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Abstract. Gastric cancer is one of the most common malignant 
tumors worldwide; however, the efficacy of clinical treatment 
is limited. MicroRNAs (miRNAs) are a class of small non-
coding RNAs that have been reported to play a key role in 
the development of cancer. They also provide novel candi-
dates for targeted therapy. To date, in-depth studies on the 
molecular mechanisms of gastric cancer involving miRNAs 
are still absent. We previously reported that 5 miRNAs were 
identified as being significantly increased in gastric cancer, 
and the role of these miRNAs was investigated in the present 
study. By using bioinformatics tools, we found that more than 
4,000 unique genes are potential downstream targets of gastric 
cancer miRNAs, and these targets belong to the protein class of 
nucleic acid binding, transcription factor, enzyme modulator, 
transferase and receptor. Pathway mapping showed that the 
targets of gastric cancer miRNAs are involved in the MAPK 
signaling pathway, pathways in cancer, the PI3K-Akt signaling 
pathway, the HTLV-1 signaling pathway and Ras signaling 
pathway, thus regulating cell growth, differentiation, apoptosis 
and metastasis. Analysis of the pathways related to miRNAs 
may provides potential drug targets for future therapy of 
gastric cancer.

Introduction

Gastric cancer is the second leading cause of cancer-related 
mortality worldwide and is the most common malignancy in 
China and Japan, affecting approximately one million indi-
viduals every year (1,2). The highest ratio, up to 69 cases per 
100,000 individuals per year, has been determined in males in 
Northeast Asia (3). Prevention and personalized treatment are 
regarded as the best options to reduce gastric cancer mortality 
rates. Gastric cancer is usually a result of a high intake of 
various traditional salt-preserved foods and salt, concomitant 
with a low consumption of fresh fruit and vegetables (4,5). 
Analysis of the signaling pathways in cancer cells provides 
novel biomarkers for diagnosis and drug targets for treatment.

miRNAs are a novel class of small non-coding RNAs, 
typically 22  nucleotides in length  (6). miRNAs suppress 
gene expression by directly binding to mRNAs, causing 
translation repression or mRNA cleavage  (7,8). They are 
single-stranded RNAs that negatively regulate gene expression 
at the post‑transcriptional level (6,9,8). Longer precursor tran-
scripts with hairpin structures are first synthesized by RNA 
polymerase Ⅱ, followed by processing of precursors by Drosha 
and Dicer. To date, miRNAs have been found to be involved 
in various physiological and pathological processes, including 
cell metabolism, tumorigenesis, cell growth and apoptosis, 
aging, organic development and the immune response (10,11). 
A single RNA may have hundreds or more targets, therefore it 
is difficult to distinguish functions to specific miRNAs.

Studies have demonstrated that miRNAs can function as 
oncogenes or tumor suppressors by regulating the expression 
of cancer-related genes (12). During the latest decade, a set of 
cancer regulator miRNAs have emerged and these are divided 
into oncomiRs or anti-oncomiRs. Specific miRNA profiles 
have been observed in both tumor tissues and plasma in 
various types of cancers (13-16). These miRNAs are believed 
to be potential biomarkers for the diagnosis and may also 
support the prognosis or treatment of cancer (17). Recent proj-
ects have attempted to decipher the differential expression of 
miRNAs in specific cancers; however, the complex pathways 
comprising miRNAs and their target genes remain unclear.
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Identification of the molecular causes of cancer represents 
a major breakthrough in the history of medicine, moving the 
discipline from pattern recognition and therapeutic strategies 
based on molecular mechanisms and therapies derived from 
clinical trials (18). The development of pathway strategies for 
the analysis of gastric cancer makes it possible to use these 
approaches for future clinical treatment.

We previously reported that 5 significant miRNAs are 
overexpressed in gastric cancer and serve as a fingerprint 
for gastric cancer diagnosis  (14). In the present study, the 
protein classes, molecular functions, biological functions and 
canonical pathways comprising the targets of each gastric 
cancer-related miRNA as well as four main canonical path-
ways were identified and analyzed, offering novel drug targets 
for gastric cancer therapy.

