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Abstract. Reduced expression in immortalized cells 
(REIC)/Dickkopf (Dkk)-3 is a tumor-suppressor gene and 
has been studied as a promising therapeutic gene for cancer 
gene therapy. Intratumoral injection of an adenovirus vector 
carrying the human REIC/Dkk-3 gene (Ad-REIC) elicits cancer 
cell‑specific apoptosis and anticancer immune responses. The 
cytokine-like effect of secretory REIC/Dkk-3 on the induction 
of dendritic cell (DC)-like cell differentiation from monocytes 
plays a role in systemic anticancer immunity. In the present 
study, we generated recombinant full-length and N-terminally 
truncated REIC/Dkk-3 to characterize the biological activity 
of the protein. During the purification procedure, we identi-
fied a 17 kDa cysteine-rich stable product (C17-REIC) 
showing limited degradation. Further analysis showed that the 
C17‑REIC domain was sufficient for the induction of DC‑like 
cell differentiation from monocytes. Concomitant with the 
differentiation of DCs, the REIC/Dkk-3 protein induced the 
phosphorylation of glycogen synthase kinase 3β (GSK-3β) 
and signal transducers and activators of transcription (STAT) 
at a level comparable to that of granulocyte/macrophage 
colony-stimulating factor. In a mouse model of subcutaneous 
renal adenocarcinoma, intraperitoneal injection of full-length 
and C17-REIC proteins exerted anticancer effects in parallel 
with the activation of immunocompetent cells such as DCs and 
cytotoxic T lymphocytes in peripheral blood. Taken together, 
our results indicate that the stable cysteine-rich core region 

of REIC/Dkk-3 is responsible for the induction of anticancer 
immune responses. Because REIC/Dkk-3 is a naturally circu-
lating serum protein, the upregulation REIC/Dkk-3 protein 
expression could be a promising option for cancer therapy.

Introduction

Reduced expression in immortalized cells (REIC)/Dickkopf 
(Dkk)-3 gene is a member of the Dkk family, which consists of 
four members (Dkk-1 to -4). Dkk proteins regulate the canonical 
Wnt/β-catenin signaling pathway, which plays a critical role 
in cell proliferation and differentiation (1,2). Dkk-1, -2 and -4 
interact with the low-density lipoprotein-related receptor 5 or 
6 (LRP5/6) and affect Wnt/β-catenin signaling (3-5). REIC/
Dkk-3 does not associate with LRP5/6, and its involvement in 
Wnt/β-catenin signaling remains controversial (6-8).

Unlike other Dkk family members, REIC/Dkk-3 is 
a tumor-suppressor gene whose expression is markedly 
reduced in various types of cancer cells and tissues (9-16). 
Overexpression of REIC/Dkk-3 with an adenovirus vector 
carrying the human REIC/Dkk-3 gene (Ad-REIC) induces 
endoplasmic reticulum (ER) stress-mediated apoptosis in 
cancer cells (17,18). We previously demonstrated that the 
N-terminal region of REIC/Dkk-3 is responsible for its cancer 
cell-specific induction of apoptotic activity (19). In addi-
tion, infection of normal cells with Ad-REIC resulted in the 
production of interleukin (IL)-7, which contributes to systemic 
anticancer immunoreactivity (17). Based on these findings, a 
phase I-IIa study of Ad-REIC gene therapy in prostate cancer 
patients is ongoing (20).

