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Abstract. The expression of HNF1 homeobox B (HNF1B) 
is associated with cancer risk in several tumors, including 
ovarian cancer, and its decreased expression play roles in 
cancer development. However, the study of HNF1B and cancer 
is limited, and its association with drug resistance in cancer 
has never been reported. On the basis of array data retrieved 
from Oncomine and Gene Expression Omnibus  (GEO) 
online database, we found that the mRNA expression of 
HNF1B in 586 ovarian serous cystadenocarcinomas and in 
platinum-resistant A2780 epithelial ovarian cancer cells was 
significantly decreased, indicating a potential role of HNF1B 
in drug resistance in ovarian cancer. Based on this finding, 
comprehensive bioinformatics analyses, including protein/
gene interaction, protein-small molecule/chemical interaction, 
biological process annotation, gene co-occurrence and pathway 
enrichment analysis and microRNA-mRNA interaction, were 
performed to illustrate the association of HNF1B with drug 
resistance in ovarian cancer. We found that among the proteins/
genes, small molecules/chemicals and microRNAs which 
directly interacted with HNF1B, the majority was associated 
with drug resistance in cancer, particularly in ovarian cancer. 
Biological process annotation revealed that HNF1B closely 
related to 24 biological processes which were all notably asso-
ciated with ovarian cancer and drug resistance. These results 
indicated that the downregulation of HNF1B may contribute 
to drug resistance in ovarian cancer, via its direct interactions 
with these drug resistance-related proteins/genes, small mole-
cules/chemicals and microRNAs, and via its regulations on the 

drug resistance-related biological processes. Pathway enrich-
ment analysis of 36 genes which co-occurred with HNF1B, 
ovarian cancer and drug resistance indicated that the HNF1B 
may perform its drug resistance-related functions through 4 
pathways including ErbB signaling, focal adhesion, apoptosis 
and p53 signaling. Collectively, in this study, we illustrated for 
the first time that HNF1B may contribute to drug resistance 
in ovarian cancer, potentially through the 4 pathways. The 
present study may pave the way for further investigation of the 
drug resistance-related functions of HNF1B in ovarian cancer.

Introduction

Ovarian cancer is the most lethal cancer of the female repro-
ductive system, with a high rate of mortality worldwide. 
Approximately 70% of ovarian cancers are diagnosed at 
advanced stage and only 40% of women with such cancers can 
expect to survive 5 years (1). The current therapy for ovarian 
cancer is debulking surgery followed by cisplatin-centered 
chemotherapy (2). Although cisplatin-centered chemotherapy, 
which is the currently preferred treatment modality in human 
ovarian cancer, can achieve a complete response rate of 
40‑60% in advanced ovarian cancer patients, the main obstacle 
to a successful treatment for ovarian cancer is the development 
of drug resistance to combined chemotherapy, and that finally 
leads to mortality (3-5).

Drug resistance, including intrinsic and acquired resis-
tance, generally develops after the treatments to advanced 
stage cancer patients with chemotherapies, and results from 
a variety of factors including individual variations in patients 
and somatic cell genetic differences in tumors (5,6). Several 
molecular mechanisms implicated in the rise of resistance 
in cellular models of ovarian cancer include decreased cell-
associated drugs, altered drug inactivation, increased DNA 
damage tolerance/repair, increased anti-apoptotic regulator 
activity and growth factor receptor deregulation  (4,7). In 
addition, apoptosis, which is associated with the expression 
of specific ‘death’ genes and downregulation of ‘survival’ 
counterparts, is crucial in determining the response to 
chemotherapeutic agents (8,9). However, regardless of the 
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mechanisms, abnormal expression of drug resistance-related 
genes often plays important roles in drug resistance (10).