Materials and methods

Target prediction of gastric cancer (GC)-related miRNAs. 
A web-based software TargetScan (http://www.targetscan.
org) was used to generate lists of possible gene targets of 
each miRNA (19). Then the targeted genes were inputted 
into another web server Panther (http://www.pantherdb.org/) 
which is designed for gene function cluster and we obtained 
the protein class from Panther analysis (20,21). After that, we 
clustered the same functional class of protein in top ten classes.

The web-based functional annotation tool Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
v6.7 (http://david.abcc.ncifcrf.gov/tools.jsp) has key compo-
nents for disease analysis, gene ontology analysis and pathway 
analysis (22).

Signaling pathway mapping of GC-related miRNAs. The 
signaling pathways and processes were explored using the 
systems biology tool KEGG Mapper (http://www.genome.jp/
kegg/tool/map_pathway2.html) which is a collection of tools for 
KEGG mapping: KEGG pathway mapping, BRITE mapping 
and MODULE mapping (23). The KEGG database consists of 
16 main databases (systems information, KEGG PATHWAY, 
KEGG BRITE, KEGG MODULE, KEGG DISEASE, 
KEGG DRUG and KEGG ENVIRON; genomic information, 
KEGG ORTHOLOGY, KEGG GENOME, KEGG GENES, 
KEGG SSDB and KEGG; chemical information, KEGG 
COMPOUND, KEGG GLYCAN, KEGG REACTION, KEGG 
RPAIR, KEGG RCLASS and KEGG ENZYME).

Results and Discussion

GC-related miRNAs. Based on the experimental data in 
our previous study, 5 miRNAs were selected as GC-related 
miRNAs (Table I). These miRNAs were found to be clearly 
increased in GC, and their dysregulation is believed to promote 
tumorigenesis.

There are 2 different precursors of miR-1, miR-1-1 and 
miR-1-2 (24). It exists alone or with miR-133a to form a cluster. 
It is well known that miR-1 is a tumor-suppressive miRNA 
in various types of cancers including lung cancer, gastric 
cancer, colorectal cancer, prostate cancer, thyroid cancer, 
head and neck squamous cell carcinoma and rhabdomyosar-
coma (25-30), the effects of which have been confirmed to 

be mediated by oncogenes including MET proto-oncogene 
(MET), histone deacetylase 4 (HDAC4), forkhead box P1 
(FOXP1), G1/S-specific cyclin D2 (CCND2), C-X-C chemo-
kine receptor type  4 (CXCR4) and stromal cell-derived 
factor  1 (SDF-1)  (25,28,31). Recent studies demonstrated 
similar tumor-suppressive function in hepatocellular 

Table I. The predicted targets of GC-related miRNAs.

GC miRNAs	 No. of predicted target genes

miR-1	 769
miR-20a	 1,218
miR-27a	 1,210
miR-34a	 655
miR-423-5p	 180

Table II. Molecular function and biological process analysis of 
GC-related miRNAs.

GC	 Molecular function and	 Regulated by 
miRNAs	 biological processes	 GC-miRNAs (%)

miR-1	 Binding	 34.40
	 Catalytic activity	 27.40
	 Nucleic acid binding	 12.00
	 transcription
	 Transporter activity	 6.40
	E nzyme regulator activity	 6.40
	 Receptor activity	 6.40
miR-20a	 Binding	 35.80
	 Catalytic activity	 28.60
	 Nucleic acid binding	 13.10
	 transcription
	E nzyme regulator activity	 6.80
	 Receptor activity	 5.30
miR-27a	 Binding	 32.40
	 Catalytic activity	 29.10
	 Nucleic acid binding	 12.10
	 transcription
	 Receptor activity	 7.60
	E nzyme regulator activity	 7.20
miR-34a	 Binding	 32.00
	 Catalytic activity	 25.80
	 Nucleic acid binding 	 11.40
	 transcription
	E nzyme regulator activity	 8.70
	 Receptor activity	 8.70
miR-423-5p	 Binding	 34.50
	 Catalytic activity	 25.20
	 Nucleic acid binding 	 16.00
	 transcription
	 Receptor activity	 6.80
	 Transporter activity	 5.80
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carcinoma (HCC) by targeting endothelin-1 (ET-1) and anti-
apoptotic factor apoptosis inhibitor 5 (API-5) (32,33). Other 
studies revealed that re-expression of miR-1 may be a potential 
therapeutic target suppressing the malignant potential of lung 
cancer by mesenchymal-to-epithelial transition (MET) via 
downregulation of Slug, a member of the snail family of tran-
scription factors (34). Similarly, restoration of the expression 
and the function of miR-1 leads to oncogene-driven reduction 
in cell proliferation, thus making miR-1 a promising thera-
peutic target for a multitude of cancers.