Recently, we found that secreted REIC/Dkk-3 protein 
induces differentiation from monocytes to dendritic cell 
(DC)-like cells (21). DCs control immune homeostasis by 
regulating both innate and adaptive immunity. Since DCs 
play a critical role in initiating cancer immunity, they have 
become an attractive target for cancer immune therapy. 
The mechanisms by which cytokines regulate DC develop-
ment from hematopoietic stem cells have been extensively 
analyzed in vitro (22,23). For example, the addition of granu-
locyte/macrophage colony-stimulating factor (GM-CSF) and 
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IL-4 to the culture medium is a standard procedure to induce 
DC differentiation from monocytes, and it has been applied 
to the preparation of DC vaccines for cancer therapy (24,25). 
Differentiation of DC-like cells was observed when monocytes 
were treated with exogenous REIC/Dkk-3 protein at doses 
higher than 1 µg/ml (21); however, the naturally circulating 
REIC/Dkk-3 protein is found at 40-60 ng/ml in serum (26). 
To our knowledge, this activation is unique to the REIC/Dkk-3 
protein among the Dkk family members, which has a relatively 
low (35-40%) sequence similarity in the Dkk family (1). In the 
present study, we analyzed the REIC/Dkk-3 protein to identify 
the region responsible for the induction of DC differentiation. 
In addition, the role of the REIC/Dkk-3 protein in immune 
activation was confirmed by examining its anticancer effects 
in response to intraperitoneal administration, and its effect on 
the activation of immunocompetent cells in blood.

Materials and methods

Construction of the expression plasmids. Recombinant REIC- 
Dkk-3 proteins were expressed using a previously developed 
supergene expression (SGE) system (27,28). The expression 
plasmid DNA [pIDT-SMART (C-TSC)-REIC] for expression of 
the full-length REIC/Dkk-3 (FL-REIC) protein was described 
previously (27). The cDNA fragment encoding an N-terminal 
truncated form of C‑REIC [Arg142‑Ile350] was amplified with 
PCR primers containing the EcoRI and BamhI restriction sites. 
The PCR products were first cloned into the p3xFLAG‑CMV‑9 
expression vector (Sigma-Aldrich, St. Louis, MO, USA) to 
express FLAG‑tag fused C‑REIC protein. To obtain efficient 
recombinant protein expression with the SGE system, the open 
reading frame was cloned into the pIDT-SMART (C-TSC) 
vector.

Preparation of the human REIC/Dkk-3 protein. Both 
FL-REIC and C-REIC were transiently expressed in 
FreeStyle™ 293-F cells (Life Technologies, Carlsbad, CA, 
USA) using Freestyle 293 Expression Medium and the 293 
Fectin transfection reagent (Life Technologies), according to 
the manufacturer's instructions. Briefly, exponentially growing 
cells (1x106 cells/ml) with 180 ml media were prepared in a 
500‑ml flask. After transfection with 180 µg each of expres-
sion plasmid DNAs and 293 Fectin complex, the cells were 
cultivated using an orbital shaker (125 rpm) at 37˚C in the 
presence of 8% CO2 for 4 days. Secreted proteins in the culture 
media were concentrated by Amicon Ultra centrifugal filter 
units (Millipore, Billerica, MA, USA), and the buffer was then 
replaced with 20 mM hEPES buffer (ph 7.2) using Sephadex 
G25M column chromatography (GE healthcare, Piscataway, 
NJ, USA). Subsequently, the proteins were purified by anion 
exchange column chromatography (DEAE-Toyopearl 650M; 
Tosoh, Tokyo, Japan) and eluted with a linear NaCl gradient 
(0 to 0.7 M). The solution of the recombinant proteins was 
changed to PBS using a Sephadex G25M column, and then 
sterilized with 0.22 µm Millex‑GV syringe filters (Millipore) 
and stored at ‑70˚C until use for the biological experiments.

Analysis of REIC/Dkk-3 degraded products. During the opti-
mization of purification procedures for REIC/Dkk‑3 proteins, 
degraded products were often detected on SDS-PAGE. This 

degradation converged to a 17-kDa band on SDS-PAGE, 
which was no longer degraded with long incubation times. 
This limited degradation product (C17-REIC) was analyzed 
for its amino-terminal sequence with a protein sequencer 
(Applied Biosystems 491), and carboxyl terminal amino acids 
were determined by amino acid analyzer (L-8500; hitachi, 
Japan) after hydrazinolysis of the protein.