HNF1 homeobox B (HNF1B), a transcription factor (11-13), 
is identified as a transforming oncogene required for the 
survival of cancer cells (14). However, another study indicated 
that HNF1B may function as a tumor suppressor gene in chro-
mophobe renal cell carcinogenesis through control of PKHD1 
expression (15). It has been proven that HNF1B is downregu-
lated in ovarian, gastric, pancreatic and colorectal cells (16,17), 
and its suppression influences cellular phenotypes associated 
with tumor-related properties in prostate cancer cells (18). The 
associations of HNF1B with cancer focus mainly on the single 
nucleotide polymorphisms (SNPs). Gudmundsson et al (19) 
first reported the association of HNF1B variant with prostate 
cancer risk. Later, the two SNPs (rs4430796 and rs11649743) 
in HNF1B associated with prostate cancer risk were identi-
fied (20,21). Further study indicated that the rs4430796 is 
also associated with endometrial cancer risk in women of 
European background (22). Similarly, rs7501939 in HNF1B 
is associated with the risk of prostate cancer (22) and endo-
metrial cancer (22). In ovarian cancer, HNF1B is identified as 
a subtype-specific susceptibility gene (24-26). The different 
SNPs associate with invasive serous (rs7405776) and clear cell 
(rs11651755) epithelial ovarian cancer, and the risk alleles for 
the serous subtype associate with HNF1B high methylation 
and downregulation, and unmethylated and expressed HNF1B 
is presented in clear cell tumors (24).

Collectively, the expression of HNF1B is associated with 
cancer risk in several tumors, and its decreased expression 
play roles in cancer development. However, studies of HNF1B 
with ovarian cancer are limited, and its association with drug 
resistance in cancer has yet to be reported. In the present 
study, we demonstrated that the expression of HNF1B was 
significantly decreased in serous cystadenocarcinomas and 
platinum-resistant A2780 ovarian cancer cells, according to 
the microarray data retrieved from the Oncomine and Gene 
Expression Omnibus (GEO) online database, respectively, and 
it indicated that HNF1B may be involved in the drug resistance 
in ovarian cancer. Following this premise, the present study 
illustrated that the downregulation of HNF1B may contribute 
to drug resistance in ovarian cancer, based on our comprehen-
sive bioinformatics analyses.

Methods and database

The microarray data of HNF1B in ovarian cancer tissues was 
retrieved from the Oncomine online database (https://www.
oncomine.org/resource/main.html) (27,28). The microarray 
data of HNF1B in ovarian cancer cells was retrieved from the 
GEO (http://www.ncbi.nlm.nih.gov/geoprofiles/) (28,29). The 
protein/gene-protein/gene interaction analysis was performed 
using GeneMANIA online tool (http://www.genemania.org/) 
(30-32). Protein-small molecule/chemical interaction analysis 
was performed using STITCH 4.0 beta (http://stitch-beta.
embl.de/) (33-35) and BiologicalNetworks2 (http://biological-
networks.org/) (36,37). Annotation of biological process and 
gene co-occurrence analysis were performed using Coremine 
Medical online database (http://www.coremine.com/medical/) 
(38). The pathway enrichment analysis was performed using 
the DAVID online tool (http://david.abcc.ncifcrf.gov/) 

(39,40). The microRNAs targeted to the gene were predicted 
by miRWalk online tool which included 10 prediction tools 
(DIANAmT, miRanda, miRDB, miRWalk, RNAhybrid, 
PICTAR4, PICTAR5, PITA, RNA22 and Targetscan) (http://
www.umm.uniheidelberg.de/apps/zmf/mirwalk/) (41).

Results

mRNA expression of HNF1B is notably decreased in ovarian 
cancer tissues and in platinum-resistant cells. The mRNA 
expression data of HNF1B in ovarian cancers and in platinum-
resistant A2780 ovarian cancer cells was retrieved from the 
Oncomine and GEO profile online database, respectively. 
As shown in Fig.  1, the mRNA expression of HNF1B in 
586 ovarian serous cystadenocarcinomas was significantly 
decreased compared with the expression in 8 ovaries used 
as normal controls (p=7.06E-6; fold-change=-5.776), and its 
expression in platinum-resistant A2780 epithelial ovarian 
cancer cells was notably decreased compared with the expres-
sion in their sensitive counterpart (with 5 replicates each; 
fold-change=-2.16). These results indicated that the decreased 
expression of HNF1B may be involved in the development of 
ovarian serous cystadenocarcinomas and drug resistance.