miR-20a belongs to the miR-17-92 cluster, also known 
as oncomiR-1, which includes 6  microRNAs: miR-17-5p, 
miR-18a, miR-19a, miR-19b, miR-20a and miR-92a-16 (35). 
It contributes to the regulation of many types of tumors as 
a tumor-suppressor in oral squamous cell cancer  (36) and 
hepatic cancer (37) or a tumor-promotor in osteosarcoma (38), 
bladder cancer (39), GC (40), prostate cancer (41) and cervical 
cancer (42). It promotes the growth, migration, and invasion 
of GC cells by inhibiting the early growth response 2 (EGR2) 
signaling pathway (40), and may be related with the malignant 
process of cervical cancer, particularly invasion and metas-
tasis by targeting autophagy-related protein 7 (ATG7), tissue 

inhibitors of metalloproteinase 2 (TIMP2) and tankyrase 2 
(TNKS2)  (43). On the other hand, miR-20a is involved in 
the tumor inhibition of cutaneous squamous cell carcinoma 
(CSCC) by targeting LIM kinase-1 gene (LIK1), a metastasis 
promoter (44). Moreover, it targets MHC class I chain‑related 
molecule A and B (MICA/B) to avoid NKG-mediated immune 
attack, thus enhancing the survival of ovarian cancer cells by 
immune escape (45). It has been shown that miR-20a inhibits 
the proliferation and metastasis of pancreatic carcinoma cells 
by directly downregulating Stat3 which is related to various 
physiological functions (46).

Previous studies have demonstrated that miR-27a acts 
as an oncogenic miRNA. Its role in promoting cell prolif-
eration, invasion and metastasis has been verified in many 
malignancies, such as breast cancer  (47), HCC  (48), non-
small cell lung cancer (NSCLC) (49), osteosarcoma (50) and 
renal cancer  (51). In HCC, miR-27a promotes cell prolif-
eration through suppression of its target gene peroxisome 
proliferator-activated receptor γ (PPAR-γ) (48). Direct and 
indirect mechanisms by which miR-27a can regulate both 
MET and EGFR, thus contributing to tumor progression, 
was discovered in NSCLC  (49). Other studies emphasize 

Figure 1. Major classes of GC-miRNA-related targets. (A) Classification of 
miR-1-related targets. (B) Major classes of miR-20a-related targets. (C) Major 
classes of miR-27a-related targets. (D) Major classes of miR-34a-related tar-
gets. (E) Major classes of miR-423-5p-related targets.
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the role of miR-27a expression in sensitivity to anticancer 
therapies, including chemotherapy (52-58), radiotherapy (59) 
and thermal therapy  (60). Downregulation of miR-27a is 
significantly associated with the expression of P-glycoprotein 
and multidrug resistance gene 1 (MDR1), leading to increased 
chemosensitivity through different targets, for example, 
FZD7/β-catenin pathway  (52), homeodomain-interacting 
protein kinase 2 (HIPK2)  (54) and RUNX1 (53). Notably, 
miR-27 can indirectly affect chemosensitivity by acting on the 
tumor microenvironment through transformation of normal 
fibroblasts to cancer-associated fibroblasts (55). Single nucleo-
tide polymorphism rs11671784 is in the loop of pre‑miR‑27a 
and the G/A variation can significantly decrease the expression 
of mature miR-27a, followed by increased RUNX-1 expres-

sion and weakened chemosensitivity (53). CDC27 is a target 
of miR-27a by which radiosensitivity is modulated in triple-
negative breast cancer (59). miR-27a may even contribute to 
thermal sensitivity by modulating HSP expression (60).

miR-34a is one of the earliest known tumor suppressors 
and is commonly downregulated in various solid cancers by 
targeting numerous oncogenes related to proliferation, apop-
tosis and invasion (61-68). miR-34a is downregulated in many 
cancers due to chromosomal deletion or CpG island methyla-
tion (69). As a direct transcriptional target of p53, decreased 
expression of miR-34a is partially due to mutations of p53 in 
several tumors (70). Ectopic expression of miR-34a can lead 
to cell cycle arrest, apoptosis or senescence, mimicking p53 
activation (71). And miR-34a can suppress tumor metastasis 

Table III. Pathway analysis of GC-related pathways.

