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Abstract. The incidence of intrahepatic cholangiocarcinoma 
(ICC) is increasing yearly, making it the second most common 
carcinoma after hepatocellular carcinoma among primary 
malignant liver tumors. Integrated miRNA and mRNA 
analysis is becoming more frequently used in antitumor ICC 
treatment. However, this approach generates vast amounts of 
data, which leads to difficulties performing comprehensive 
analyses to identify specific therapeutic drug targets. In this 
study, we provide an in-depth analysis of ICC function, iden-
tifying potential highly potent antitumor drugs for antitumor 
therapy. Two sets of whole genome expression profiles were 
obtained from the Gene Expression Omnibus (GEO) database. 
Using modular bioinformatic analysis, six core functional 
modules were identified for ICC. Based on a Fisher's test of 
the Cmap small molecule drug database, 65 drug components 
were identified that regulated the genes of these six core 
modules. Literature mining was then used to identify 15 new 
potential antitumor drugs.

Introduction

Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor 
that originates from the epithelial cells of the secondary bile 
duct and higher order intrahepatic bile duct branches  (1). 
Among primary malignant liver tumors, the incidence of ICC 
is second to only hepatocellular carcinoma, with increasing 
incidence yearly (2,3). Because the pathological mechanism 
and tumor characteristics of ICC differ from those of hepato-
cellular carcinoma and extrahepatic cholangiocarcinoma, the 

American Joint Committee on Cancer (AJCC) has formally 
listed ICC as an independent hepatobiliary system tumor for 
staging and analysis in the 7th edition of its TNM staging 
system published in 2010 (4). Although ICC is a rare malig-
nant tumor (accounting for 3% of malignant digestive system 
tumors and 15% of malignant liver tumors), the global inci-
dence of ICC has increased from 0.32/100,000 to 0.85/100,000 
over the past three decades (an increase of 165%). At present, 
ICC risk factors include primary sclerosing cholangitis, 
congenital structural abnormalities of the bile duct, inflam-
matory bowel disease, intrahepatic bile duct stones and 
parasitic infection. In a recent study, 8% of primary sclerosing 
cholangitis patients developed cholangiocarcinoma during a 
5-year follow-up period. For patients with choledochal cysts or 
Caroli's disease and other congenital anatomical abnormalities 
of the biliary system, the risk of malignant transformation in 
patients 20 years of age or older is 15% (5). In addition, chronic 
viral hepatitis infection is a high risk factor for ICC. A clinical 
report on 317 ICC patients by Zhou et al (6) showed that the 
HBV infection rate of ICC patients is significantly higher 
than that of the healthy population. However, although many 
ICC risk factors have been identified, most ICC patients are 
not exposed to these risk factors, which is an issue for early 
diagnosis and treatment of ICC.

Currently, the treatment for ICC involves surgical excision 
as the major measure. For ICC patients who have under-
gone surgical excision for early to middle stage tumors, the 
post‑operation 3-year survival rate is only 40-50% (7). For 
patients with middle to late stage tumors who have lost the 
opportunity for surgery, the average life expectancy without 
treatment is only 5-8 months (8). Other treatment measures 
include local ablation, hepatic artery embolization, systemic 
chemotherapy and targeted therapy. Unfortunately, ICC has a 
low sensitivity to chemotherapeutic drugs; therefore, there is at 
present no generalized chemotherapy plan. However, there is 
preliminary evidence that cisplatin, used alone or in combina-
tion with gemcitabine and fluoropyrimidine (S-1), can extend 
the life expectancy of patients who cannot have surgery. There 
is currently no specific targeted therapeutic drug for ICC; 
however, VEGR, EGFR, RAF kinase and multiple receptors 
involved in the onset of ICC are emerging as targets.
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In recent years, modular bioinformatics analysis has 
been frequently applied in disease and drug studies. This 
approach not only elucidates the characteristics of gene regu-
latory networks but also comprehensively and systematically 
analyzes signaling pathways. Here, we used a modular bioin-
formatics approach to analyze the expression of ICC genes 
and determine their roles in ICC progression. We then used a 
small molecule drug database to identify drugs involved in the 
regulation of ICC core functional groups. We identified many 
drugs that regulated the core functional groups that were not 
previously identified for the treatment of ICC or other cancers. 
This approach represents a new drug discovery concept for 
cancer research.

