) was plotted.

Analysis of nuclear morphology by DAPI staining. Apoptosis 
was assessed based on changes in the nuclear morphology by 
staining the cells with the fluorescent DNA dye 4',6-diamidino-
2'-phenylindole dihydrochloride  (DAPI) (Roche). Briefly, 
cells were treated with As2O3 (0 and 10 µmol/l) in RPMI-
1640 medium containing 2% FBS for 48 h. Then the cells 
were washed with PBS and incubated with 1 µg/ml DAPI 
in methanol for 30  min at 37˚C in darkness. Slides were 
viewed using a fluorescence microscope with ultraviolet (UV) 
excitation at 300-500 nm. Cells were evaluated as normal or 
apoptotic depending on morphological characteristics. Normal 
nuclei (smooth nuclei) and apoptotic nuclei (condensed or 
fragmented chromatin) were observed.

Analysis of apoptosis. Cells were treated with different 
concentrations of As2O3 (0, 7.5, 10, 12.5 and 15 µmol/l) in 
2% FBS and RPMI‑1640 for 48 h, collected and then stained 
using the Annexin V-FITC Apoptosis Detection Kit I (BD 
Biosciences) for flow cytometric analyses. The 0 µmol/l group 
served as the control.

Protein extraction and western blot analysis. Cells were 
treated with different concentrations of As2O3 (0, 5, 7.5, 10, 
12.5 and 15 µmol/l) in 2% FBS and RPMI-1640 medium for 
48 h. Both adherent and floating cells were harvested and 
lysed with RIPA lysis buffer and phenylmethanesulfonyl fluo-
ride (Beyotime Institute of Biotechnology), incubated at 4˚C 
for 40 min and centrifuged for 10 min at 12,000 rpm. Total 
protein in the cell lysate was measured with an enhanced BCA 
protein assay kit (Beyotime Institute of Biotechnology). For 
western blot analysis, equal amounts of protein were separated 
by SDS-PAGE and then transferred onto PVDF membranes 
(Millipore). The membranes were blocked for 1.5  h in a 
non-fat dried milk solution containing 1% Tween-20. The 
membranes were then incubated with primary antibodies for 
β-actin (1:800), Akt (1:800), p-Akt (1:800), mTOR (1:800), 

Figure 1. Cell growth inhibitory effects of arsenic trioxide (0, 2.5, 5, 7.5, 10, 
12.5 and 15 µmol/l) on SGC-7901 cells after a 24-, 48- and 72-h incubation.
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p-mTOR  (1:800), Bax  (1:1000), caspase-8  (1:1000) and 
FAS (1:1000) overnight at 4˚C, followed by incubation with 
anti-mouse or anti-rabbit (1:5000) secondary antibodies for 1 h. 
Finally, protein bands were detected using a chemiluminescent 
substrate (HRP) kit (Beyotime Institute of Biotechnology). 
The β-actin level was used as an internal standard.

Statistical analyses. All experiments were performed at least 
three times. Data for each series of experiments (performed in 
triplicates) are expressed as the mean values ± standard devia-
tion of the mean (SD). Statistical significance of differences 
between groups was analyzed using ANOVA analysis. P<0.05 
was considered to indicate a statistically significant difference.

Results

Extended incubation with As2O3 leads to cell growth inhibi-
tion. Human SGC-7901 gastric cancer cells were incubated 
with different concentrations of As2O3 (0, 2.5, 5, 7.5, 10, 12.5 
and 15 µmol/l) for 24, 48 and 72 h and the cell growth inhibi-
tion was recorded using the WST-1 assay. When the As2O3 
solution concentrations were >5 µmol/l, the cell growth was 
significantly reduced after 48 and 72-h incubation periods, 
whereas after a 24-h incubation none of the As2O3 concentra-

tions had an effect on cell growth. Concentrations <5 µmol/l 
led to reduced growth inhibition (Fig. 1).

As2O3 leads to apoptosis of SGC-7901 cells
Analysis of nuclear morphology as assessed by DAPI staining. 
The SGC-7901 cells were treated with 10  µmol/l As2O3 for 
48  h, and apoptosis was visualized by DAPI staining using 
fluorescence microscopy. Compared with the control, a large 
number of cells displayed morphological changes exhibiting 
the typical characteristics of apoptotic cell death, including 
cell shrinkage, chromatin condensation, chromatin crescent 
formation/margination, DNA fragmentation and apoptotic 
body formation (Fig. 2).

Analysis of apoptosis by flow cytometry. With increasing 
concentrations (0, 7.5, 10, 12.5 and 15 µmol/l) of As2O3 in 
the growth media, the apoptosis rates increased after 48 h 
from 2.83±0.88, 9.85±2.18, 25.81±2.17 and 29.92±3.30 
to 35.40±0.58%, which indicated that As2O3 induced the 
apoptosis of human gastric cancer SGC-7901 cells in a dose-
dependent manner (Fig. 3).

Protein extraction and western blot analysis
As2O3 induces Bax, Fas and caspase-8 activation. SGC-7901 
cells were incubated with different As2O3 concentrations 

Figure 2. Changes in SGC-7901 cell nuclear morphology visualized with DAPI under a fluorescence microscope. (A1-A3) Control group after 48 h. (B1-
B3) Cells after exposure to 10 µmol/l As2O3 for 48 h.
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(0, 7.5, 10, 12.5 and 15 µmol/l) for 48 h, and then Bax, Fas 
and caspase-8 protein expression levels were analyzed via 
western blotting. As shown in Fig. 4, expresssion of Bax, Fas 
and caspase-8 protein was increased with increasing As2O3 
concentrations.