GC miRNAs	 Pathway	 No. of genes (%)

miR-1	 Gonadotropin releasing hormone receptor pathway 	 23 (6.00)
	 Angiogenesis 	 20 (5.20)
	 Wnt signaling pathway	 18 (4.70)
	 Integrin signaling pathway 	 13 (3.40)
	E GF receptor signaling pathway	 13 (3.40)
	 VEGF signaling pathway 	 12 (3.10)
	 PDGF signaling pathway 	 12 (3.10)
	 FGF signaling pathway 	 12 (3.10)
miR-20a	 Wnt signaling pathway	 39 (7.60)
	 Gonadotropin releasing hormone receptor pathway	 34 (6.60)
	 Cadherin signaling pathway	 25 (4.90)
	 PDGF signaling pathway 	 23 (4.50)
	 Angiogenesis	 20 (3.90)
	 Integrin signaling pathway 	 19 (3.70)
miR-27a	 Gonadotropin releasing hormone receptor pathway 	 40 (6.40)
	 Wnt signaling pathway	 27 (4.30)
	 Angiogenesis	 23 (3.70)
	E GF receptor signaling pathway 	 22 (3.50)
	 Inflammation mediated by chemokine and cytokine signaling pathway 	 20 (3.20)
	 PDGF signaling pathway 	 18 (2.90)
	 Integrin signaling pathway	 18 (2.90)
	 FGF signaling pathway	 18 (2.90)
miR-34a	 Gonadotropin releasing hormone receptor pathway	 19 (5.80)
	 Angiogenesis	 14 (4.30)
	 Inflammation mediated by chemokine and cytokine signaling pathway	 11 (3.40)
	 Wnt signaling pathway 	 10 (3.10)
	E GF receptor signaling pathway 	 10 (3.10)
	 TGF-β signaling pathway	 9 (2.80)
	 Integrin signaling pathway	 9 (2.80)
miR-423-5p	 Inflammation mediated by chemokine and cytokine signaling pathway 	 5 (6.80)
	 Wnt signaling pathway	 5 (6.80)
	 Gonadotropin releasing hormone receptor pathway	 5 (6.80)
	 Huntington disease	 3 (4.10)
	 Heterotrimeric G-protein signaling pathway-Gi α and Gs α mediated pathway 	 3 (4.10)
	 PDGF signaling pathway	 3 (4.10)
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and invasion through multiple targets in a variety of signaling 
pathways. For example, miR-34a targets FMNL2 and E2F5, 
then suppresses the progression of colorectal cancer (66). In 
prostate cancer, miR-34a inhibits prostate cancer stem cells 
and metastasis by directly repressing CD44 (65). It is verified 
that miR-34a inhibits gastric cancer proliferation and invasion 
via the downregulation of MET, meanwhile it is associated 
with the clinicopathological features of gastric carcinoma 
and can be a valuable predictor of patient prognosis  (67). 
Epithelial-mesenchymal transition (EMT) is a key step in 
tumor progression. miR-34a inhibits EMT by targeting Smad4 
through the transforming growth factor-β/Smad pathway in 
human cholangiocarcinoma (72). The role of miR-34a in regu-
lating tumor biology has been extensively studied, while being 
an effective biomarker is another function of miR-34a. Serum 
miR-34a can be a potentially useful diagnostic biomarker of 
pancreatic ductal adenocarcinoma (73). Furthermore, miR-34a 
is likely to be involved in the treatment response of lung 
metastases of HCC to sorafenib (74).

