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Abstract. Methotrexate (MTX) has been widely used for 
rheumatoid arthritis therapy for a long time. MTX is also 
used as an anticancer drug for various tumors. However, 
many studies have shown that high-dose MTX treatment for 
cancer therapy may cause liver and renal damage. Alhough 
the mechanisms involved in MTX-induced liver and renal 
damage require further research, many studies have indicated 
that MTX-induced cytotoxicity is associated with increases 
in oxidative stress and caspase activation. In order to reduce 
MTX-induced side-effects and increase anticancer efficiency, 
currently, combination treatments of low-dose MTX and 
other anticancer drugs are considered and applied for various 
tumor treatments. The present study showed that MTX 
induces increases in H2O2 levels and caspase-9/-3 activation 
leading to cell death in hepatocellular carcinoma Hep3B 
cells. Importantly, this study is the first to demonstrate that 
vitamin C can efficiently aid low-dose MTX in inducing cell 
death in Hep3B cells. Therefore, the present study provides 

a possible powerful therapeutic method for tumors using a 
combined treatment of vitamin C and low-dose MTX.

Introduction

Methotrexate (MTX) is one of the most popular and safe 
antirheumatic drugs under the applied treatment dose (1,2). In 
order to obtain a better curative effect in clinical cases, MTX 
is also used in combination with other drugs for rheumatoid 
arthritis treatment (1,3,4). In addition, MTX is also used as an 
anticancer drug (5). Recently, MTX has been widely applied 
for the treatment of various cancers, such as hepatoma, osteo-
sarcoma, leukemia, lymphoma, gastric, breast, head and neck 
cancers  (5-9). Many studies have demonstrated that MTX 
induces cancer cell death via apoptotic death pathways (10-14). 
Apoptotic death pathways can be divided into caspase-depen-
dent and caspase-independent cascades (15,16). Concerning 
the MTX-induced apoptotic pathways, most studies have 
shown that MTX induces apoptosis via caspase-dependent 
cascades in many cancer cell lines (17-21). However, some 
studies have indicated that MTX can induce apoptosis via 
caspase-independent cascades in osteosarcoma cells (22,23). 
The present study found that MTX-induced apoptosis in 
Hep3B cells is via the caspase-dependent cascade, similar to 
most other studies (17-21).

Two major caspase cascade pathways have been 
reported (24-26). One is the caspase-8/-3 cascade, known 
as the extrinsic death receptor pathway (CD95/APO-1/Fas 
receptor) (27-29). Another is the caspase-9/-3 cascade, known 
as the intrinsic mitochondrial death pathway (27,30,31). Some 
studies have shown that MTX-induced apoptosis is mediated 
by the caspase‑9/-3 cascade pathway in choriocarcinoma, 
breast cancer, oral squamous carcinoma and hepatoma cells 
(18,19,21,32,33). In contrast, some studies demonstrated that 
MTX-induced apoptosis is mediated through the caspase-8/-3 
cascade pathway in breast cancer, hepatoma and leukemia 
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cells (17,33,34). The present study showed that MTX activates 
the caspase-9/-3 cascade in Hep3B cells, but not the caspase-
8/-3 cascade.

Previously, many studies have shown that high-dose MTX 
treatment can induce increased oxidative stress, resulting in 
renal and liver damage (3,35-37). However, the specific reac-
tive oxygen species (ROS) induced by MTX treatment have 
not been identified. O2

- and H2O2 are ROS families gener-
ally existing in many cells. By using the lucigenin-amplified 
method (38-40), our results are the first to demonstrate that 
MTX can induce increases in H2O2 levels, but not O2

