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Abstract. The aim of the present study was to develop a novel 
method for identifying pathways associated with renal cell 
carcinoma (RCC) based on a gene co-expression network. A 
framework was established where a co-expression network 
was derived from the database as well as various co-expres-
sion approaches. First, the backbone of the network based on 
differentially expressed (DE) genes between RCC patients 
and normal controls was constructed by the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) data-
base. The differentially co-expressed links were detected by 
Pearson's correlation, the empirical Bayesian (EB) approach 
and Weighted Gene Co-expression Network Analysis 
(WGCNA). The co-expressed gene pairs were merged by a 
rank‑based algorithm. We obtained 842; 371; 2,883 and 1,595 
co-expressed gene pairs from the co-expression networks 
of the STRING database, Pearson's correlation EB method 
and WGCNA, respectively. Two hundred and eighty‑one 
differentially co-expressed (DC) gene pairs were obtained 
from the merged network using this novel method. Pathway 
enrichment analysis based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database and the network 
enrichment analysis (NEA) method were performed to verify 
feasibility of the merged method. Results of the KEGG and 
NEA pathway analyses showed that the network was associ-
ated with RCC. The suggested method was computationally 
efficient to identify pathways associated with RCC and 
has been identified as a useful complement to traditional 
co-expression analysis.

Introduction

Renal cell carcinoma (RCC) is a malignancy thought to arise 
from epithelial cells of the renal tubules and accounts for 
~85% kidney cancers (1). The incidence of RCC has steadily 
shown a worldwide increase of 2-4% annually (2). Clinical 
manifestations of RCC are diverse and may lead to a range 
of non-specific and often misattributed symptoms (3). The 
classic triad of hematuria, flank pain and a flank mass has 
been suggested in only 10% of patients; however, >60% of 
the RCC are detected incidentally in patients not suspected 
of harboring a genitourinary malignancy (4). RCC has the 
highest mortality rate of the genitourinary cancers, as more 
than a third of patients with RCC are expected to succumb to 
the disease (5). Thus, identification of effective therapies and 
etiologic explanations of RCC is crucial.

The development of large scale of gene expression analysis 
has led to therapies at the gene level becoming more powerful 
and informative for the study of disease mechanism (6). For 
RCC, much has been accomplished since the identification 
of the Von Hippel-Lindau (VHL) in 1993 (7). p53, a tumor 
suppressor gene, when mutated inactivates the normal func-
tion of DNA damage surveillance  (8). Additionally, some 
genes associated with RCC are typically detected through 
the analysis of many differentially expressed (DE) genes. The 
importance of these genes is evident in individual marker 
gene detection.

Despite the rich transcriptome data, identifying the disease 
mechanism involved remains a major challenge. Inconsistent 
results have been presented due to multiple issues of concern, 
including small sample size, measurement error and different 
statistical methods. The overlap is very low for the most 
significantly dysregulated genes across multiple studies (9). 
Based on the deficiency, a more effective means has been 
adopted by combining gene expression measurements over 
groups of genes that can be classified within common path-
ways. It identifies cancer markers by scoring known pathways 
by evaluating the coherency of genes expression changes (10). 
However, a large number of human genes have not yet been 
assigned to a definitive pathway based on pathway analysis. 
Network-based approaches particularly co-expression network 
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offer an effective means to at least partially solve this chal-
lenge by providing potential malignancy diagnostic molecular 
and connecting them together. However, the results of the 
co-expression network are different when applying various 
constructed approaches, and there is a lack of methods to assess 
any reliable and comprehensive experimental data available.

In the present study, we created a novel method to integrate 
the gene-gene interaction correlations identified by a multiple 
co-expression network strategy, following a network‑based 
pathway enrichment analysis. To achieve this, we first identi-
fied DE genes between RCC patients and normal controls 
using a Linear Models for Microarray Data package, since 
we only focused on the shifted genes. The backbone of the 
co-expression networks was constructed using the Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) 
database. Differentially co-expressed links were obtained 
based on the Pearson's correlation score, empirical Bayesian 
(EB) approach and Weighted Gene Co-expression Network 
Analysis (WGCNA) based on DE genes of RCC. We ranked 
the gene pairs by the strength of their correlation for each 
method, and merged gene pairs by a rank‑based algorithm. 
Furthermore, the pathway enrichment analysis based on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
and the network enrichment analysis (NEA) method were 
performed to show the feasibility of the novel method.