As2O3 suppresses Akt, p-Akt, mTOR and p-mTOR activation. 
SGC-7901 cells were incubated with different As2O3 concentra-
tions (0, 7.5, 10, 12.5 and 15 µmol/l) for 48 h and Akt, p-Akt, 
mTOR and p-mTOR protein expression levels were analyzed 

via western blotting. As shown in Fig. 5, Akt, p-Akt, mTOR and 
p-mTOR protein expression levels decreased with increasing 
As2O3 concentrations.

Discussion

In the present study, we demonstrated that As2O3 induced 
the apoptosis of human gastric cancer SGC-7901 cells in a 
dose- and time-dependent manner, which is in agreement with 
previous findings of the As2O3-triggered apoptosis of lung 
cancer cells (32).

Further analyses revealed that the apoptotic proteins Bax, 
Fas and caspase-8 were upregulated and the anti-apoptotic 
proteins Akt, p-Akt, mTOR as well as phosphorylated 
mTOR (p-mTOR) were downregulated. The PI3K (phosphati-
dylinositol 3 kinase) pathway is a signal transduction cascade, 
which is at the center of many physiological functions including 
cell cycle regulation, cell survival, protein synthesis, metabo-
lism as well as blood vessel formation. There are two key 
elements (Akt and mTOR) in the PI3K transduction pathway. 
Akt (serine/threonine kinase) is the regulator of the PI3K 
transduction pathways by regulating a variety of downstream 
effectors. A variety of growth factors, cytokines and hormones 
lead to the phosphorylation of Akt, which in turn activates 
downstream effectors including mTOR directly or indirectly 
by preventing the combination of mTORC1 and mTORC2 
thereby promoting protein synthesis and cell growth (33,34). 
Akt also inactivates cell cycle inhibitors (p21 and p27) and 
promotes cell cycle proteins (c-Myc and cyclinD1) to maintain 
cell survival (35,36). Another study found that Akt suppressed 
the apoptosis inhibition genes (BIM and BAD) and reduced 
the expression of the tumor-suppressor protein (p53) restricting 
programmed cell death and promoting cell survival (37). Our 
results showed that As2O3 concentrations <5 µmol/l promoted 
cell growth and during the 24-h incubation cell growth was 
not inhibited by any As2O3 concentration (Fig. 1). In previous 
studies, the apoptotic effect of As2O3 was attributed to reactive 
oxygen species development (38,39), and As2O3 has also been 
shown to inhibit mitochondrial respiration, thereby enhancing 
ROS occurrence (40), which has been used to sensitize tumor 
cells for radiation therapy (41). Autophagy constitutes a stress 

Figure 3. Apoptosis rates of the SGC-7901 cells following addition of As2O3 
(0, 7.5, 10, 12.5 and 15 µmol/l) to the medium for 48 h. (A) Representative 
flow cytometric images. (B) Histogram of the data derived from the flow 
cytometric analyses (n=3). *** P<0.001. 

Figure 4. Effect of As2O3 concentrations (0, 7.5, 10, 12.5 and 15 µmol/l) on 
protein expression levels of Bax, Fas and caspase-8 in SGC-7901 cells after 
a 48-h incubation. 

Figure 5. Effect of As2O3concentrations (0, 7.5, 10, 12.5 and 15 µmol/l) on 
protein expression levels of Akt, p-Akt, mTOR, p-mTOR in SGC-7901 cells 
after a 48-h incubation. 
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adaptation that avoids cell death, and cells can compen-
sate oxidative stress damages to a certain extent through 
autophagy, which was demonstrated by different cell reactions 
upon low and high dosage exposures to safingol, which is a 
ROS inducer (42). Autophagy following As2O3 exposure has 
also been reported (43). We suggest that at low doses of As2O3 
up to 5 µmol/l, autophagy is the main mechanism triggered 
in SGC-7901 cells and apoptosis is blocked (44) leading to 
somewhat reduced growth inhibition. Moreover, in short 
periods (24 h), the ROS development is under the threshold 
for inducing apoptosis, probably also due to oxygen radical 
squelching mechanisms (45). This is supported by the finding 
that apoptotic effects of As2O3 are most pronounced in tumor 
cells with low GSH levels, and ascorbic acid could further 
enhance its capacity for apoptosis induction (45).

A drawback of our study was that apoptotic mechanisms 
are complex and this study is a preliminary study of the Akt/
mTOR anti-apoptotic pathway, while other anti-apoptosis 
pathways need further investigation. In addition, the effective 
dose of As2O3 was >5 µmol/l, which is higher than the allowed 
clinical therapeutic dose of 1-2 µmol/l, thus further long-term 
and sensitizing agent evaluations are warranted (45).

In conclusion, our in vitro results showed that As2O3 can 
induce apoptosis in human gastric cancer SGC-7901 cells. 
As2O3 treatment led to enhanced expression of the apoptotic 
proteins Bax, Fas and caspase-8, and reduced the expression 
of the anti-apoptotic proteins Akt and mTOR as well as their 
phosphorylated forms p-Akt and p-mTOR in a time- and 
dose- dependent manner. Since the effective dose of As2O3 was 
higher than the therapeutic limit and growth inhibition rate 
reductions were incubation time-dependent, further research 
is necessary to establish As2O3 for the treatment of gastric 
cancers.
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