Protein/gene interaction analysis indicating the associa-
tion of HNF1B with drug resistance in ovarian cancer. The 
protein/gene interaction of HNF1B with other proteins/genes 
was analyzed using the GeneMANIA online database. As 
shown in Fig.  2, HNF1B has direct interactions with 10 
proteins/genes; among these, HNF1B shared protein domain, 

Figure 1. mRNA expression of HNF1B in ovarian cancer tissues and drug-
resistant cells. (A) Based on the TCGA ovarian array data retrieved from 
the Oncomine online database, the mRNA expression of HNF1B in 586 
ovarian serous cystadenocarcinomas was significantly decreased com-
pared with the expression in 8 ovaries used as normal controls (p=7.06E-6; 
fold‑change=-5.776). The expression of HNF1B in the Oncomine database is 
presented as fold-changes (ovarian cancer vs. normal). In the present study, 
the expression of HNF1B in the normal control was normalized to 1.0, and 
all data are presented as relative expression. (B) Based on the array data 
retrieved from GEO profiles (GDS3754), the mRNA expression of HNF1B 
in platinum-resistant A2780 epithelial ovarian cancer cells was notably 
decreased compared with the expression in their sensitive counterpart (with 5 
replicates each; fold-change=-2.16). The expression data in the GEO Profiles 
database is presented as expression values. In the present study, the expres-
sion of HNF1B in sensitive cancer cells was normalized to 1.0, and all data 
are presented as relative expression.
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shared pathways and co-expressed with ONECUT1, had 
genetic interactions with NFKB1, PTEN, EGFR, PDCD4 
and MLH1, had genetic interactions and co-expressed with 
RAD51B, had physical interactions and shared the pathway 
with HNF1A, had physical interactions with ATF1 and 
co-expressed with BRCA1. With the exception of the RAD51B 
and ONECUT1, the other 8 proteins/genes have all been 
proven to be closely associated with drug resistance in ovarian 
cancer. For example, BRCA1 is a well-known TSG and its 
downregulation contributes to the enhancement of drug resis-
tance in ovarian cancer (42,43). PTEN also is a TSG, and its 
downregulation results in the development of drug resistance 
in OVCAR-3 cells and the alterations conferred resistance to 
cisplatin through the activation of PI3K/Akt and the inhibi-
tion of Bax translocation (44). Further research indicated that 
overexpression of PTEN reverses chemoresistance to cisplatin 
in human ovarian cancer cells through inactivation of the 
PI3K/AKT cell survival pathway and may serve as a potential 
molecular target for the treatment of chemoresistant ovarian 
cancer (45). NFKB1 functions as a biphasic regulator, either 
suppressing or enhancing the development of ovarian cancer. 
As a tumor suppressor in ovarian cancer cell lines, NFKB1 
regulates MAPK, while in the aggressive chemoresistant 
isogenic variants of these lines it plays a role in apoptosis (46). 
In addition, PDCD4 enhances chemosensitivity of ovarian 

cancer cells by activating death receptor pathway in vitro and 
in vivo (47), and the loss of MLH1 mediated by methylation 
can lead to the cisplatin-resistance in ovarian cancer (48,49). 
In addition, EGFR (50,51), ATF1 (52,53) and HNF1A (55) are 
all associated with drug resistance in ovarian and other types 
of cancer.

In addition to the direct interactions, there were another 
10 proteins/genes in network which indirectly interacted with 
HNF1B; among those, 6 proteins/genes including REL (55,56), 
CRCC2 (57), PMS2 (58), ZC3H11A (10), FOXA1 (59) and 
RAD51D (60) have been proven to be associated with drug 
resistance in ovarian and other cancers. For example, REL 
contributes directly to elevated uPA gene expression in human 
ovarian cancer cells (55), thereby promoting the multiple func-
tions of uPA during tumor growth and metastasis, including 
drug resistance (56). Similarly, a naturally occurring genetic 
variant of human XRCC2 confers increased resistance to 
cisplatin-induced DNA damage in ovarian cancer (57).