The miR-423 family, identified as oncogenic miRNAs, 
has been explored in various types of cancers. There are 
two members of the miR-423 family, miR-423-3p and miR-
423-5p. miR-423 plays a role in promoting cell growth and 

regulating G(1)/S transition by targeting p21Cip1/Waf1 in HCC, 
however, miR-423-3p contributes to these effects, whereas 
miR-423-5p does not (75). Another study found that miR-
423-5p is involved in autophagy regulation in HCC cells (76). 
Regarding the target of miR-423-5p, it has been demonstrated 
that it regulates cell proliferation and invasion by targeting 
trefoil factor  1 (TFF1) in GC cells  (77). The expression 
level of miR-423-5p is aberrant in many cancers, including 
GC (14), colon carcinoma (78), pancreatic cancer (79) and 
breast cancer  (80). A five-microRNA signature identified 
from genome-wide serum microRNA expression profiling, 
including miR-423-5p, can serve as a fingerprint for GC 
diagnosis (14). In stage I-II colorectal cancer, serum miR-
423-5p was found to be significantly elevated compared 
with a healthy control, suggesting its value as a tool for early 
diagnosis (78). Furthermore, other than the diagnostic value 
of miR-423-5p, its role in prediction of the cancer therapeutic 
effect has been discovered. A classifier consisting of seven 
miRNAs, including overexpression of miR-423-5p, was able 
to identify a subgroup of glioblastoma patients who were 
resistant to temozolomide (81). On the contrary, the elevation 
of secretory miR-423-5p can be a favorable marker of the 
effect of sorafenib in HCC patients (76).

Figure 2. The MAPK signaling pathway is regulated by GC miRNAs. Grey boxes show objects that can be regulated by LC miRNAs. Solid arrows indicate 
activation; dashed arrows indicate indirect effect and ⊥ indicates inhibition. Letters on lines denote the type of regulation: -p, dephosphorylation; +u, ubiqui-
tination.
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Predictions and protein classification of GC-miRNA targets. 
A single miRNA has hundreds of potential targets in physi-
ological and pathological conditions; therefore, investigation 
of miRNA-target genes provides a better description of the 
miRNA‑involved pathways. All of the predicted targets should 
be analyzed to fully understand the functions of GC-related 
miRNAs. As shown in Table  I, GC  miRNAs or miRNA 
family has the ability to directly target between 180  and 
1,218  mRNAs of genes; moreover, a unique miRNA was 
observed to have multiple binding sites in the 3'UTR of the 
mRNAs. In total, 4,032 genes are regarded as downstream 
targets of the 5 significant GC miRNAs. Most of the genes are 
potential targets of oncomirs, and these genes are most likely 
to be downregulated in GC cells. Among all of the predicted 
genes, several important regulators include: BCL3, CD69, 
VIP, BMP3, MAPK1, BCL9L, BCL11B, PTEN; these genes 
are well known to be involved in cell apoptosis, cell prolifera-
tion, cell metastasis and angiogenesis.

As shown in Fig. 1, the top 1 class of targets for miR-1, 
miR-20a and miR-27a includes nucleic acid binding; while the 
top 1 class of targets for miR-34a and miR-423-5p includes 
transcription factor. A total of 136 miR-1-targeting genes, 
206 miR-20a-targeting genes, 181 miR-27a-targeting genes 
belong to the protein class of nucleic acid binding. A total 
of 89 miR-34a-targeting genes and 33 miR-423-5p targeting 

genes are in the class of transcription factor. Moreover, the 
class of enzyme modulator, transferase, receptor, kinase and 
transporter are found in the top 10 classes of all the 5 miRNA-
related targets. miRNAs are likely to play a role as more 
refined regulators of gene expression, the minor percentage of 
the targets contain diverse proteins such as cytokines, trans-
porters, hydrolases, transferases.

In agreement with our research, some groups have reported 
that miRNA-related oncogenes and tumor suppressors clearly 
show different patterns in function, expression, chromosome 
distribution, molecule size, free energy, targets and transcrip-
tion factors (82-85).