- levels.
Considering that high-dose MTX treatments can cause 

renal and liver damage (35-37), combination treatments of 
low-dose MTX and other anticancer drugs are suggested and 
applied during clinical cancer therapy in order to enhance 
the anticancer effects and decrease MTX-induced side-
effects (9,10,12,18,41). However, not all anticancer agents can 
enhance the anticancer effects of low-dose MTX. A recent 
study showed that aspirin can antagonize the MTX-induced 
cytotoxic effect on lung cancer cells  (42). Alternatively, 
there have been many reports on the antioxidant activities of 
vitamin C (43-47). Moreover, some studies have demonstrated 
that vitamin C can exert anticancer activities in various cancer 
cells (48-52). The present study demonstrated that vitamin C 
can diminish MTX-induced increases in H2O2 levels. On the 
other hand, it is worth noting that vitamin C can help low-dose 
MTX exert a cytotoxic effect on Hep3B cells. Taken together, 
the study demonstrated that MTX activates the caspase-9/-3 
cascade and induces increased H2O2 levels, causing cell cyto-
toxicity in Hep3B cells, while more importantly, the present 
study is the first to demonstrate that vitamin C enhances the 
anticancer efficiency in MTX-treated Hep3 cells.

Materials and methods

Chemicals and materials. Methotrexate was purchased 
from Pfizer Inc. MTT assay kit was purchased from Bio 
Basic Canada Inc. Hoechst 33342, vitamin C, lucigenin and 
luminol were purchased from Sigma. Caspase-3 like substrate 
(Ac-DEVD-pNA), caspase-8 substrate (Ac-IETD-pNA) and 
caspase-9 substrate (Ac-LEHD-pNA) were purchased from 
AnaSpec, Inc. (San Jose, CA, USA). Fetal bovine serum (FBS), 
Dulbecco's modified Eagle's medium (DMEM), non-essential 
amino acid, L-glutamine and penicillin/streptomycin were 
purchased from Gibco-BRL.

Cell cultures. Hep3B cells were cultured in DMEM containing 
10% FBS, 2 mM L-glutamine, 100 IU/ml penicillin/strepto-
mycin, and 0.1 mM non-essential amino acids. The cells were 
cultured at 37˚C in a humidified atmosphere containing 5% 
CO2.

Cell viability assay. Hep3B cell viability was assessed using 
the MTT assay method according to the manufacturer's 
instructions. In brief, Hep3B cells were maintained in each 
well of 96-well culture plates. Every 24 h, the control group 
and experimental groups were subjected to the MTT assay 
kit. After 3 h of incubation, absorbance at 570 nm for each 
well containing Hep3B cells was detected under a multi-
well ELISA reader (Molecular Devices). Cell viability was 

calculated using the following formula: A570 experimental 
group/A570 control group x 100%.

Nuclear condensation and DNA fragmentation. Apoptotic 
cells were identified by nuclear condensation and DNA frag-
mentation using Hoechst 33342 staining. Cells were treated 
with 10 µg/ml Hoechst 33342 for 10 min. Nuclear condensation 
and DNA fragmentation were observed under a fluorescence 
microscope (excitation, 352 nm; emission, 450 nm) (53,54).

Caspase activity assay. Caspase activity assays were executed 
according to previous studies (55,56). In brief, Hep3B cells 
were lysed with a lysis buffer (50 mM Tris-HCl, 120 mM NaCl, 
1 mM EDTA, 1% NP-40, pH 7.5) and protease inhibitors. 
After centrifugation (15,000 x g, 30 min, 4˚C) cell pellets were 
collected. The working solutions containing 40 µl cell lysates 
(80 µg total protein), 158 µl reaction buffer (20% glycerol, 
0.5 mM EDTA, 5 mM dithiothreitol, 100 mM HEPES, pH 7.5) 
and 2  µl fluorogenic caspase substrate (Ac-LEHD-pNA, 
Ac-DEVD-pNA or Ac-IETD-pNA) were incubated at 37˚C for 
6 h. Fluorogenic substrate cleavage was determined at 405 nm 
in an ultra-microplate reader (BioTek Instruments). The fold 
increase in caspase activity was calculated using the following 
formula: (A405 experimental group - A405 control group)/
A405 control group.

Determination of H2O2 and O2
- levels. H2O2 and O2

- levels 
were examined by using lucigenin-amplified chemilumines-
cence according to the lucigenin-amplified method (57,58). 
In brief, for H2O2 levels, the sample (200 µl) was mixed with 
0.2 mmol/l luminol solution (100 µl). After that, the mixture 
was measured with a chemiluminescence analyzing system 
(CLA-FSI; Tohoko Electronic Industrial Co., Ltd., Miyagi, 
Japan) for determination. For O2

- levels, 200 µl of the sample 
was mixed with 0.1 mmol/l of lucigenin solution (500 µl), 
and was then measured by the CLA-FSI chemiluminescence 
analyzing system.