Preparation of the human monocytes. human peripheral 
blood monocytes (PBMCs) were prepared from the blood of 
healthy donors by a standard method involving Ficoll-Paque 
centrifugation. The cell collection rate was determined by the 
trypan blue exclusion method. The survival rate was confirmed 
to be 99% or greater. For preparation of the monocytes, 
PBMCs were resuspended in LGM-3 (serum-free lymphocyte 
growth medium-3; Lonza, Walkersville, MD, USA). The 
cells adhering to a plastic dish (subjected to incubation in a 
10‑cm dish at 37˚C for 2 h) were used as monocytes. In some 
experiments, CD14+ monocytes were separated using CD14+ 
magnetic-activated cell sorting microbeads (MACS; Miltenyi 
Biotec, Bergisch Gladbach, Germany). Purified CD14+ mono-
cytes were resuspended in LGM-3 medium.

Treatment of the human monocytes. CD14+ monocytes were 
cultured in LGM-3 medium with or without DC differentiation 
factors. As a positive control, 2 ng/ml each of GM-CSF and 
IL-4 (both from R&D Systems, Minneapolis, MN, USA) were 
added to the medium. As for REIC/Dkk-3 proteins, 10 µg/ml 
of purified recombinant proteins was added. After cultivation 
for 7 days, the solution was stirred manually, and after 3 min, 
the number of DC-like cells per randomly selected visual 
field was counted with magnification of the slightly expanded 
photographs. The data were converted into a graph (n=5 visual 
fields). The cells were observed with a phase contrast micro-
scope.

Western blotting. Purified CD14+ monocytes were incubated for 
6 h in LGM-3 medium with 2 ng/ml GM-CSF or 10 µg/ml REIC 
protein. Total cellular proteins were prepared from the treated 
cells, and western blot analysis was performed as previously 
described (21). Proteins were identified using the following 
antibodies: anti-phospho-Akt (Ser473), anti-phospho-glycogen 
synthase kinase 3β (GSK-3β) (Ser9), anti-GSK-3β, anti-phos-
phorylated signal transducers and activators of transcriptions 
(STAT)3 (Tyr705) and anti-phospho-STAT5 (Tyr694) (Cell 
Signaling Technology, Beverly, MA, USA).

Tumor-suppressive effects of FL-REIC and C17-REIC 
proteins in vivo. Murine renal carcinoma (RENCa) cells 
(1x106) were subcutaneously injected into mice (BALB/c, 
female, n=5). On days 3, 5, 7, 10, 12 and 14 after injection 
(provided that day 3 after injection was designated as the 
day of the start of administration of REIC proteins), 100 µg 
each of FL-REIC or C17-REIC, both proteins dissolved in 
100 µl of PBS, or PBS as a control was intraperitoneally 
injected into mice. On day 17, the therapeutic effects were 
evaluated as tumor volume, and anticancer immune activity 
was measured before mice were euthanized. All experiments 
were conducted in accordance with the guidelines for animal 
experiments of our institution.
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Flow cytometry. EDTA (0.2% solution, 30 µl) was added to 
750 µl of mouse blood collected from the inferior vena cava 
as an anticoagulant. Antibodies (1 µl each) with different 
fluorescent labels (purchased from eBioscience) were added to 
30 µl of blood, stirred and incubated at 4˚C for 60 min to stain 
immunocompetent cells as follows: DCs (anti-CD11c antibody 
and anti-CD80 antibody) or cytotoxic T cells (anti-CD8 anti-
body and anti-CD69 antibody).

Subsequently, erythrocytes were lysed in a red blood cell 
lysis buffer. Cells were washed twice with PBS and resus-
pended in 200 µl of PBS to generate a solution for analysis. A 
total of 3x104 cells were collected using a FACSCalibur flow 
cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) and 
analyzed using CellQuest software (Becton Dickinson). An 
appropriate gate was set on the basis of the forward scatter 
pattern characteristic of these cells, and only cells within the 
gate were analyzed.