Analysis of molecular functions, biological processes and 
signaling pathways for GC-miRNA-related targets. To provide 
a direct look at the pathways implicated in all targets of the 
5 miRNAs, all the targets were used for further pathway anal-
ysis. As shown in Table II, the important molecular function 
and biological processes are almost identical to the potential 
targets of the 5 miRNAs. miR-1 contributes to the biological 
process of binding (34.4%), catalytic activity (27.4%), nucleic 
acid binding transcription (12%), transporter activity (6.4%), 
enzyme regulator activity (6.4%) and receptor activity (6.4%). 
miR‑20a-related targets play a role in binding (35.8%), 
catalytic activity (28.6%), nucleic acid binding transcription 

Figure 3. A schematic diagram of pathways in cancer regulated by GC miRNAs. Grey boxes show objects that can be regulated by LC miRNAs. Solid arrows 
indicate activation; dashed arrows indicate indirect effect and ⊥ indicates inhibition. Letters on lines denote the type of regulation: -p, dephosphorylation; +u, 
ubiquitination.
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(13.1%), enzyme regulator activity (6.8%) and receptor activity 
(5.3%). The potential target genes of miR-27a are also involved 
in binding (32.4%), catalytic activity (29.1%), nucleic acid 
binding transcription (12.1%), receptor activity (7.6%) and 
enzyme regulator activity (7.2%). The miR-34a-related genes 
are expected to contribute to binding, catalytic activity, nucleic 
acid binding transcription, enzyme regulator activity and 
receptor activity. Furthermore, the target genes of miR-423-5p 
participate in binding  (34.5%), catalytic activity (25.2%), 
nucleic acid binding transcription (16%), receptor activity 
(6.8%) and transporter activity (Table II).

The potential target genes of each miRNA were classi-
fied into several main groups, and the top 10 classes are 
respectively shown in Table III. miR-1, miR-27a, miR-34a 
and miR-423-5p are found to participate in the gonadotropin 
release hormone receptor pathway; miR-1, miR-20a, miR-27a 
and miR-34a are involved in the pathway of angiogenesis; 
miR-1, miR-27a and miR-423-5p are involved in Wnt signaling 
pathway (Table III). As predicted, miR-1 contributes to the 
pathways of EGF receptor signaling, VEGF signaling, PDGF 
signaling and FGF signaling, thus, the dysregulation of miR-1 
is believed to play the most important role in the tumorigen-
esis in gastric cancer.

Pathway mapping of GC-miRNA-related targets. To give a 
direct view of the GC miRNA-related genes, all of the targets 
of miR-1, miR-20a, miR-27a, miR-34a and miR-423-5p were 
used for further pathway analysis. The 5 most important path-
ways include the MAPK signaling pathway (Fig. 2), PI3K-Akt 
signaling pathway (Fig. 3), pathways in cancer (Fig. 4), HTLV-I 
infection (Fig. 5) and the Ras signaling pathway (Fig. 6). These 
pathways are well known to play important roles in cell growth, 
cell metastasis, cell invasion and intercellular communication 
in various types of cancer (86-92).

As is shown is Fig. 2, the mitogen-activated protein kinase 
(MAPK) signaling pathway mainly affects the biological 
process of cell proliferation, differentiation, inflammation and 
the cell cycle. The MAPK signaling pathway is also associ-
ated with the p53 signaling and Wnt signaling pathways, two 
pathways that are known to determine tumorigenesis (Fig. 2). 
MAPK signaling is accurately regulated so that optimal 
biological activities are achieved and health is maintained; 
however, activation of the MAPK pathway is a frequent event 
in human cancer and is often the result of activating mutations 
in the BRAF and RAS oncogenes (93). Members of the MAP 
kinase family are evolutionarily conserved regulators that 
mediate signal transduction and play essential roles in various 

Figure 4. GC-miRNA regulation of the PI3K/Akt signaling pathway. Grey boxes show objects that can be regulated by LC miRNAs. Solid arrows indicate 
activation; dashed arrows indicate indirect effect and ⊥ indicates inhibition. Letters on lines denote the type of regulation: -p, dephosphorylation.
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physiological processes. Previous studies in mouse models 
have demonstrated that MAPK controls cancer development, 
and these models are expected to provide novel strategies for 
cancer therapy (94). Although miR-155, miR-200 and miR-141 
have been reported to regulate the expression of MAPK-related 
genes (95,96), the miRNA-MAPK pathway still needs further 
exploration.