Statistical analysis. Experimental data were calculated from 
three independent triplicate experiments and are presented as 
the mean values of the chosen triplicate groups. These experi-
mental data are shown as means with standard deviations.

Results

MTX exerts dose-dependent and time-dependent anticancer 
effects on Hep3B cells. In clinical cases, 10-25 mg/week MTX 
(~0.1 µM/day) is a safely applied dose for rheumatoid arthritis 
treatment (1,2,59). In the present study, 0.1 µM (treatment-
dose), 0.01 µM (low-dose) and 10 µM (high-dose) MTX were 
used for studying the anticancer effects on Hep3B cells. Hep3B 
cell viability decreased in the 0.1 and 10 µM MTX treatment 
groups, but did not decrease in the 0.01 µM treatment group 
(Fig. 1). In addition, the 10 µM MTX treatment group showed 
a stronger cytotoxic effect in the Hep3B cells than the 0.1 µM 
MTX treatment group. These data suggest that MTX exerts a 
dose-dependent anticancer effect on Hep3B cells. In addition, 
cell viability was observed over different MTX incubation 
times, with results showing that the cell viability decreased 
incrementally in the 0.1 and 10 µM MTX groups. The present 
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study indicates that MTX exerts a dose-dependent and time-
dependent anticancer effect on Hep3B cells.

MTX induces apoptosis and activates the caspase-9/-3 cascade 
in Hep3B cells. The study investigated whether MTX induces 
apoptosis in Hep3B cells. Cell morphology was observed 
under a phase-contrast microscope. Hep3B cells survived with 
morphology intact in the control group (Fig. 2A). However, 
dead cells were noted in the MTX treatment group (Fig. 2B). 
In addition, nuclear condensation and DNA fragmentation 
are apoptotic features and can be observed using a nuclear 
staining method, as previously described (55,60). Compared 
with the control group (Fig. 2C), nuclear condensation and 
DNA fragmentation were noted in the MTX-treated group 
(Fig. 2D). The results indicate that MTX induced apoptosis in 
the Hep3B cells. Next, caspase activation was determined in the 

MTX-treated Hep3B cells by using a substrate cleavage assay 
(56,61). As shown in Fig. 3A, caspase-3 activity increased in 
the Hep3B cells at 96 h following treatment with 0.1 and 10 µM 
MTX while caspase-3 activity did not increase in Hep3B cells 
following treatment with 0.01 µM MTX. Caspase-9 activity 
also increased in the 0.1 and 10 µM MTX-treated Hep3B cells 
at 96 h but did not increase in the 0.01 µM MTX-treated cells 
(Fig. 3C). However, there was no obvious increase in caspase-8 
activity among the MTX-treated Hep3B cells (Fig. 3B). These 
results suggest that MTX (10 and 0.1 µM) induced apoptosis 
in the Hep3B cells via the caspase‑9/-3 cascade but not via the 
caspase-8/-3 cascade. 

MTX causes increases in H2O2 levels but not O2
- levels in 

Hep3B cells. Previous studies have shown that MTX can cause 
cell cytotoxicity associated with increases in reactive oxygen 
species (ROS) (35-37). Prior to the present study, the literature 
has not yet identified which ROS is induced by MTX treat-
ment. Both O2

- and H2O2 belonging to ROS commonly  exist in 
cells. Therefore, O2

- and H2O2 levels were examined according 
to the lucigenin-amplified method (57,58). The present study 
found that MTX did not raise O2

- levels in the Hep3B cells 

Figure 1. Cell viability. Hep3B cells were treated with 10, 0.1 and 0.01 µM 
MTX. Cell viability was measured with MTT assay every 24 h and presented 
as A570 experimental group/A570 control group x 100%. Data were col-
lected from 4 independent experiments and are presented as mean ± SD.