Materials and methods

Screening for differentially expressed mRNAs and miRNAs 
in cholangiocarcinoma. We analyzed two sets of expression 
data for cholangiocarcinoma. These data included disease 
and control samples, with paired mRNAs and miRNAs. Data 
were acquired from the Gene Expression Omnibus (GEO) 
database. The series accession numbers for the mRNA and 
miRNA expression profiles were GSE32879 and GSE32957, 
respectively (Table I). We organized the data in matrix format 
to maintain the cholangiocarcinoma samples and normal 
samples from the two datasets for subsequent analysis. Of these 
samples, 16 were cholangiocarcinomas and 5 were normal 
controls. To increase the reliability of target pair prediction 
and reduce the false-positive rate, we used miRNA-target 
pairs that were supported by clip-seq data from the Starbase 
database. To obtain additional potential targets, we selected 
target pairs predicted by at least one of the five prediction 
databases (a total of 423,976 target pairs). We pretreated the 
mRNA and miRNA expression profiles with the k-Nearest 
Neighbors algorithm to fill in missing values (define, k=5). 
We then statistically tested the fold-change values by t-test 
to screen differentially expressed mRNAs and miRNAs. 
Fold‑change values >1.5 or <1/1.5 (FDR value <0.5) were used 
as thresholds (Fig. 1).

Construction and analysis of the miRNA regulatory 
networks. The miRNA-mRNA target pairs were required 
to meet two conditions: opposite differential expression and 
a predicted target regulation relation. Differential expres-
sion was mapped to the network and interacting genes 
were labeled. Online target gene prediction software was 
used to identify miRNAs that were differentially expressed 
relative to the predicted target genes. The predicted target 
genes were compared with downregulated (or upregulated) 
mRNAs from the whole‑genome microarray data (Fig. 2A). 
The network conforms to the in-degree distribution (Fig. 2B). 
Target genes without a signal were eliminated. SPSS 15.0 
statistical analysis software was used to analyze the expres-
sion values of the miRNA and the corresponding target genes 
in the normal control group and the tumor group. Pearson's 
correlation analysis, with P<0.05, was used as a determina-
tion standard to screen for target genes that were negatively 
correlated with miRNA expression. The screening results 
from each group were integrated into a regulatory network of 
differentially expressed miRNAs and their ICC target genes. 

Cytoscape 2.8.2 was used for integrative network analysis of 
miRNAs and target genes.

Table I. Gene expression for intrahepatic cholangiocarcinoma 
from the GEO database.

	 Array		  Experimental
Series	 platform	 Samples	 design	 Group

GSE32879	 GPL6244	 GSM13712	 Gene expression	 Tumor
	 Affymetrix	 GSM13713	 profiling of 16 ICC	 Tumor
	 Human	 GSM13714	 and 7 NT tissues	 Tumor
	 Gene 1.0	 GSM13715	 were perfomed.	 Tumor
	 ST Array	 GSM13716		  Tumor
		  GSM13717		  Tumor
		  GSM13718		  Tumor
		  GSM13719		  Tumor
		  GSM13720		  Tumor
		  GSM13721		  Tumor
		  GSM13722		  Tumor
		  GSM13723		  Tumor
		  GSM13724		  Tumor
		  GSM13725		  Tumor
		  GSM13726		  Tumor
		  GSM13727		  Tumor
		  GSM13728		  Tumor
		  GSM13742		  Control
		  GSM13743		  Control
		  GSM13744		  Control
		  GSM13745		  Control
		  GSM13746		  Control
		  GSM13747	  	 Control
		  GSM13748		  Control

GSE32957	 GPL14732	 GSM15966	 Gene expression	 Tumor
	N anostring	 GSM15967	 profiling of 16 ICC	 Tumor
	 nCounter Human	 GSM15968	 and 5 NT	 Tumor
	 microRNA	 GSM15969	 liver tissues	 Tumor
	 Expression	 GSM15970		  Tumor
	 Platform	 GSM15971		  Tumor
		  GSM15972		  Tumor
		  GSM15973		  Tumor
		  GSM15974		  Tumor
		  GSM15975		  Tumor
		  GSM15976		  Tumor
		  GSM15977		  Tumor
		  GSM15978		  Tumor
		  GSM15979		  Tumor
		  GSM15980		  Tumor
		  GSM15981		  Tumor
		  GSM15996		  Control
		  GSM15997		  Control
		  GSM15998		  Control
		  GSM15999		  Control
		  GSM16000		  Control

ICC, intrahepatic cholangiocarcinoma; NT, non-tumor.