Collectively, among the total 20 proteins/genes that inter-
acted with HNF1B, 14 were associated with drug resistance 
in cancers, of which 9 were associated with drug resistance in 
ovarian cancer. Thus, given the strong interactions of HNF1B 
with those proteins/genes, we concluded that HNF1B may 
be involved in the drug resistance in cancer, particularly in 
ovarian cancer.

Figure 2. Protein/gene-protein/gene interaction network of HNF1B generated using the GeneMANIA online tool. The query in black was the target HNF1B, 
the queries in red were the proteins/genes associated with drug resistance in ovarian cancer, and the queries in blue were the proteins/genes associated with 
drug resistance in other cancers. The types of interactions between proteins/genes are illustrated as indicated by the network legend.
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Protein-small molecule/chemical interaction analysis 
indicating the association of HNF1B with drug resistance 
in ovarian cancer. Protein-small molecule/chemical interac-
tion analysis was performed using STITCH  4.0 beta and 
BiologicalNetworks2 to further elucidate the associations of 
HNF1B with drug resistance in ovarian cancer. A total of 6 
small molecules/chemicals were identified to interact with 
HNF1B. Among these, 4 chemicals, including menadione, 
SB203580, retinoic acid and cyclic AMP, have been proven to be 
closely related to drug resistance in ovarian cancer. Menadione 
is identified as a substrate of P-gp, which, presumably, acts 
as the mechanism for the chemosensitizing effect (61). The 
treatment of ovarian cancer cells with ascorbate:menadione 
resulted in the degradation of nuclear and DNA, which finally 
led to the cell death (62,63). Thus, menadione is considered 
to be a promising chemotherapeutic enhancer by its ability 
to circumvent drug resistance, in addition to its own anti-
cancer activity (61). Menadione activated HNF1B according 
to protein-chemical interaction (Fig.  3A), suggesting that 
the expression of HNF1B sensitizes the cancer cells to the 
anticancer drug; this, in turn, indicated that the decreased 
expression of HNF1B would contribute to drug resistance. 
Furthermore, HNF1B had physical interaction and co-citation 
with retinoic acid. Retinoic acid is identified as a suppressor of 
ovarian carcinoma cell growth (64); it sensitizes cancer cells 
to paclitaxel in part through survivin downregulation and the 
promotion of aberrant mitotic progression results in apoptosis 
(65). Retinoic acid also potentiates the chemotherapeutic effect 
of cisplatin by inducing differentiation of tumor initiating 
cells (66). In addition, HNF1B interacts with SB203580 and 
cyclic AMP. SB203580 is an inhibitor of p38MAPK, which 
is related to paclitaxel resistance of ovarian carcinoma, and 
blockade of the p38MAPK pathway can promote the apoptosis 
of the drug-resistant cells and reverse the drug resistance (67).
The cyclic AMP can reduce the induction of AP-1 binding, 
which is required for the activation of IL8 by paclitaxel (68). 
The presence of IL8 in paclitaxel-treated ovarian cancer cells 
contributed to the development of paclitaxel resistance (69). 
These results indicated that the cyclic AMP is also involved 
in the development of drug resistance in ovarian cancer. 
Collectively, of the 6 small molecules/chemicals that inter-

acted with HNF1B, 4 were associated with drug resistance in 
ovarian cancer, suggesting that HNF1B may contribute to the 
development of drug resistance in ovarian cancer.