Statistical analysis. Data are expressed as the means ± stan-
dard error. Differences between two groups were analyzed 
using the unpaired Student's t-test, and p<0.05 was considered 
statistically significant.

Results

Production and purification of the REIC/Dkk-3 protein. To 
elucidate the molecular mechanism underlying the induc-
tion of anticancer immune responses by REIC/Dkk-3, the 
FL-REIC/Dkk-3 protein and the C terminal domain of 
REIC/Dkk-3 (C-REIC) containing two cysteine (Cys)-rich 
domains were produced in Freestyle 293-F cells (Life 
Technologies) (Fig. 1A). Secreted REIC/Dkk-3 protein was 
recovered from the culture medium of transfected 293-F cells 
on day 4. Approximately 100 mg of purified FL‑REIC was 
obtained from a 1-liter culture using this system. Since the 
expression of C-REIC protein with the original signal peptide 
showed a low yield, the signal peptide was replaced by the 
Met-preprotrypsin leader sequence (PPT LS) preceding the 
FLAG coding sequence of the p3xFLAG-CMV-9 vector.

The stability of the FL-REIC protein was tested by incu-
bation at 37˚C, which resulted in the detection of degraded 
products on SDS-PAGE. Although the degradation mechanism 
was unclear, this proteolytic degradation was enhanced with 
unpurified FL‑REIC protein in a low‑salt buffer. However, the 
degraded protein products converged in a band of ~17 kDa 
on SDS-PAGE, and longer incubation periods did not result 
in additional degradation products. Amino acid sequencing 
of this product resulted in the identification of Ser135 as the 
amino terminal residue and Phe288 as the carboxyl terminal 
residue (Fig. 1A). The purity of the REIC/Dkk-3 protein was 
determined as greater than 90% by SDS-PAGE (Fig. 1B).

The cysteine-rich domain of REIC/Dkk-3 is responsible 
for the induction of DC-like cell differentiation. Previous 
studies from our group showed that FL-REIC is a DC-like 
cell differentiation factor for monocytes when used at a 
range of 1-10 µg/ml (21). To investigate whether the C-REIC 
and C17-REIC proteins induce DC differentiation, CD14+ 
monocytes were incubated with 10 µg/ml of purified REIC 
proteins. After a 7-day culture, imaging with a phase-contrast 
microscope showed DC-like differentiation of cells treated 
with GM-CSF/IL-4 and each of the three REIC proteins 
(FL-REIC, C-REIC and C17-REIC) (Fig. 2A). The number 
of DC‑like cells per randomly‑selected visual field (n=5) was 
counted, and the three types of REIC proteins had a compa-
rable effect (Fig. 2B). These results indicated that C17-REIC, 
composed of two Cys-rich domains, is essential for the induc-
tion of DC-like cell differentiation.

REIC/Dkk-3-mediated phosphorylation of STAT3, STAT5 and 
GSK-3β plays a role in DC-like cell differentiation. Recently, 
intracellular activation of both STAT3 and STAT5 was found 
to play a role in the development of DCs (29-31). In our 
previous study, we showed that REIC/Dkk-3 phosphorylates 
STAT1 and STAT3 in monocytes (21). Furthermore, phos-
phorylation of GSK-3β on Ser9 by GM-CSF is thought to be 
involved in DC maturation (32). To evaluate the phosphoryla-
tion of STAT3, STAT5 and GSK-3β induced by REIC/Dkk-3, 