Materials and methods

Identification of gene expression datasets and dataset 
preprocessing. Microarray expression profiles of RCC 
from Array Express with access no. E-GEOD-26574  (11), 
E-GEOD‑36895  (12), E-GEOD-46699  (13) and E-GEOD-
53757 (14), were selected to identify DE genes between RCC 
patients and normal controls. The four datasets were obtained 
from the Affymetrix GeneChip Human Genome U133 Plus 2.0 
Array platform.

For each dataset, we applied standard methods to control 
the quality of gene microarray probe-level data (15). Briefly, 
to eliminate the effect of non-specific hybridization, back-
ground correction and quantile normalization were applied 
by the RMA method (16) and quantile‑based algorithm (17). 
The quantile normalization method was a specific case of the 
transformation x'i=F-1(G (xi)), where G was estimated by the 
empirical distribution of each array and F using the empirical 
distribution of the averaged sample quantiles. The perfect 
match (PM) and mismatch (MM) values were revised using 
MAS algorithm (15), where the ideal MM would always be less 
than the corresponding PM and thus could be safely subtracted 
without risk of obtaining negative values. The summarization 
method was median polish (16). A multichip linear model was 
fit to the data from each probe set. In particular for the probe 
set k with i=1, …, Ik probes and data from j=1,…, J arrays were 
fitted according to the model:

where αi was a probe effect and βj was the log2 expression 
value.

The data were subsequently screened by the feature filter 
method of the gene filter package, and the amount of genes 

with multiple probes was 20,109. The gene expression value 
for each gene was obtained, including 20,109 genes from 
417 samples (179 normal controls and 238 RCC patients).

Merging the multiple datasets. To calculate the co-expression 
value, it was necessary to merge all the independent data into 
a single dataset. Thus, the GenNorm method was applied to 
remove the unwanted batch effects in the gene expression 
values resulting from the use of different experimentation 
plans and methodologies in order to actually merge different 
datasets, as introduced by Taminau et al (18). The GenNorm  
method in an intuitive manner, which made datasets more 
comparable at z-score normalization and the expression values 
were calculated (19). The modified gene expression value Yij

k 
was given by the expression:

where Xij indicated each gene expression value in each 
study, X

__

i
k indicated mean gene expression value in the dataset, 

K indicated the number of studies and σi
k indicated the standard 

deviation of the gene expression value.
The distribution of the combined data was inspected using 

a qualitative validation method to observe visually whether the 
samples from all the studies would cluster together or have a 
dataset-bias (20).

Detection of DE genes. The Linear Models for Microarray 
Data method was used to detect DE genes between RCC 
patients and normal controls based on 20,109 filtered genes. 
The P-values for all the genes were converted into the form 
of -log10 after being manipulated with t- and F-tests. Linear 
fit, empirical Bayes statistics and false discovery rate (FDR) 
correction were performed to the data by using Fit func-
tion (21). DE genes were identified for further research with 
the threshold of P<0.05 and |log2FC| >2.

Identification of gene-gene interaction correlations by 
multiple methods. Co-expression networks are instrumental 
for describing the pairwise relationships among the gene tran-
scripts. Specifically, functionally related genes are frequently 
co-expressed across the samples. The co-expression network 
derived from the database and multiple co-expression 
approaches were considered a framework. The backbone of 
the network based on DE genes was constructed using the 
STRING database. Differentially co-expressed links were 
then detected by Pearson's correlation, the EB approach and 
WGCNA.