ONCOLOGY REPORTS  35:  382-390,  2016384

Generation of differentially expressed gene modules and 
analysis of module function. The differentially expressed 
genes were mapped to the network. Pairs in which both 
interacting genes were differentially expressed formed the 
sub-network. The MCL method was used to identify func-
tional modules (Fig. 3). To functionally analyze the miRNAs 
and mRNAs that were differentially expressed in ICC, the 
upregulated and downregulated target genes regulated by 
differentially expressed miRNAs from each group were 
run through DAVID Bioinformatics Resources version 6.7 
(http://david.Abcc.ncifcrf.gov/) for functional analysis of 
modules in the network.

Drug screening. The connectivity map (CMap) database 
contains the genome-wide transcriptional expression profile 
for human cells exposed to active small molecules. The CMap 
database includes 6,100 groups of small molecule intervention 
experiments (small molecule intervention group and normal 
control group), providing a total of 7,056 expression profiles. 
Of these profiles, 1,309 small molecules are represented. With 
these 1,309 small molecules from the CMap database, we 
performed differential gene analysis (drug administration vs. 
no drug) to obtain a gene set for each drug and its differen-
tial expression pattern (that is, how the genes were affected 
by each small molecule drug). We then compared the genes 

in each module with the differential genes corresponding to 
the abovementioned small molecules to determine the corre-
spondence between the genes in each module and the small 
molecules. A Fisher's test was used to evaluate modular genes 
corresponding to the small molecules. Small molecules with 
p-values in the top 10 were considered the most valuable.

Literature review and drug components that connect 
regulatory network modules. To identify novel antitumor 
drugs, we analyzed 65  drug components related to the 
modules. Perl was used to write a program for literature 
mining. ActivePerl 5.16.2 was then used to mine literature 
information from PubMed (NCBI). The mining scope was 
set to include titles and abstracts, along with drug names, 
modular gene names and ‘cancer’ as key words. This search 
provided articles related to each drug component and cancer. 
Integrating the drug component screening results, literature 
mining results and the modular genes, we identified the drugs 
with the greatest potential antitumor activity for the modular 
core function groups.

Results

Gene module screening. From comparison of the two sets 
of ICC and normal tissue data, the fold-change values were 

Figure 1. The fold-change values by t-test were statistically tested to screen differentially expressed mRNAs and miRNAs. (A) Differential expression of 
mRNAs, (B) differential expression of miRNAs, (C) the screened differential expression of mRNAs, (D) the screened differential expression of miRNAs. 
Fold-change values >1.5 or <1/1.5 (FDR value <0.5) were used as thresholds.
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used to identify differentially expressed mRNA and miRNAs 
(detailed information in the Materials and methods). As shown 
in Table I, we identified 1,925 and 191 upregulated mRNAs and 
miRNAs, respectively. There were also 1,062 and 28 down-
regulated mRNAs and miRNAs, respectively. In addition, we 

performed cluster analysis on differentially expressed genes 
and miRNAs.

Screening of miRNA and mRNA regulatory networks and 
ICC modules. Although the mechanism of target gene mRNA 

Figure 2. Among the two groups of ICC expression profiles, a total of 1,473 pair regulated relations were found to include 488 mRNAs and 37 miRNAs. 
(A) This differential expression of mRNAs and miRNAs was mapped to the network. (B) We also analyzed the degree distribution of the network nodes; the 
nodes into degrees obey power-low distribution.



ONCOLOGY REPORTS  35:  382-390,  2016386

degradation or translation inhibition caused by miRNAs is 
not completely clear, the complimentary pairing of a miRNA 
seed sequence with the 3'UTR sequence of the target gene is 
generally considered to be the main condition for a miRNA to 
act on a target gene. Accordingly, miRNA expression should 
be opposite to mRNA expression. We selected the upregulated 
(or downregulated) miRNAs from the miRNA microarray for 
each group. Targetscan 5.1 was used to predict the target genes 
from the differentially expressed miRNAs for each group. The 
target genes were then compared with the downregulated (or 
upregulated) mRNAs from the mRNA microarray to screen 
for target genes with differentially expressed miRNAs in each 
group. Subsequently, the differentially expressed miRNAs 
from each group and the screening results of their target genes 
were integrated to establish the regulatory network (Fig. 2A) 
of differentially expressed miRNAs for ICC and their target 
genes. The MCL method was used to explore the modules in 
the network. A total of six modules were identified (termed 
modules 1-6) (Fig. 3).