Figure 1. Purification of the human REIC/Dkk‑3 proteins. (A) Schematic structure of human REIC/Dkk‑3 proteins (FL‑REIC, C‑REIC and C17‑REIC). The 
recombinant proteins possess one or four N-linked glycosylation sites (residues 96, 106, 121, 204) and an N-terminal signal peptide (black box: SP) and two 
cysteine-rich domains (Cys-1: residues 147-195 and Cys-2: residues 208-284). (B) The purity of recombinant human REIC/Dkk-3 proteins (FL-REIC, C-REIC 
and C17‑REIC) was confirmed by SDS‑PAGE stained with Coomassie brilliant blue (CBB).
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monocytes were treated for 6 h with REIC/Dkk-3 or GM-CSF. 
Both REIC/Dkk-3 and GM-CSF induced the phosphorylation 
of STAT3, STAT5 and GSK-3β in the monocytes, although the 
effective dose for REIC/Dkk-3 was much higher than that of 
GM-CSF (Fig. 3A and B). By contrast, heat treatment of REIC/
Dkk-3 protein abrogated the effect on the phosphorylation of 
STAT3 in lymphocytes (Fig. 3A). Consequently, activation of 
STAT signaling and GSK-3β inactivation depending on Ser9 
phosphorylation is a biological activity unique to the REIC/
Dkk-3 protein, and it is not caused by possible contaminants, 
such as lipopolysaccharides. Since phosphorylated Akt also 
induces the phosphorylation of GSK-3β (33,34), we analyzed 
the activation of the PI3K/Akt pathway. Our results showed that 

Akt was not activated in response to REIC/Dkk-3 treatment 
(Fig. 3B). Taken together, these results revealed that REIC/
Dkk-3 induces the phosphorylation of GSK-3β in monocytes 
independently from the PI3K/Akt pathway.

Intraperitoneal injection of REIC/Dkk-3 suppresses tumor 
growth via induction of cancer immunity. We previously 
demonstrated that intratumoral administration of FL-REIC 
inhibited tumor growth in vivo through the induction of cancer 
immunity (21). To investigate the antitumor potential of REIC/
Dkk-3, FL-REIC and C17-REIC proteins were intraperitoneally 
injected into tumor‑bearing mice (Fig. 4A). Significant tumor 
growth suppression was observed 17 days after the injection 

Figure 3. Lymphocytes and purified CD14+ monocytes were treated with medium alone or 2 ng/ml GM-CSF or 10 µg/ml REIC protein for 6 h. Total cellular 
proteins were analyzed by western blot analysis. (A) Proteins were identified by the following antibodies: anti‑phospho‑STAT3 (Tyr705) and anti‑phospho‑
STAT5 (Tyr694). (B) Proteins were identified by the following antibodies: anti‑phospho‑Akt (Ser473), anti‑phospho‑GSK‑3β (Ser9) and anti-GSK-3β.

Figure 2. Induction of DC-like cell differentiation from monocytes by the REIC/Dkk3 proteins. (A) Phase contrast microscopic images of CD14+ monocytes 
cultured alone (no addition), in the presence of GM-CSF and IL-4 (2 ng/ml each), or the FL-REIC, C-REIC and C17-REIC proteins (10 µg/ml) for 7 days. 
(B) The frequency of the occurrence of DC-like cells after treatment for 7 days was measured. The results are presented as the mean ± standard error (SE).
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of the REIC/Dkk-3 proteins. Tumor volumes were statistically 
significantly smaller in the group treated with both FL‑REIC 
and C17-REIC than in the group treated with PBS (Fig. 4B). 
These antitumor effects of the REIC/Dkk-3 proteins were 
accompanied by in vivo induction of CTL (CD69+/CD8+) and 
DCs (CD11c+/CD80+) in the peripheral blood (Fig. 4C). Taken 
together, these results revealed that intraperitoneally injected 
REIC/Dkk-3 proteins exhibited antitumor effects mediated by 
the activation of systemic immunity, and the cysteine-rich core 
domain was essential for these biological responses.

