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Abstract. Hepatocellular carcinoma  (HCC) is the most 
common liver malignancy and a leading cause of cancer-related 
mortality worldwide. Accurate detection and differential 
diagnosis of early HCC can significantly improve patient 
survival. Currently, detection of HCC in clinical practice is 
performed by diagnostic imaging techniques and determina-
tion of serum biomarkers, most notably α-fetoprotein (AFP), 
fucosylated AFP and des-γ-carboxyprothrombin. However, 
these methods display limitations in sensitivity and specificity, 
especially with respect to early stages of HCC. Recently, 

high-throughput technologies have elucidated many new 
pathways involved in hepatocarcinogenesis and have led 
to the discovery of a plethora of novel, non-invasive serum 
biomarkers. In particular, the combination of AFP with these 
new candidate molecules has yielded promising results. In this 
review, we aimed at recapitulating the most recent (2013-2015) 
developments in HCC biomarker research. We compared 
promising novel diagnostic serum protein biomarkers, such as 
annexin A2, the soluble form of the receptor tyrosine kinase 
Axl and thioredoxin, as well as their combinations with AFP. 
High diagnostic performance (area under the curve >0.75) 
as shown by threshold-independent receiver operating char-
acteristic curve analysis was a prerequisite for inclusion in 
this review. In addition, we discuss the role and potential of 
microRNAs in HCC diagnosis and associated methodological 
challenges.
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1. Current diagnosis of hepatocellular carcinoma

Hepatocellular carcinoma  (HCC) is the most commonly 
diagnosed liver malignancy and the third leading cause of 
cancer-related mortality worldwide with rising incidence in 
Western countries  (1,2). In the past decades, HCC staging 
has been performed according to the Barcelona Clinic Liver 
Cancer  (BCLC) criteria, which mainly rely on imaging 
techniques and define early and advanced-stage HCC with 
respect to tumor size and number of nodules (3). According 
to current guidelines of the European Association for the 
Study of the Liver  (EASL) and the American Association 
for the Study of Liver Disease (AASLD), curative therapies 
are restricted to early‑stage HCC patients only  (4). These 
include liver resection or transplantation, as well as local 
radiofrequency ablation  (RFA) and show a high 5-year 
survival rate of up to 70% (5). However, the majority of HCC 
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patients are diagnosed at later stages, restricting therapeutic 
options to palliative treatment only and leading to a median 
survival of <1  year  (6,7). In this respect, transabdominal 
ultrasonography is currently the most commonly used tool 
for HCC detection and surveillance, primarily due to its 
cost-effectiveness. However, the sensitivity and specificity of 
ultrasound are highly dependent on operator experience as well 
as the patient's constitution, with obese patients representing 
a particular challenge. Furthermore, differential diagnosis of 
HCC vs. chronic cirrhosis of the liver is difficult and may not 
always be possible. All these factors contribute to the limited 
sensitivity of early HCC detection by ultrasonography, ranging 
from 32  to 65%  (8,9). Thus, improved and more accurate 
detection of HCC at early stages, especially among high-risk 
groups, such as cirrhosis or hepatitis patients is highly desired.

The detection of biomarkers associated with HCC in body 
fluids or tissues is the most promising approach to improve 
diagnostic accuracy and to overcome the disadvantages of 
current diagnostic strategies. Especially non-invasive tech-
niques relying on blood or serum samples would be beneficial 
for both patients and clinicians. In addition to ultrasonography, 
the determination of α-fetoprotein (AFP) levels in serum is the 
gold standard in HCC detection and has been widely used to 
complement HCC surveillance (5). However, due to its low diag-
nostic accuracy, with sensitivities ranging from a mere 18-60% 
and a specificity of ~85-90%, AFP has recently been excluded 
from current AASLD HCC surveillance guidelines (4,8,10‑13). 
In line, it has been shown that 80% of small HCC nodules 
do not display increased AFP levels and that the sensitivity of 
AFP for tumors smaller than 3 cm is restricted to 25% (14,15). 
Consequently, several other biomarkers have been suggested to 
complement AFP and increase the accuracy of HCC detection, 
most notably des-γ-carboxyprothrombin (DCP), lectin-bound 
AFP  (AFP-L3%), osteopontin  (OPN), glypican  3  (GPC3) 
and Golgi protein-73  (GP73; Table  I). However, reports 
concerning the performance of these markers are conflicting 
and a comprehensive meta-analysis has shown both DCP and 
AFP-L3% to be inferior to AFP (16). Furthermore, combina-
tion of AFP with these markers only moderately increased 
diagnostic performance compared to AFP alone  (16). For 
GPC3, available studies were also recently reviewed in a 
meta-analysis showing lower diagnostic performance as 
compared to AFP (17). OPN was evaluated in comparison 
with AFP in early-stage HCC patients and cirrhotic as well 
as chronic hepatitis B (HBV)‑positive controls. In this study, 
OPN showed almost identical diagnostic performance as 
AFP (18). With regard to GP73, studies including AFP have 
been performed which employed various assay methods and 
applied variable cut-off values (16). Hence, further research 
is needed to validate these markers and additional candidates 
that are continuously emerging.