Construction of the backbone of the co-expression network 
using the STRING database. In this section, we investigated 
possible functional associations of DE gene pairs using the 
STRING database which provided a comprehensive, albeit 
quality-controlled collection of gene/protein associations for 
a large number of organisms with a global perspective (22). 
It is a carefully curated database that combines several 
different types of data. It comprises i) gene neighborhood 
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and fusion, and phylogenetic profiles of the genomic context; 
ii)  the co-occurrence and the co-expression of genes (i.e., 
variation of the transcript levels under the same conditions) 
by means of literature curation; iii) experimental evidence 
extracted from experimentally derived protein-protein inter-
actions; iv) manually curated pathway databases; and v) text 
mining and homology in order to identify the co-mentioned 
genes (22). STRING assessed and integrated these data to 
obtain a confidence score for all protein/gene interactions. A 
sub-network was created using DE genes, which was identified 
as mentioned in ‘Detection of DE genes’.

After assignment of the association scores, a final 
‘combined score’ was computed between any pair of proteins. 
The combined scores were defined as the strength of the corre-
lation and computed under the assumption of independence 
for the various sources, in a naive Bayesian manner. It was thus 
a simple expression of the individual scores (23):

Evidence of the co-expression  (individual scores) was 
chosen to describe the gene pairs with co-expression and the 
scores attributed by the STRING database between 0 and 1 to 
indicate the strength of the prediction were given.

Construction of teh co-expression network using Pearson's 
correlation test. In this study, we identified differentially 
co-expressed (DC) genes based on DE genes between RCC 
patients and normal controls using Pearson's correlation 
test (24). PPIs weighted by the absolute average of Pearson's 
correlation coefficients (PCCs) of the interacting gene pairs in 
the compared samples (| r- Eij |), | r

- Eij | and | ΔrEij | were calculated:

where Eij was the interactions between gene pairs Vi and Vj, 
k was the kth sample, Vi and Vj were ranked by their expression 
in the samples, respectively, and Xjk was the rank of Vi of the 
kth sample, Xik was the rank of Vj of the kth sample, x- i and x- j 

were the average ranks of Vi and Vj in the samples, respectively.

where rEij1
 and rEij2 

were the PCCs of Eij in the compared 
samples, respectively. Non-informative correlation pairs were 
filtered out with the half-thresholding strategy and a pair was 
kept in case the two PCCs had a q-value, where the q-value 
was an FDR estimated from the P<0.05 of PCC (25). We then 
defined | ΔrEij 

| as the strength of the correlation in this method.

Construction of co-expression network by the EB approach. 
A number of methods have been developed for co-expression 
analysis to identify DC gene pairs. However, these methods 
yield false findings under the conditions of large cardinality 
of the space to be interrogated (26). In this study, an effective 
approach of EB framework was conducted that provided an 

FDR controlled list of interesting pairs along with pair-specific 
posterior probabilities (27). The identification of DC gene pairs 
was processed at the following steps: three inputs of matrix X, 
the conditions array and the pattern object required. The 
expression values in an m-by-n matrix of X (where m indicated 
the number of genes/probes under consideration and n the total 
number of microarrays over all conditions) were normalized 
with background normalization and median correction and 
were generally represented on the log2 scale. The members of 
the conditions array with length n took values in 1,……, K (K 
indicated the total number of conditions). It was used to define 
the EC/DC classes with an ‘ebarraysPatterns’ object based on 
the unique values in the conditions array. Intra-group correla-
tions for all p=m*(m-1)/2 gene pairs from X and the conditions 
array were calculated using bi-weight mid-correlation through 
the function makeMyD. The p-by-K of D matrix with correla-
tions was obtained. The Mclust algorithm (28) was used to 
initialize the hyper parameters through the initializeHP func-
tion to detect the component in the normal mixture model that 
best fit the empirical distribution of correlations. The values of 
the component in the normal mixture model with component 
means, standard deviations and weights was used to initialize 
the expectation maximization (EM) algorithm  (29). The 
three functions of the ‘full’, the ‘one-step’ and the ‘zero-step’ 
versions were different factors of the modified EM approach. 
In this step, the initial estimates of the hyper parameters rather 
than the ‘zero-step’ version were used to generate posterior 
probabilities of DC. After the EM computations were finished 
with the selected function, the prior diagnostic function for 
the prior predictive distribution was used to determine how 
well the model identified by the EM fit the data. The crit.fun 
function was used to provide a soft threshold by controlling 
the posterior probabilities of DC in order to identify particular 
types of DC gene pairs. The DC genes were distinguished from 
gene pairs having an invariant expression by controlling the 
posterior expected FDR at 0.05 and the co-expression network 
was constructed to represent the correlation between each pair 
of genes. In addition, we defined the DC as the strength of the 
correlation in this method.