Figure 2. Cell morphology, nuclear condensation and DNA fragmentation. 
(A) Control cells, (B) MTX-treated cells. Hep3B cells were treated with or 
without 10 µM MTX for 96 h, and cell morphology was observed under a 
phase-contrast microscope. (C) Control cells, (D) MTX-treated cells. Cells 
were treated with or without 10 µM MTX for 96 h, and nuclear condensa-
tion and DNA fragmentation were observed using Hoechst 33342 staining. 
Note that nuclear condensation (red arrow) and DNA fragmentation (yellow 
arrow) were noted in the MTX-treated cells.

Figure 3. Caspase activity. (A) Caspase-3, (B) caspase-8 and (C) caspase-9 
activities were determined at 48 and 96 h in Hep3B cells treated with 0.01 µM, 
0.1 µM and 10 µM MTX . Note that caspase-3 and caspase-9 activities were 
significantly increased in the 0.1 and 10 µM MTX-treated cells. Data were 
obtained from 3 independent experiments and are presented as means ± SD.
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(Fig. 4A). However, both high-dose MTX and low-dose MTX 
raised H2O2 levels in the Hep3B cells (Fig. 4B). Therefore, the 
MTX-induced ROS increase is related to H2O2 levels but not 
related to O2

- levels in the Hep3B cells.

Vitamin C reduces the increase in H2O2 levels and enhances 
the anticancer efficacy in MTX-treated Hep3B cells. Many 
studies have demonstrated that vitamin C can prevent oxida-
tive stress-induced cell damage (43-47). Considering that MTX 
induces oxidative stress resulting in cell damage (35-37), this 
study examined whether vitamin C could decrease H2O2 levels, 
essentially inhibiting MTX-induced cytotoxicity in Hep3B 
cells. As shown in Fig. 5, the group receiving a combination 
treatment of vitamin C and 10 µM MTX had lower H2O2 levels 
than the 10 µM MTX group. Similarly, the vitamin C and 
0.01 µM MTX combination treatment group had lower H2O2 
levels than the 0.01 µM MTX group. These data indicate that 
vitamin C reduced the MTX-induced H2O2 levels. However, 
to our surprise, vitamin C did not attenuate cell cytotoxicity 
in the MTX-treated Hep3B cells. On the contrary, our data 
showed that vitamin C enhanced the anticancer efficacy in 
MTX-treated Hep3B cells (Fig. 6). As shown in Fig. 6A and 
B, combination treatments of 5 µM vitamin C and MTX (0.01 

Figure 4. O2
- and H2O2 levels. (A) O2

- counts and (B) H2O2 counts are presented in the control cells, 0.01 µM MTX-treated cells, and 10 µM MTX-treated cells. 
O2

- and H2O2 levels were determined after treatment for 1 h using a lucigenin-amplified method. Data were collected from 4 independent experiments and are 
presented as the means ± SD.

Figure 5. H2O2 levels. H2O2 counts are presented in control cells, MTX-
treated cells, vitamin C-treated cells, and MTX plus vitamin C-treated 
cells. H2O2 levels were determined after treatment for 1 h using a lucigenin-
amplified method. Data were collected from 4 independent experiments and 
are presented as means ± SD.

Figure 6. Cell viability. (A) Hep3B cells were treated with 0.01 µM MTX, 
5 µM vitamin C, and a combination of 0.01 µM MTX and 5 µM vitamin C. 
(B) Hep3B cells were treated with 0.1 µM MTX, 5 µM vitamin C or a com-
bination of 0.1 µM MTX and 5 µM vitamin C. (C) Hep3B cells were treated 
with 10 µM MTX, 5 µM vitamin C or a combination of 10 µM MTX and 
5 µM vitamin C. Cell viability was measured with MTT assay every 24 h 
and is presented as A570 experimental group/A570 control group x 100%. 
Data were collected from four independent experiments and are presented 
as means ± SD.
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or 0.1 µM) exerted a stronger anticancer effect on Hep3B cells 
than MTX treatment alone. It is worth noting that 0.01 µM 
MTX alone or 5 µM vitamin C alone did not have a signifi-
cant cytotoxic effect on Hep3B cells, whereas a combination 
treatment of 0.01 µM MTX and 5 µM vitamin C did induce 
a cytotoxic effect on Hep3B cells (Fig. 6A). While vitamin C 
did not enhance the 10 µM MTX-induced cytotoxic effect 
on Hep3B cells (Fig. 6C), the present study was important in 
indicating that vitamin C can assist low-dose MTX exert an 
anticancer effect on Hep3B cells.