In this review, we discuss novel biomarkers derived from 
protein, DNA methylation as well as microRNAs (miRs) and 
their potential in the differential diagnosis between chronic 
liver diseases (CLDs), such as chronic hepatitis B or C (HBV, 
HCV) infection or chronic hepatitis C (HCV) infection and 
liver cirrhosis (LC) vs. early‑stage HCC. In particular, we 
focus on receiver operating characteristic  (ROC) curves, 
generated by plotting sensitivity against the false‑positive 
rate which represent a threshold‑independent approach 

allowing the proper evaluation and comparison of different 
biomarkers (19). ROC curves and high corresponding areas 
under the curve (AUC) values (>0.75), indicating significant 
diagnostic accuracy, were considered as a requirement for 
inclusion in this review in combination with significant patient 
and control numbers (n>50).

2. Novel serum proteins as biomarkers for HCC

Annexin A2. Annexin A2 belongs to the calcium-dependent, 
phospholipid-binding protein family and is located on the 
surface of endothelial and most epithelial cells (20). It was found 
to be dysregulated in many cancers, such as colon, lung, gastric, 
esophageal and breast carcinomas  (21-26). In this respect, 
annexin A2 has been associated with tumor cell proliferation, 
apoptosis, transcriptional regulation, invasion, metastasis and 
angiogenesis (27). During hepatocarcinogenesis, annexin A2 
expression is upregulated in cirrhotic liver tissue and malig-
nant hepatocytes (28). Serum concentrations of annexin A2 
have been suggested as a biomarker for HCC in 2009, but 
reliable studies have been missing to date  (29). One group 
recently re-evaluated the usefulness of annexin A2 in serum 
samples from 175 HCCs of all stages, 23 hepatitis, 51 cirrhosis, 
19 benign liver tumor patients and 49 healthy controls by 
enzyme-linked immunosorbent assay (ELISA; Table II) (30). 
Annexin A2 showed an AUC of 0.79 when comparing HCCs 
to healthy controls. Discrimination between HCC and grouped 
cirrhosis as well as benign liver tumor patients achieved an 
AUC of 0.80. Unfortunately, sensitivity and specificity values 
were not stated for these comparisons. However, when limited 

Table I. Diagnostic value of current biomarkers for HCC com-
pared to AFP.

Marker	 Ref.	 Comparison		  AUC

DCP	 (16)	 Mixed	 DCP	 0.79
		  (meta-analysis)	 AFP	 0.83
			   Combined	 0.87

AFP-L3%	 (16)	 Mixed	 AFP-L3	 0.71
		  (meta-analysis)	 AFP	 0.83
			   Combined	 0.83

OPN	 (18)	 Early-stage HCC	 OPN	 0.78
		  vs. LC and CHB	 AFP	 0.78
			   Combined	 0.84

GPC3	 (17)	 Mixed	 GPC3	 0.76
		  (meta-analysis)	 AFP	 0.81
			   Combined	 0.85

GP73	 (16)	 Mixed	 GP73	 0.91
		  (meta-analysis)	 AFP	 0.83
			   Combined	 0.93

AFP, α-fetoprotein; AFP-L3%, lectin-bound AFP; AUC, area under the 
curve; CHB, chronic hepatitis B; DCP, des-γ-carboxyprothrombin; GP73, 
Golgi protein-73; GPC3, glypican 3; HCC, hepatocellular carcinoma; LC, 
liver cirrhosis; OPN, osteopontin.
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to early HCC patients (n=95) and cirrhotic controls (n=51), 
annexin A2 achieved an AUC of 0.80 with a sensitivity of 
86.4% and a specificity of 73.5%. Of note, early HCCs were 
defined as grouped BCLC stage 0 and A, which limits clinical 
usefulness considering the important differences in the thera-
peutic options between BCLC 0 and A patients.