Construction of the co-expression network by WGCNA. 
WGCNA was frequently used to describe correlation patterns 
among gene expression profiles  (30). For this method, the 
first step was to define a measure of similarity between the 
gene expression profiles. The nxn similarity matrix S = [sij] 
was transformed into an nxn adjacency matrix A = [aij] which 
encoded the connection strength between pairs of nodes. For 
each pair of genes xi and xj indicated similarity measured by 
Sij. We defined the absolute value of the Pearson's correlations 
Sij = |cor(xi, xj)| of an unsigned network by employing a value 
between 0 and 1. However, a signed co-expression measure 
between xi and xj was applied to preserve the sign of the corre-
lation which was defined with a simple transformation of the 
correlation:

The adjacency function was used to determine the 
adjacency matrix A = [aij]. The most widely used adjacency 
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function was the signum function that implements a ‘hard’ 
threshold involving the threshold parameter τ:

The hard threshold may lead to a loss of information; 
therefore a ‘soft’ adjacency function was needed. The power 
adjacency function was calculated as: aij = |sij|β with the single 
parameter β.

As for the overlap of two nodes, which reflects their 
relative interconnectedness, the topological overlap matrix 
(TOM) Ω = [ωij] provided a similarity measure. To turn it into 
a dissimilarity measure, it was subtracted from one, i.e, the 
topological overlap based dissimilarity measure was defined 
by dij

ω = 1 - ωij. In addition, we defined the weight value as the 
strength of the correlation in this method.

Merging of co-expressed gene pairs. Determination of the 
significance of the changes occurring and the number of 
selected gene pairs likely to be truly differentially co-expressed 
is important. After gene co-expression was analyzed using the 
above four methods, the score of each co-expressed gene pair 
was obtained. Considering the results were different due to 
utilizing various approaches, all the score values were assessed 
further to ensure their uniformity and converted in the form of 
rank/(total number of gene pairs) based on the Rank Products 
(RP) algorithm (31).

The RP-values were calculated over all the possible pair-
wise comparisons. The algorithm i (i = STRING database, 
Pearson's correlation, EB approach and WGCNA), each 
examining n gene pairs were considered, whereby the RP for a 
certain gene pair g would be:

This was potentially interpreted as a P-value (=RP-value), 
as it described the probability of observing gene pair g at a 
certain rank (rankalgorithm i), with λi being the weight coefficient 
of each algorithm. If the gene pairs were not differentially 
co-expressed in any method, the weight value of pairwise in 
this method would equal to 1.

Subsequently, for each gene pair g, a conservative estimate 
of the percentage of false-positives (PFP) was calculated 
when this gene pair (and all the gene pairs with RP‑values 
smaller than this cut-off value) was considered as signifi-
cantly differentially co-expressed: qg = E(RPg)/rank(g). In the 
present study, rank(g) denoted the position of gene pair g in 
a list of all the gene pairs sorted by the increasing RP-value, 
i.e., it was the number of gene pairs accepted as significantly 
regulated. This estimated the FDR and extended the list of 
accepted gene pairs up to the gene pair with a qg‑value of 
<0.1. The DC gene pairs were therefore obtained for subse-
quent study.

Pathway enrichment analysis. To verify the feasibility of the 
merged method, the pathway enrichment analysis of DC gene 
pairs based on the KEGG database and NEA method were 
performed in this study.

KEGG database. To investigate the biological functions of the 
DE genes, KEGG pathway enrichment analysis was performed 
by Database for Annotation, Visualization and Discovery 
(DAVID)  (32). KEGG pathways with P<0.01 were chosen 
based on the Expression Analysis Systematic Explorer (EASE) 
test applied in DAVID. EASE analysis of the regulated genes 
indicated molecular functions and biological processes unique 
to each category (33). The EASE score was used to detect the 
significant categories. The threshold of EASE score <0.01 and 
the minimum number of genes for the corresponding term >2 
were considered significant for a category.

where n (n = a'+b+c+d) was the number of background 
genes, a' was the gene number of one gene set in the gene lists, 
a' + b was the number of genes in the gene list including at 
least one gene set, a' + c was the gene number of one gene list 
in the background genes and a’ was replaced with a = a'-1.