Biological process annotation indicating the association of 
HNF1B with drug resistance in ovarian cancer. The biological 
process annotation was performed using Coremine Medical 
online database/tool. As shown in Fig. 4, a total of 24 biolog-
ical processes were annotated with HNF1B, ovarian cancer 
and drug resistance (p<0.01). Given the close relationships of 
HNF1B with the 24 processes, and the close relationships of 
the 24 processes with ovarian cancer and drug resistance, we 
concluded that HNF1B may contribute to the drug resistance 
in ovarian cancer via its effects on these biological processes. 
The 24 biological processes which annotated with HNF1B, 

Figure 3. Protein-small molecule/chemical interaction analysis of HNF1B with chemicals by (A) STITCH 4.0 beta and (B) BiologicalNetworks2. The types of 
interaction between HNF1B and chemicals are shown.

Figure 4. Annotation of the biological processes of HNF1B with ovarian 
cancer and drug resistance using the Coremine Medical online database/tool. 
The top 24 biological processes (p<0.01) which closely related to the three 
terms were annotated. *** Regulation of cell cycle; ### epithelial to mesen-
chymal transition.
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ovarian cancer and drug resistance were varied, while it could 
still be sub-grouped. As shown in Fig. 4, cell growth related 
biological processes (covered 5 processes including cell prolif-
eration, cell growth, growth, cell division and regeneration), 
cell cycle-related (covered 4 processes including cell cycle, 
regulation of cell cycle, cell cycle arrest and S phase) and gene 
expression regulation-related (covered 4 processes including 
gene expression, gene silencing, RNA interference and reverse 
transcription) may be the main processes by which HNF1B 
performs its drug resistance-related functions in ovarian 
cancer.

Pathway enrichment analysis of the genes co-occurring with 
HNF1B indicating that HNF1B is associated with drug resis-
tance in ovarian cancer. A total of 36 genes (TP53, BCL2, 
JUN, INS, MYC, H3F3AP6, TCEAL1, MUC16, ERBB2, 
WT1, ABCC2, EGFR, SYCE1L, KLHL1, CDKN1A, AFP, 
CCND1, PTEN, BCL2L1, BRCA1, CDX2, TYMS, TOP2A, 
AKT1, MSLN, EPCAM, KRT20, FOXL2, CASP3, HIF1A, 
COL11A2, PARP1, YBX1, PIK3CA, ERBB3 and CDH1) 
which notably co-occurred with HNF1B, ovarian cancer and 
drug resistance, were annotated (p<0.01) based on the analysis 
by Coremine Medical online tool, and provided a strong poten-
tiality that HNF1B would perform its drug resistance-related 
functions in ovarian cancer through the interactions with those 
genes. The pathway enrichment analysis of the 36 genes was 
performed by DAVID online database to enrich the potential 

pathways with which HNF1B may be involved in the regula-
tion of drug resistance. As shown in Table I, in addition to 
the pathways in cancers, 4 pathways including ErbB signaling 
pathway, focal adhesion, apoptosis and p53 signaling pathway 
were enriched, suggesting that HNF1B may be associated with 
drug resistance through its regulation on the 4 pathways.

MicroRNA-mRNA interaction analysis indicating the asso-
ciation of HNF1B with drug resistance in ovarian cancer. 
Among the transcriptional targets of HNF1B were 426 
microRNAs as predicted through miRWalk, which is made 
up of ten miRNA-mRNA prediction tools. Seven microRNAs, 
i.e., those yielding the highest score for HNF1B, were selected 
for subsequent analysis (Table II). As shown in Table II, among 
the top 7 microRNAs, 5 of them, including miR-24, -194, -367, 
-25 and -375 that targeted HNF1B influenced drug resistance 
in ovarian and other types of cancers. For example, miR-367 
is specifically involved in the drug resistance in paclitaxel-
sensitive ovarian cancer cells (70). Similarly, miR-375 is 
associated with drug resistance in ovarian (71) and cervical 
cancer (72). Although no study has reported the role of miR-32 
and -217 in drug resistance, it is associated with drug resis-
tance-related processes such as cell proliferation, invasion and 
migration (73-75). Collectively, among the 7 microRNAs most 
strongly targeting HNF1B, the majority were involved in drug 
resistance in ovarian and other types of cancers, suggesting 
that the gene also mediates drug resistance.