sAxl. Axl is a receptor tyrosine kinase and belongs to the 
TAM family, which is comprised of Axl, Tyro3 and Mer. Axl 
is expressed in many cell types, including epithelial, mesen-
chymal and hematopoietic cells and its biological effects 
depend on cell and tissue context. Overexpression of Axl 
has been detected in several tumor types and correlates with 
poor disease outcome (31,32). Binding of Axl by its ligand 
Gas6 activates a multitude of signaling pathways leading to 
enhanced proliferation, survival, invasion and metastasis. 
In HCC, Axl was shown to be upregulated and induced by 
Hippo/YAP signaling, enhancing invasion and lymphatic 
metastasis (33,34). We recently discovered that Axl is also 
involved in TGF-β‑mediated HCC progression by modu-
lating TGF-β signaling via activation of c-Jun N-terminal 
kinase and subsequent phosphorylation of Smad3  (35). 
Notably, Axl can be proteolytically processed, yielding an 
80-kDa soluble protein  (sAxl), which is secreted into the 
extracellular space and can be detected in blood (36). We 
therefore investigated the potential of sAxl as a non-invasive 
biomarker of HCC in a multi-center study involving patients 
from China and Europe (Table II) (37). We collected serum 
samples from 311 HCC patients of all stages, 30 cirrhotic 
and 125 healthy controls. Determination of sAxl levels by 
ELISA and subsequent ROC curve analysis yielded an AUC 
of 0.834 with a sensitivity of 78.1% and a specificity of 70.8% 
for all HCC vs. healthy controls. In differential diagnosis of 
HCC vs. liver cirrhosis, sAxl showed an AUC of 0.815 as well 
as sensitivities and specificities of 78 and 66.7%, respectively. 
Importantly, analysis of patients with very early HCC, defined 
as BCLC 0 (n=26) vs. cirrhotic controls gave an AUC of 0.838 
with 80.8% sensitivity and 66.7% specificity. Furthermore, sAxl 
was able to distinguish AFP-negative HCC (<20 ng/ml, n=137) 
from liver cirrhosis with an AUC of 0.780, 73% sensitivity and 
66.7% specificity. Of note, sAxl values were not increased 
in breast (n=10), ovarian (n=10), or colorectal (n=62) cancer 
patients with secondary hepatic malignancies.

Thioredoxin. Thioredoxin (Trx1) is a globular, oxidoreductase 
enzyme involved in the physiological defense against oxida-
tive stress (38). In this context, Trx1 is capable of reducing 
disulfide bonds of other proteins in the cytoplasm. However, 
it can play a different role, depending on its subcellular local-
ization. When localized in the extracellular matrix, Trx1 acts 
as a chemokine, whereas in the nucleus, it can interact with 
many transcription factors, thereby regulating gene expres-
sion (39,40). The role of Trx1 in cancerogenesis is not yet fully 
understood, but it was shown to be upregulated in several 
tumor types. High Trx1 expression can stimulate cancer cell 
proliferation and angiogenesis through induction of HIF-1α, 
which in turn increases VEGF-A expression levels  (41). 
Furthermore, upregulation of Trx1 in cancer cells has also 
been attributed to increased oxidative stress and may even 
exert a tumor-suppressive function (42). Overexpression of 

Trx1 has been observed in HCC tissue samples and its levels 
correlate with tumor cell proliferation and metastasis (43,44). 
A possible role of Trx1 as a diagnostic serum marker for HCC 
was recently investigated by ELISA in a training cohort, 
comprising 180 HCCs of all stages, 120 cirrhosis, 120 CLD 
patients and 100 healthy controls (Table II) (45). ROC curve 
analysis of all HCC patients vs. all controls yielded an AUC 
of 0.946 with 84.3% sensitivity and 91.8% specificity. When 
the analysis was limited to all HCC vs. pooled LC and CLD 
patients, the resulting AUC was 0.901 with 78.2% sensitivity 
and 87.5% specificity. Importantly, the authors also performed 
an evaluation of very early HCCs (n=38) against LC and CLD 
patients, resulting in an AUC of 0.844 with a sensitivity of 
74.5% and a specificity of 86.7%. The diagnostic performance 
was also assessed in a validation cohort of similar size, which 
showed very comparable results. Of note, very early HCCs 
were defined as well differentiated and smaller than 2 cm. This 
does not fully comply with BCLC staging criteria, which do 
not take the histological grade into consideration, but rather 
includes the number of tumors nodules, vascular invasion and 
liver function (3).

CD147. CD147, also known as extracellular MMP 
inducer (EMMPRIN) or Basigin, is a member of the immuno-
globulin superfamily and is thought to be involved in several 
cellular processes, such as intercellular recognition and 
spermatogenesis (46). CD147 is frequently overexpressed in 
several cancers, including HCC (47). Importantly, it is capable 
of inducing several matrix metalloproteinases  (MMPs) 
and induction of MMP-2 and MMP-9 by CD147 can 
promote invasion and metastasis in HCC (48). Furthermore, 
membrane‑bound CD147 was shown to interact with integrins, 
thereby modulating migration, invasion, colony formation and 
MMP secretion of HCC cells (49). Serum levels of soluble 
CD147 were determined in 62 HCC patients of all stages 
and 25 healthy controls by ELISA  (Table  II)  (50). CD147 
exhibited an AUC of 0.857 with a sensitivity of 83.9% and a 
specificity of 76.0%. Notably, comparison of very early HCC 
(BCLC 0; n=12) and healthy controls still gave an AUC of 0.85 
with a sensitivity of 83.3%.