Network enrichment analysis method. A NEA method, which 
systematically implemented the network approach to describe 
novel gene sets with biologically meaningful functional cate-
gories, was selected to analyze DC gene pairs of RCC (34). A 
fast network randomization algorithm was used in the method 
to obtain the distribution of any network statistics under the 
null hypothesis of no association between an altered gene sets 
(AGS) and functional gene sets (FGS)  (35).

To investigate the functional heterogeneity of individual 
RCC, we ranked the differences between individuals. The differ-
ential expression of gene g in patient i compared to the group 
of patients was calculated as: Difference values = log(T/N)
ig - ave(log(T/N)).g, where log(T/N) was the log intensity‑ratio 
of RCC vs. normal expression. Let A(k) was an AGS of size k, 
and define nAF(k), a measure of network connectivity between 
A(k) and a known FGS (F), as the number of links between 
members of A(k) and F. Since the connectivity was dependent 
on the constituent genes, we corrected nAF(k) by its expected 
value: dAF(k) = nAF(k)-µAF(k), where µAF(k) was the expected 
number of links between A(k) and F.

Results

Identification of the DE genes. In total, 20,109 genes in 
E-GEOD-26574, E-GEOD-36895, E-GEOD-46699 and 
E-GEOD-53757 were identified by reading the gene expres-
sion profiles using an Affy package. After preprocessing of 
the expression profile dataset, we obtained 753 DE genes 
between RCC patients and normal controls with the thresh-
olds of P<0.05 and |log2FC| >2.

Analysis of co-expression networks. In the present study, the 
co-expression networks of 753 DE genes were constructed by 
four methods (STRING database, Pearson's correlation tests, 
EB approach and WGCNA). We achieved a co-expressed rela-
tionship between gene and gene or co-expressed gene pairs 
and scores of gene pairs.
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We obtained 842 co-expressed gene pairs of RCC based 
on the STRING database. According to the Pearson's corre-
lation tests, 371 co-expressed gene pairs were obtained. We 
achieved 2,883 co-expressed gene pairs dependent on the EB 
method with the threshold FDR ≤0.05. When constructing 
the co-expression network of DE genes using the WGCNA 
method, 1,595 co-expressed gene pairs were obtained. The 
number of co-expressed gene pairs based on the EB approach 
was higher than that of the other three methods. The genes at 
the top of degree distribution (≥90% quantile) in the signifi-
cantly perturbed co-expression networks were defined as hub 
genes. The co-expression networks of hub genes from the four 
methods are shown in Fig. 1.

Merging of the co-expressed gene pairs. We merged all the 
co-expressed gene pairs identified from the four methods 
utilizing RP algorithm, and 13,945 genes were assessed after 
merging. Two hundred and eighty one DC gene pairs were 
obtained after q-value correction (P<0.1) and their co-expres-
sion network is shown in Fig. 2. There were 154 nodes and 281 
edges in the co-expression network.

Pathway enrichment analysis. For the KEGG pathway 
enrichment analysis, our results showed that 753 DE genes 
were significantly enriched in 130 terms. Co-expressed gene 
pairs obtained from the four methods and 281  DC gene 
pairs were enriched in pathways, with the cytokine-cytokine 
receptor interaction and systemic lupus erythematosus being 
common pathways of the five types of co-expressed gene 
pairs. Thirteen pathways were obtained from 281 DC gene 

pairs (Table I). Counts of cytokine-cytokine receptor interac-
tion, chemokine signaling pathway, cell adhesion molecules, 
toll-like receptor signaling pathway and the neuroactive 
ligand‑receptor interaction were increased by 10.

The NEA method was performed on 281 DC genes using a 
neaGUI package in R (Table II). The metabolic pathways had 

Table I. KEGG pathways based on 281 DC gene pairs.