Table I. Pathway enrichment analysis of the 36 genes which co-occurred with HNF1B, drug resistance and ovarian cancer, in 
accordance with Coremine Medical.

	 P-value	 Benjamini	 The genes co-occurring with HNF1B, drug resistance
KEGG pathway	 (<0.01)	 (<0.01)	 and ovarian cancer

ErbB signaling pathway	 3.2E-8	 2.8E-7	 CDKN1A, EGFR, JUN, PIK3CA, AKT1, ERBB2, ERBB3, MYC
Focal adhesion	 6.8E-7	 3.9E-6	 BCL2, COL11A2, CCND1, EGFR, JUN, PTEN, PIK3CA, AKT1, ERBB2
Apoptosis	 2.1E-5	 1.1E-4	 BCL2, BCL2L1, CASP3, PIK3CA, TP53, AKT1
p53 signaling pathway	 1.5E-4	 6.8E-4	 CASP3, CCND1, CDKN1A, PTEN, TP53

Table II. The 7 microRNAs most strongly targeting HNF1B, and their functions in cancer.

	 10 microRNAs-mRNA interaction prediction tools
MicroRNAs	 -------------------------------------------------------------------------------------------------------------------	 Drug resistance and related
(hsa-)	 A	 B	 C	 D	 E	 F	 G	 H	 I	 J	 functions in cancer (refs.)

miR-24	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 Drug resistance-related (76-78)
miR-32	 1	 1	 1	 1	 1	 1	 1	 0	 0	 1	 Inhibit invasion (73); promote growth
											           and migration (74)
miR-217	 1	 1	 0	 1	 1	 1	 1	 0	 1	 1	 Suppress cell proliferation and migration (75)
miR-194	 1	 1	 1	 1	 1	 1	 1	 0	 0	 1	 Drug resistance-related (79)
miR-367	 1	 1	 1	 1	 1	 0	 1	 0	 1	 1	 Drug resistance-related (70)
miR-25	 1	 1	 1	 1	 1	 1	 1	 0	 0	 1	 Drug resistance-related (80)
miR-375	 1	 1	 1	 1	 1	 0	 1	 0	 0	 1	 Drug resistance-related (71,72)

A, DIANAmT; B, miRanda; C, miRDB; D, miRWalk; E, RNAhybrid; F, PICTAR4; G, PICTAR5; H, PITA; I, RNA22; J, Targetscan. 1, pre-
dicted by the software; 0, not predicted.
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Discussion

The increasing number of sequenced genomes makes it 
important to develop methods that can assign functions to 
newly discovered genes in a timely and cost-effective manner. 
Experimental determination of protein functions is not only 
expensive but also time-consuming. Thus, computational 
approaches that utilize diverse biological datasets to generate 
automated predictions are useful, as they can guide laboratory 
experiments and facilitate more rapid annotation of genomes 
(81,82). The computational approaches to gene function predic-
tion have relied on a variety of genomic and proteomic data, 
at least including usage of microarray expression data (83), 
protein-protein interaction networks (84), protein-small 
molecule/chemical interactions (33-35), and the annotation of 
gene with biological processes (81). Thus, on the basis of many 
large-scale databases and networks, gene function predic-
tion based on bioinformatics analysis is a potential, feasible 
and valuable way for gene function prediction (82). Using 
the comprehensive bioinformatics analyses, Yin et al (10) 
performed an integrated analysis of tumor suppressor genes 
with drug resistance in ovarian cancer, and two genes CCL21 
and SPARCL1 associated with drug resistance were identified 
(85). Using similar bioinformatics analysis, upregulation of 
NEK2 was identified to be associated with drug resistance in 
ovarian cancer (86), and upregulation of E2F3 was identified 
to be associated with poor prognosis in HCC (87).