Functional analysis of gene modules. We analyzed the six 
modules in detail using Go_BP, with the arrangement based 
on the Go score [-log (t-test p-values)]. Each of the p-values 
of the 10  highest-scored Go analyses was <0.01. These 
modules were considered the most valuable and were used 
for subsequent analysis. Go analysis revealed the following: 
module 1 responded to hypoxia, module 2 responded to cell 
fraction, module 3 responded to organ development, module 4 
responded to glycerophospholipid metabolism, module  5 
responded to cytoplasm and module 6 responded to cytoplasm 
and cellular ketone metabolic process (Fig. 4).

Drug component regulation of gene modules. Based on the 
network data, we calculated that there were 1,309  small 
molecules from the different gene expression experiments; 
however, the final results showed that a total of 1,108 small 
molecules induced the expression of the different genes. For the 

six modules identified by bioinformatic analysis, we compared 
the genes in each module with the differentially expressed 
genes that corresponded with the small molecules obtained 
from the CMap database. We determined the correspondence 
between the genes in each module and the small molecules. 
Using a Fisher's exact test on the raw data, we calculated 
the p-values of each drug component for each module. The 
p-values were arranged in descending order, with the first 10 
drug components with the smallest p-values considered to be 
the most valuable. These drug components were selected for 
subsequent analysis. A total of 65 drug components regulated 
the 6 modules (Fig. 5).

Discovery of novel potential anticancer drugs. To identify new 
anticancer drugs, we conducted a literature review and a retro-
spective study. The drug data were all from recent anticancer 
therapy studies. Interestingly, anticancer drug components 
that had not been well-studied showed potential as potent anti-
cancer drugs (Fig. 6). Our review also identified many drug 
components that have been widely used in anticancer treat-
ment, such as daunorubicin, irinotecan and mercaptopurine. 
However, many of the drug components we identified have not 
yet been well-recognized for anticancer therapy, for example, 
benfotiamine, telenzepine and chlorcyclizine. In addition, 
pimethixene, etamivan and mafenide have never been studied 
as anticancer drugs.

Discussion

The pathogenesis and progression of ICC is a complex, multi-
faceted process. During this process, various factors interact 
with each other. While ICC pathogenesis is an important area 
of study, the discovery of specific therapeutic drug targets for 
ICC is a more urgent issue that needs to be addressed. An 
in-depth understanding of drugs that can target and regulate 
ICC, specifically molecular-targeted therapeutic drugs, is very 
important for antitumor treatment.

Figure 3. As shown in Fig. 2, MCL was used to identify modules within the sub-networks. The modules were defined as modules 1-6.
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Recently, many ICC tissues and cells from various stages 
have been collected as samples for whole genome microarray 
testing. In the present study, we integrated whole genome 
microarray information from ICC tissues of different origins 
using a modular bioinformatics approach. Modular analysis 
is an invaluable bioinformatics technology for functional 
analysis of single proteins, large-scale protein interactions and 
gene interactions. It has also been used to study the pathogen-
esis of many diseases and assess their treatments.

Among the six functional modules identified by modular 
analysis, module 1 contained the greatest number of genes, 
with the most complex interaction between the genes. 
Module 1 was involved in the response to hypoxia, response to 
drugs, protein tetramerization, response to oxidative stress and 
glucose metabolism. PTM (post-translational modification) is a 
key step in protein synthesis (9), involving the phosphorylation, 
glycosylation and methylation of proteins. One protein may 
have multiple different post-translational modifications (10). 

Figure 4. Each module was run through DAVID Bioinformatics Resources version 6.7 for GO_BP analysis of modules in the network. GO term enrichment 
scores were calculated as the -log(p-value from t-test) and were arranged in descending order.
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Although PTM has recently gained more appreciation, at 
present, PTM is rarely investigated in the context of antitumor 
drugs. The role of PTM has been appreciated in multiple 
myeloma, breast cancer and lung adenocarcinoma  (11-13); 
however, important PTMs have not been reported for ICC or 
even CCA. The physiology of tumor cells is very different 
compared to normal cells, as highlighted by differences in 
cell growth and differentiation, cell metabolism, biochemical 
composition and gene regulation. Inhibition of tumor growth 
is an important facet of anticancer treatment. The change in 
SSTR1 (somatostatin receptor type 1) in module 2 further 

confirmed that the modules had the core functions of ICC. 
Interestingly, we identified significant differences in the ADI1 
gene. Because ADI1 has only been previously implicated 
in prostate cancer, this provides a new direction for future 
studies (14). Due to its important function in many biological 
activities, the insulin-like growth factor (IGF) signaling system 
has attracted wide attention. IGF signaling is associated with 
the onset of many diseases, such as cretinism, diabetes and 
cirrhosis of the liver. In module 3, IGFBP5, which is closely 
associated with the pathogenesis of many cancers, was highly 
expressed. IGFBP5 suppresses cancer in human melanoma 