Term	 Counts

Cytokine-cytokine receptor interaction	 24
Chemokine signaling pathway	 16
Cell adhesion molecules (CAMs)	 14
Toll-like receptor signaling pathway	 13
Neuroactive ligand-receptor interaction	 12
Systemic lupus erythematosus	 10
Natural killer cell‑mediated cytotoxicity	 9
Oxidative phosphorylation	 8
Aldosterone-regulated sodium reabsorption	 8
Vibrio cholerae infection	 7
Epithelial cell signaling in	 6
Helicobacter pylori infection
Lysosome	 5
Fc ε RI signaling pathway	 3

KEGG, Kyoto Encyclopedia of Genes and Genomes; DC, differen-
tially co-expressed.

Figure 1. Co-expression networks based on hub genes of RCC from co-expression networks constructed by the (A) STRING database, (B) Pearson's correlation 
tests, (C) EB method and (D) WGCNA. Genes (nodes) are connected by edges if their vectors are sufficiently similar. Black edge is associated with a pair of 
genes under thresholds. RCC, renal cell carcinoma; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; EB, empirical Bayesian; WGCNA,  
Weighted Gene Co-expression Network Analysis.
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the highest number links with 1,282, the following was phago-
some, chemokine signaling pathway, cell adhesion molecules 
and natural killer cell‑mediated cytotoxicity.

Discussion

In the present study, co-expression networks were constructed 
using the STRING database, Pearson's correlation tests, EB 
method and WGCNA method. We merged these co-expressed 

gene pairs together using RP algorithm and scored 281 DC 
gene pairs. The KEGG pathway enrichment analysis and NEA 
method were selected to verify the feasibility of this merged 
method. The results show that cytokine-cytokine receptor 
interaction and metabolic pathways were the most significant 
biological processes that were closely associated with RCC.

Diagnostic or prognostic markers were usually obtained 
by identification of the most significant DE genes in the 
high‑throughput case-control studies of a disease. However, 

Figure 2. Co-expression network of 281 DC gene pairs of RCC from the merged matrix. Genes (nodes) are connected by edges if their vectors are sufficiently 
similar. Black edge is associated with a pair of genes with q-value correction (P<0.1). DC, differentially co-expressed; RCC, renal cell carcinoma.
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Table II. Continued.

Path_name	 No. of links

Pyrimidine metabolism	 188
Spliceosome	 185
Protein processing in endoplasmic reticulum	 184
Axon guidance	 184
Pancreatic cancer	 180
Metabolism of xenobiotics by cytochrome P450	 177
Cytosolic DNA-sensing pathway	 173
Adherens junction	 168
Huntington's disease	 160
Retinol metabolism	 158
Drug metabolism - other enzymes	 157
Apoptosis	 157
Complement and coagulation cascades	 156
Pancreatic secretion	 156
Colorectal cancer	 155
Wnt signaling pathway	 154
Vibrio cholerae infection	 154
Arachidonic acid metabolism	 147
Alzheimer's disease	 146
Malaria	 146
Small cell lung cancer	 144
Long-term depression	 143
Oxidative phosphorylation	 142
Phosphatidylinositol signaling system	 141
NOD-like receptor signaling pathway	 138
Acute myeloid leukemia	 133
Non-small cell lung cancer	 133
DNA replication	 130
Salivary secretion	 125
Steroid hormone biosynthesis	 118
Starch and sucrose metabolism	 118
Dilated cardiomyopathy	 117
Ubiquitin‑mediated proteolysis	 114
Amyotrophic lateral sclerosis (ALS)	 114
mRNA surveillance pathway	 110
Melanogenesis	 109
Hypertrophic cardiomyopathy (HCM)	 106
Glycerophospholipid metabolism	 105
Type II diabetes mellitus	 104
Carbohydrate digestion and absorption	 103
Porphyrin and chlorophyll metabolism	 102
Glutathione metabolism	 100
Linoleic acid metabolism	 97
Ribosome biogenesis in eukaryotes	 97
Other types of O-glycan biosynthesis	 96
Adipocytokine signaling pathway	 96
Aldosterone-regulated sodium reabsorption	 95
Long-term potentiation	 94
p53 signaling pathway	 93
Pentose and glucuronate interconversions	 92
RNA degradation	 91
Inositol phosphate metabolism	 88

Table II. Results of NEA based on 281 DC gene pairs.