The association of HNF1B with drug resistance in ovarian 
and other cancers has yet to be reported. In the present study, 
a comprehensive bioinformatics analysis was performed to 
illustrate the associations of HNF1B with drug resistance 
in ovarian cancer, including array data retrieving, protein/
gene interaction, protein-small molecule/chemical interac-
tion, biological process annotation, gene co-occurrence and 
pathway enrichment analysis, and microRNA-mRNA interac-
tion. The database/tool/software used in this analysis including 
Oncomine online database (27,28), GEO profiles (28,29), 
GeneMANIA online tool (30-32), STITCH 4.0 beta (33-35), 
BiologicalNetworks2 (36,37), Coremine Medical (38), DAVID 
online tool (39,40) and miRWalk (41), which are all regularly 
used and reliable databases/tools. For example, GeneMANIA 

is a web-based database and a tool for prediction of gene func-
tions on the basis of multiple networks derived from different 
genomic or proteomic data/sources  (30). Seven organisms 
including Homo sapiens are currently supported, and hundreds 
of data sets have been collected from GEO, BioGRID, 
IRefIndex and I2D, as well as organism-specific functional 
genomics data sets (32). With a query gene, GeneMANIA 
could find a small set of genes that are most likely to share 
function with that gene based on their interactions with it, and 
with a query gene list, GeneMANIA could extend the list with 
functionally similar genes that it identifies using available 
genomics and proteomics data (32).

On the basis of comprehensive bioinformatics analyses 
(Fig. 5), we found that the mRNA expression of HNF1B in 
586 ovarian cancer tissues and in drug-resistant cells is signifi-
cantly decreased compared with their control counterparts, 
with 5.776- and 2.16-fold-changes, respectively. Protein/
gene interaction analysis indicated that among the total 20 
proteins/genes that interacted with HNF1B, 14 of them were 
associated with drug resistance. Protein-small molecule/
chemical interactions analysis indicated that 4 of 6 chemicals 
that directly interacted with HNF1B were associated with 
drug resistance in ovarian cancer. MicroRNA-mRNA inter-
action analysis suggested that among the 7 microRNAs most 
strongly targeting HNF1B, the majority were involved in drug 
resistance in ovarian and other cancers. The biological process 
annotation indicated that a total of 24 biological processes 
were annotated with the HNF1B, ovarian cancer and drug 
resistance, and gene co-occurrence revealed that a total of 
36 genes notably co-occurred with HNF1B, ovarian cancer 
and drug resistance. Collectively, given the strong interactions 
of HNF1B with proteins, genes, small molecules, microRNAs 
and biological processes, which were all associated with drug 
resistance in ovarian and other cancers, we concluded that the 
downregulation of HNF1B in ovarian serous cystadenocarci-
nomas and drug resistant ovarian cancer cells may potentially 
be involved in the development of drug resistance.

Several studies indicated that HNF1B is a downstream 
transcription activator of Wnt signaling pathway, and 
performs its functions via the interaction with the signaling 
(88-90). However, the pathway with which HNF1B is involved 

Figure 5. The overall procedure of bioinformatics analysis of HNF1B associated with drug resistance in ovarian cancer.
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in cancer development is less understood. In the present study, 
pathway enrichment analysis of 36 genes which co-occurred 
with HNF1B, ovarian cancer and drug resistance, was 
performed. In addition to the pathways in cancer and pathways 
related to specified cancers (such as prostate and colorectal 
cancer), 4 pathways including ErbB signaling, focal adhesion, 
apoptosis and p53 signaling were enriched, suggesting that 
HNF1B may contribute to drug resistance in ovarian cancer 
via those pathways. ErbB signaling (91), focal adhesion 
(92,93), apoptosis (94,95) and p53 signaling (96,97) have been 
reported to associate with drug resistance in ovarian cancer. 
For example, miR-21 regulates drug resistance via apoptosis 
and cellular survival pathways (94), and loss of DOK2 induces 
carboplatin resistance in ovarian cancer via suppression of 
apoptosis (98).

In summary, on the basis of comprehensive bioinformatics 
analysis, for the first time, we illustrated that the downregu-
lation of HNF1B may be associated with drug resistance in 
ovarian cancer. The present study may set the stage for further 
investigation of the drug resistance-related functions of 
HNF1B in ovarian cancer.
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