Figure 5. Drugs that regulate the genes in the 6 core modules were identified through bioinformatics techniques. Using the Cmap database, we calculated that 
genes were differentially expressed in 1,309 of the small molecule interference experiments examined. The final results showed that 1,221 small molecules 
caused these differential expression. Subsequently, the genes from each module were mapped with the differentially expressed genes found from the Cmap 
database, allowing us to determine the relationships between the genes in each module and the tested small molecules. Fisher's exact test was used to calculate 
the p-value of each drug's regulation of each module, and the p-values were converted into statistical scores [statistical score = -log(Fisher's p-value)].
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cells (15) and plays important roles in human uterine leiomyoma 
cells, breast cancer, urothelial carcinoma and papillary thyroid 
carcinoma (16-18). The role of tumor metabolism has also 
been appreciated in recent years. The canonical PI3K/AKT/
mTOR pathway has been widely studied, as has BNIP3 (19,20). 
We hypothesize that ICC may inhibit the PI3K/AKT/mTOR 
pathway by upregulating BNIP3. However, this assertion must 
be verified by future experiments. The functions of modules 5 
and 6 were related to cytoplasm regulation. The survival and 
prognosis of tumor patients are associated not only with tumor 
cells but also with the microenvironment of tumor cells. Thus, 
the pathogenesis of a tumor may be the result of the abnormal 
microenvironment of tumor cells. In these modules, PTMs, 
SSTR1, IGFBP5 and BNIP3 were most closely associated with 
the pathogenesis and progression of the cancer, indicating that 
these modules are tumor-related gene clusters, with these key 
genes at their cores. Moreover, in each gene cluster, multiple 
genes work synergistically to play an even more powerful role 
in tumor progression. Therefore, in antitumor therapy, the 
effect of a targeted drug treatment on a gene cluster is very 
likely better than the effect of targeting individual genes.

There has been a long history of traditional chemotherapy 
for ICC, with more and more drugs emerging with anticancer 
effects. However, because ICC itself is not sensitive to chemo-
therapy, there is no single effective drug, such as sorafenib for 
liver cancer. To screen for drug components with potential 
anticancer effects, we used the CMap small molecule database 
to identify drug components that regulated the core modules 
of ICC. Among the 65 drug components we identified, some 
drugs were found to have anticancer effects, as reported in 
extensive studies. For example, daunorubicin is effective for 
treating breast cancer (21), while irinotecan is a new drug for 
treating colon cancer that can strongly inhibit tumor growth 
and metastasis. Several studies have shown that irinotecan 
also has significant effects on colorectal liver metastases and 
metastatic colorectal cancers (22,23). Thus, many of the drug 

components identified through our screening have known 
anticancer effects, confirming the accuracy of the screening 
approach. Apart from the drugs that have been confirmed to 
have anticancer effects, literature mining identified 12 drug 
components with limited cancer-related data. For example, 
pimethixene, etamivan and mafenide have not been reported 
in any cancer-related studies. In our study, at least one of 
the drugs that regulated each module was from one of these 
12 drug components. Through the Fisher's test, we determined 
the value of these drug components. For example, mercap-
topurine, which regulated module 3, was scored first with 
daunorubicin, which regulated module 6, listed second. The 
Fisher's test indicated that the 12 identified drug components 
not previously reported in the anticancer literature had a 
strong ICC-regulating effect. This indicates that these drugs 
may have potent anticancer effects.

In summary, we analyzed two sets of mRNA and miRNA 
data for ICC. Using modular analysis, we identified six 
modules that were associated with ICC. Furthermore, based 
on the CMap database, we found 65 effective small molecule 
drug components that regulated the six modules. We accu-
rately identified the most meaningful components using the 
Fisher's test. We then performed a detailed retrospective 
analysis to select 12 components from the small molecule 
drug components as new anticancer drug options. Our detailed 
target gene prediction via differential miRNA analysis and 
miRNA-mRNA correlation analysis revealed the regulatory 
roles of miRNAs in the progression of ICC. Thus, we provide 
a new approach for the selection of anticancer drug. Future 
experiments will verify the drugs we identified.
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