Discussion

Previous reports have revealed that MTX-induced cytotoxicity 
is related to increased reactive oxygen species (ROS) (35-37). 
However, no study has shown which ROS are induced following 
MTX treatment. In the present study, two types of ROS, O2

- 
and H2O2, were measured. H2O2 levels in MTX-treated cells 
rose significantly while O2

- levels did not. In addition, it is well 
known that glutathione can convert toxic H2O2 into non-toxic 
H2O. We suggest that the increase in H2O2 levels is a possible 
and important reason why N-acetyl cysteine (NAC), a clinical 
drug for glutathione synthesis, is used for MTX-induced 
cell damage (35,38,39,62). On the other hand, high-dose 
MTX-induced H2O2 level increases were higher than low-dose 
MTX-induced H2O2 level increases (Fig. 4B). Our data also 
showed that MTX induced cytotoxicity in a dose-dependent 
manner (Fig. 1). Taken together, we consider increases in the 
H2O2 level to be one factor resulting in the inhibition of cell 
survival following MTX treatment.

MTX has anticancer effects on various hepatoma cell 
lines, including HepG2, MHCC97, Huh7 and Morris 5123 
cells (6,63-67). Alhough the mechanisms involved in the 
MTX-induced cytotoxic effects on different hepatoma cells 
remain undetermined, a previous study demonstrated that 
MTX-induced cytotoxic effects on HepG2 cells are related 
to the CD95 death receptor pathway (caspase-8/-3 cascade 
pathway), whereas MTX-induced cytotoxic effects on Huh7 
and Hep3B cells are not related to death receptor pathways 
(65). Similarly, the caspase-8/-3 cascade pathway was also 
found not to be involved in MTX-treated Hep3B cells in the 
present study (Fig. 3B). This study further demonstrated that 
MTX-induced apoptosis in Hep3B cells occurred through the 
caspase-9/-3 cascade pathway (Fig. 3A and C). These previous 
studies indicate that MTX induces different caspase pathways 
in different hepatoma cell lines. HepG2 is a p53 wild-type 
hepatoma cell line, while Hep3B is a p53-deficient hepatoma 
cell line (68,69). Thus, we suggest that p53 may be a possible 
reason for why the caspase‑8/-3 pathway was activated in the 
MTX-treated HepG2 cells, while the caspase-9/-3 pathway 
was activated in the MTX-treated Hep3B cells.

Previous studies have demonstrated that MTX-induced 
cell cytotoxicity is associated with increases in reactive 
oxygen species (ROS) (35-37). The present study also indi-
cated that MTX-induced H2O2 level increases may be one 
factor resulting in cell growth inhibition. On the other hand, 
vitamin C can reduce oxidative stress against ROS-induced cell 
damage (43-47). Here, we also demonstrated that vitamin C 
did reduce MTX-induced increases in H2O2 levels. However, 
vitamin C did not inhibit MTX-induced cell cytotoxicity in 

Hep3B cells. On the contrary, vitamin C assisted low-dose MTX 
to exhibit a strong cytotoxic effect in Hep3B cells. Similarly, 
recent studies also indicated that vitamin C can enhance anti-
cancer agents to exert a strong cytotoxic effect on cancer cells, 
although the mechanisms remain unknown (48,70‑72). Thus, 
MTX-induced increases in H2O2 levels may be one of the 
factors resulting in cytotoxicity noted in MTX-treated Hep3B 
cells. There are various unclear MTX-induced death signals 
that remain to be studied. Regardless, a combination treatment 
of vitamin C and low-dose MTX may be a potential method 
for hepatoma cancer therapy.

Overall, the present study first demonstrated that MTX 
induces an increase in H2O2 levels and activates the caspase-
9/-3 cascade pathway to cause apoptosis in Hep3B cells. 
Importantly, a combination treatment of vitamin C and low-
dose MTX exerted a strong anticancer effect in Hep3B cells. 
This treatment method may be useful for future clinical cancer 
therapy.
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