Discussion

In the present study, we demonstrated the feasibility of anti-
cancer protein therapy by using recombinant REIC proteins. 
high level production of recombinant REIC proteins was 
achieved by using Freestyle 293 cell suspension cultures 
and SGE high-level expression vector systems (27) with 
transient gene expression. During the process of FL-REIC 
protein purification, we identified a stable region designated 
as C17-REIC, composed of two Cys-rich domains. In vitro 
and in vivo assays using truncated forms of the REIC protein 

revealed that the Cys-rich core domain (C17-REIC) is critical 
for inducing cancer immunity, acting as a DC-like cell differ-
entiation factor from monocytes. The N-terminal sequence of 
C17-REIC, SVGDEEGRRS, is the same sequence previously 
reported as the binding sequence for dynein light chain, 
Tctex1 (35). Although the detailed mechanism underlying the 
interaction between the secretory REIC/Dkk-3 protein and the 
intracellular Tctex1 protein remains unclear, the proteolytic 
processing of C17-REIC observed in vitro may reflect its 
intracellular biological action. Furthermore, we demonstrated 
that the C17-REIC protein acts as a tumor suppressor similar 
to the  FL-REIC/Dkk-3 protein. Since the therapeutic effects 
of the protein depend on its structural integrity, it is important 
to minimize the risk of degradation, denaturation, aggrega-
tion, and precipitation, and storage conditions are important. 
Therefore, the fact that the robust C17-REIC domain is the 
domain responsible for protein function suggests that REIC 
possesses favorable features for protein-based therapy.

The results of the present study shed light on the molecular 
mechanisms underlying the induction of DC-like cell differ-
entiation from monocytes by REIC/Dkk-3. The REIC/Dkk-3 
protein induced the phosphorylation of GSK-3β at levels 

Figure 4. Tumor-suppressive effects of the REIC/Dkk3 proteins in the in vivo experiments. (A) Protocol illustrating the intraperitoneal administration of PBS, 
the FL-REIC protein and the C17-REIC protein. (B) Suppression of tumor growth (tumor weight) by intraperitoneal administration of the FL-REIC protein 
and the C17-REIC protein. The images show the inhibition of tumor growth in response to intraperitoneal protein administration. Scale bars, 1 cm. (C) The 
positive rate (%) of activated cytotoxic T lymphocytes (CTLs) (CD69+/CD8+) and activated DCs (CD11c+/CD80+) in each type of peripheral blood at the time 
(immediately before euthanasia) of completion of treatment with the REIC/Dkk-3 protein (FL-REIC or C17-REIC), in the untreated group, or in a group treated 
with PBS buffer. The results are presented as the mean ± standard error (SE). A significant difference (*p<0.05) was observed between the REIC protein 
treatment group and the PBS treatment group.
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comparable with the cytokine GM-CSF. Since GSK-3β 
phosphorylation is induced by various cytokines (33), the 
intracellular signaling pathway elicited in response to REIC/
Dkk-3 stimulation may be shared with that of cytokines.

DC vaccine therapy is a promising option for cancer therapy. 
DCs exist in various populations characterized by different 
surface markers (23). In our previous study, we showed that 
the surface markers of DCs induced by REIC/Dkk-3 protein 
treatment were similar to those induced by GM-CSF and 
IL-4, except that the CD1a antigen was negative (21). Since 
REIC/Dkk-3 is ubiquitously expressed in normal tissues, 
whereas its expression is suppressed in many tumor tissues, 
REIC/Dkk-3 may play an important role in cancer immunity 
by regulating the differentiation of DCs. Indeed, intraperi-
toneal tumor injection of the REIC/Dkk-3 protein inhibited 
tumor growth and induced the activity of immunocompetent 
cells in blood in a mouse model of subcutaneous renal adeno-
carcinoma. The REIC/Dkk-3 gene is expressed in most human 
tissues (9) and the concentration of the secreted protein in 
normal human serum is 40-60 ng/ml (26), indicating that the 
risk of immunogenicity is low.

The findings of the present study support the hypothesis that 
the REIC/Dkk-3 protein is suitable for anticancer immunity 
medical treatment. REIC/Dkk-3 protein therapy holds promise 
as a method of immunotherapy. Ad-REIC gene therapy is a 
highly effective approach in various cancers, and has been 
shown to exert antitumor effects locally and systemically. In 
the future, REIC/Dkk-3 protein therapy may contribute to 
enhance the systemic antitumor effects of Ad-REIC therapy.
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