Pathways in cancer are more closely linked with tumori-
genesis, and include the MAPK, PI3K-Akt, VEGF, p53, 
PPAR and TGF-β signaling pathways  (Fig.  3). As shown 
in Fig.  3, the pathways in cancer have demonstrated the 
acquisition of biological capabilities such as blockade of 
differentiation, resistance to apoptosis, unlimited replica-
tive potential, sustained angiogenesis, tissue invasion and 

Figure 5. Regulation of the HTLV-1 pathway by GC miRNAs. Grey boxes show objects that can be regulated by LC miRNAs. Solid arrows indicate activation; 
dashed arrows indicate indirect effect and ⊥ indicates inhibition. Letters on lines denote the type of regulation: -p, dephosphorylation; +u, ubiquitination.



ONCOLOGY REPORTS  35:  1135-1146,  2016 1143

metastasis for the transformation of normal cells into highly 
malignant tumor cells. The important GC-miRNA‑related 
genes are Wnt, STAT3, p21, p53, BCL-2, FAS and TGF-β; 
however, more common abnormalities in oncogenes and 
tumor-suppressor genes regulated by GC miRNAs can be used 
as potential therapeutic targets (Fig. 3).

The phosphatidylinositol-3-kinase (PI3K)-Akt signaling 
pathway (Fig. 4) has been reported to show frequent change 
in human cancer, and is thought to specifically interact with 
EGFR/ERBB family receptors (97-99). It is reported that the 
PI3K-Akt signaling pathway mediates regulation of p27, and 
is associated with cell cycle arrest and apoptosis in cervical 
cancer  (100). In addition, the PI3K/Akt/mTOR pathway is 
also regarded as a therapeutic target in ovarian cancer (101). 
In bone cancer, cancer pain is closely linked with MCP-1 
which stimulates spinal microglia, mediated by the PI3K/Akt 
pathway (102). In human prostate cancer, CD147 is reported 
to modulate autophagy though the PI3K/Akt/mTOR pathway 
in PC-3 cells  (103). More inhibitors are designed to target 
the PI3K/Akt/mTOR pathway in clinical trials (104-107). In 
summary, numerous members of the PI3K/Akt pathway are 
crucial to many aspects of cell growth and survival, and are 
altered by amplification, mutation and translocation frequently, 
with resultant activation of the pathway.

Human T cell leukemia virus 1 (HTLV-1) is a retrovirus that 
causes adult T cell leukemia (ATL) and neurological disorder, 
the tropical spastic paraparesis (HAM/TSP) (Fig. 5). The patho-
genesis apparently results from the pleiotropic function of Tax 
protein, which is a key regulator of viral replication (Fig. 5). 
Tax encoded by HTLV-1 has been implicated in tumorigenesis, 
and is involved in the dysregulation of anti‑apoptosis and cell 
proliferation (108). Recently, miR‑28-3p has been reported to 
be a cellular restriction factor that inhibits HTLV-1 replication 
and infection (109). However, the role of miRNA and HTLV-1 
in cancer, particularly in GC, remains unclear.

Ras is another well-known regulator that activates many 
signaling cascades (Fig. 6); Ras genes encode proteins that 
are activated in an intracellular signaling network controling 
differentiation, proliferation and cell survival (110-112). Ras 
mutations are common in human malignancies, especially in 
cancer, and have been identified in >30% of human cancers. 
Ras and the downstream proteins, Raf and MEK, play an 
important role in the development of malignancies, and often 
show frequent expression in cancers. Therefore, a variety of 
agents are designed to disrupt signaling though Ras or the 
downstream proteins (113).

In the present study, we constructed a detailed biological 
frame by in-depth analysis of the complex network comprising 

Figure 6. Analysis of the Ras signaling pathway regulated by GC miRNAs. Grey boxes show objects that can be regulated by LC miRNAs. Solid arrows 
indicate activation; dashed arrows indicate indirect effect and ⊥ indicates inhibition. Letters on lines denote the type of regulation: -p, dephosphorylation; +u, 
ubiquitination.
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GC-miRNA-related targets. These results are believed to 
provide a better understanding of the miRNA-regulated path-
ways in gastric cancer and identify novel potential targets for 
future clinical use.
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