Path_name	 No. of links

Metabolic pathways	 1,282
Phagosome	 848
Chemokine signaling pathway	 800
Cell adhesion molecules (CAMs)	 701
Natural killer cell‑mediated cytotoxicity	 653
Osteoclast differentiation	 609
Cytokine-cytokine receptor interaction	 603
Leishmaniasis	 578
Toxoplasmosis	 563
Regulation of actin cytoskeleton	 554
Fc γ R-mediated phagocytosis	 529
Leukocyte transendothelial migration	 529
Staphylococcus aureus infection	 502
Rheumatoid arthritis	 501
Neuroactive ligand-receptor interaction	 489
Pathways in cancer	 480
Viral myocarditis	 479
Antigen processing and presentation	 438
T‑cell receptor signaling pathway	 438
Systemic lupus erythematosus	 411
Hematopoietic cell lineage	 406
Fc ε RI signaling pathway	 388
B cell receptor signaling pathway	 382
Endocytosis	 373
Autoimmune thyroid disease	 356
Graft-vs.-host disease	 354
Type I diabetes mellitus	 351
Allograft rejection	 347
Intestinal immune network for IgA production	 344
Focal adhesion	 327
Jak-STAT signaling pathway	 318
Toll-like receptor signaling pathway	 311
Chagas disease (American trypanosomiasis)	 289
Calcium signaling pathway	 263
Asthma	 254
Amoebiasis	 253
Olfactory transduction	 251
Neurotrophin signaling pathway	 251
Lysosome	 248
Cell cycle	 247
Bacterial invasion of epithelial cells	 237
VEGF signaling pathway	 231
Purine metabolism	 225
Primary immunodeficiency	 222
Hepatitis C	 221
RNA transport	 219
Pathogenic Escherichia coli infection	 216
Oocyte meiosis	 204
Epithelial cell signaling in Helicobacter pylori	 203
infection
Drug metabolism-cytochrome P450	 194
Shigellosis	 190
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previous findings have shown that the most significant DE 
genes obtained from different studies for a particular cancer 
are typically inconsistent  (36). To overcome this problem, 
significant genes and biological processes were assessed for 
disease-association using a network strategy, particularly the 
co-expression network (37). When constructing a co-expres-
sion network, the STRING database is the most commonly 
used method. Of note is that a few other approaches have been 
developed for co-expression analysis, such as the Pearson's 
correlation tests, EB approach and WGCNA.

There are some drawbacks to employing these methods (38). 
For the STRING database, the networks, which are supposed 
to be static, may not reflect the specific condition of the indi-
viduals or specific disease. For the Pearson's correlation tests, 
all possible variations are measured although are the effects 
on gene expression not considered, thereby producing many 
false‑positive results. The EB approach examines network 
variations and their effects on gene expression. Nevertheless a 
disease-associated gene may lead to the differential expression 
of its interacting genes even if there is no network rewiring in 
certain situations. WGCNA suggested a tight network that was 
closer to properties of small networks in a general framework 
as compared to the Pearson's correlation tests.

Therefore, we developed a new method by merging 
co-expressed gene pairs together to overcome these problems 
based on an RP algorithm. In our merged method, weight 
value was utilized to reflect the differential importance of each 
method, and the weight of each dataset was set equally since 
we treated all the datasets equally. If certain reliable properties 
serve as the backbone, a decrease in the weight value is merely 
required. For instance, in the given database, if it occupied the 
dominant position, we would select 0.1 as its weight value and 
1 for the remaining methods. The merged method provides a 
straightforward and statistically stringent means to determine 
the significance level for each gene pair, allowing for the flex-
ible control of the false-detection rate and familywise error rate 
in the multiple testing (31).

Results of the merged method showed that the cytokine-
cytokine receptor interaction and metabolic pathways were the 
most significant biological processes of RCC. Cytokines that 

Table II. Continued.

Path_name	 No. of links

Bile secretion	 88
Ascorbate and aldarate metabolism	 86
Prion diseases	 86
ECM-receptor interaction	 82
Collecting duct acid secretion	 82
Arginine and proline metabolism	 79
Proteasome	 78
Parkinson's disease	 78
Nucleotide excision repair	 75
TGF-β signaling pathway	 74
Fat digestion and absorption	 74
Ether lipid metabolism	 70
Ribosome	 69
Protein digestion and absorption	 68
Mismatch repair	 67
PPAR signaling pathway	 66
African trypanosomiasis	 65
Alanine, aspartate and glutamate metabolism	 59
Base excision repair	 58
Aminoacyl-tRNA biosynthesis	 53
Citrate cycle (TCA cycle)	 52
RNA polymerase	 51
α-linolenic acid metabolism	 49
Glycerolipid metabolism	 47
Tryptophan metabolism	 45
Glycine, serine and threonine metabolism	 44
Proximal tubule bicarbonate reclamation	 43
Tyrosine metabolism	 41
Homologous recombination	 40
Notch signaling pathway	 40
N-Glycan biosynthesis	 37
Protein export	 37
Bladder cancer	 36
Histidine metabolism	 33
Phenylalanine metabolism	 31
Cardiac muscle contraction	 30
Hedgehog signaling pathway	 30
Other glycan degradation	 29
Pantothenate and CoA biosynthesis	 27
Nitrogen metabolism	 25
Thyroid cancer	 24
β-alanine metabolism	 22
Renin-angiotensin system	 22
Vitamin digestion and absorption	 19
Valine, leucine and isoleucine biosynthesis	 17
Glyoxylate and dicarboxylate metabolism	 17
Non-homologous end-joining	 17
Phenylalanine, tyrosine and tryptophan biosynthesis	 16
Taurine and hypotaurine metabolism	 16
Circadian rhythm-mammal	 16
Basal cell carcinoma	 15
Butanoate metabolism	 13

Table II. Continued.

Path_name	 No. of links

Folate biosynthesis	 13
Caffeine metabolism	 12
Terpenoid backbone biosynthesis	 11
Biosynthesis of unsaturated fatty acids	 9
Basal transcription factors	 8
Riboflavin metabolism	 7
Fatty acid elongation in mitochondria	 2
Glycosylphosphatidylinositol (GPI)-	 2
anchor biosynthesis
Mucin type O-glycan biosynthesis	 1

NEA, network enrichment analysis; DC, differentially co-expressed.
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were crucial intercellular regulators mobilized cells engaged 
in innate as well as adaptive inflammatory host defenses, cell 
growth and cell death (39). Cytokine receptors functioned 
to inhibit tumor development and progression in response 
to infection, inflammation and immunity. A more detailed 
understanding of cytokine-tumor-cell interactions provided 
new opportunities for improving cancer immunotherapy, such 
as RCC (40). It has been reported that the tumor response in 
treatment-naive and cytokine-pretreated patients is associated 
with advanced metastatic RCC (41). Therefore, the cytokine-
cytokine receptor interaction pathway was closely associated 
with RCC, suggesting that the merged method was feasible.

Linehan  et  al found that mutations in each of kidney 
cancer genes resulted in dysregulation of metabolic pathways, 
suggesting that kidney cancer is a disease of cell metabo-
lism (42). In addition, metabolic activities in proliferating cells 
are fundamentally different from those in non-proliferating 
cells, and are associated with signal transduction pathways 
and transcriptional networks of RCC  (43). The essential 
hallmarks of cancer were intertwined with an altered cancer 
cell-intrinsic metabolism. Additionally, the constitutive acti-
vation of signaling cascades that stimulate cell growth has 
a profound impact on the anabolic metabolism (44). Thus 
cancers, for example RCC, were closely associated with cell 
metabolism.

In conclusion, we created a novel merged method to 
identify genes and pathways associated with RCC, and the 
KEGG and NEA pathway analyses have shown the correct-
ness and feasibility of this method. The recommended method 
is computationally efficient to identify genes and pathways 
of RCC and has been proven to be a useful complement to 
traditional co-expression analysis.
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