CD166. CD166, also known as activated leukocyte cell adhe-
sion molecule (ALCAM), is a transmembrane glycoprotein and 
belongs to the immunoglobulin superfamily, which was first 
described as a CD6 ligand on leukocytes (51). It is expressed 
in many cell types, particularly in immune and epithelial 
cells, as well as in hematopoietic or mesenchymal stem cells. 
Aberrant CD166 levels have been observed in colorectal, as 
well as breast and small cell lung cancer (52). In HCC, CD166 
is induced by PI3K signaling and mediates anti-apoptotic 
effects (53). CD166 concentrations were assessed in sera of 
51 HCC patients of unknown stage and 85 healthy controls 
by ELISA (Table II) (54). No further clinicopathological data 
were provided. CD166 showed an AUC of 0.986 with 100% 
sensitivity and 89.41% specificity. Of note, the authors also 
determined serum CD166 levels in HBV (n=48), HCV (n=40), 
cirrhosis (n=41), gastric (n=21), breast (n=25) and lung (n=21) 
cancer patients and found it exclusively elevated levels in HCC 
patients. Since no ROC curve analysis was performed, these 
findings require re-evaluation.
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Table II. Diagnostic value of novel biomarkers for HCC.

			   No. of 	 No. of 		  Sensitivity	 Specificity
Marker	 Ref.	 Method	 patients	 controls	 Comparison	 (%)	 (%)	 AUC

Proteins

  Annexin A2	 (30)	 ELISA	 175	 70	 HCC vs. LC and BLT	 ND	 ND	 0.80
					     Early HCC vs. LC	 86.4	 73.5	 0.80

  sAxl	 (37)	 ELISA	 Multicenter study
			   Total, 311	 155	 HCC vs. HC	 78.1	 70.8	 0.83
					     HCC vs. LC	 78.0	 66.7	 0.82
					     Very early HCC vs. LC	 80.8	 66.7	 0.84
					     AFP-negative HCC vs. LC	 73.0	 66.7	 0.78
					     Very early HCC vs. HC	 83.3	 ND	 0.85

  Thioredoxin	 (45)	 ELISA	 180	 340	 HCC vs. LC, CLD and HC	 84.3	 91.8	 0.95
					     All HCC vs. LC and CLD	 78.2	 87.5	 0.90
					     Very early HCC vs. LC and CLD	 74.5	 86.7	 0.84

  CD147	 (50)	 ELISA	 62	 25	 HCC vs. HC	 83.9	 76.0	 0.86

  CD166	 (54)	 ELISA	 51	 85	 HCC vs. HC	 100.0	 89.4	 0.99

  EGF	 (58)	 ELISA	 30	 20	 HCC vs. HCV	 63.3	 87.5	 0.80

  GDF15	 (63)	 ELISA	 223	 391	 HCC vs. LC, HBV, HVC, HC	 86.8	 72.8	 0.84

  hCE1	 (65)	 ELISA	 57	 27	 HCC vs. LC	 89.2	 77.7	 0.92

  Ku86 antibody	 (70)	 ELISA	 97	 60	 HCC vs. HBV and HC	 80.5	 70.6	 0.79

  LTBP-2	 (76)	 ELISA	 Multicenter study
			   Thailand, 58	 107	 HCC vs. CLD and HC	 ND	 ND	 0.94
			   Gambia, 50	 100	 HCC vs. CLD and HC	 ND	 ND	 0.87
			   France, 75	 150	 HCC vs. CLD and HC	 ND	 ND	 0.74

  MCM6	 (83)	 ELISA	 61	 59	 HCC vs. LC	 67.2	 86.2	 0.81
					     Small HCC vs. LC	 71.4	 86.2	 0.83

  MCP-1	 (90)	 ELISA	 120	 110	 HCC vs. HBV	 73.1	 80.9	 0.82

  Peroxiredoxin 3	 (94)	 ELISA	 98	 199	 HCC vs. HC	 85.9	 75.3	 0.87
					     HCC vs. LC	 73.2	 69.0	 0.72

  Talin-1	 (99)	 ELISA	 40	 80	 HCC vs. HC	 100.0	 100.0	 1.0
					     HCC vs. LC	 100.0	 87.0	 0.90

  YB-1	 (103)	 CLIA	 105	 100	 HCC vs. HBV, LC and HC	 74.1	 63.0	 0.76

  ConA-pCD	 (106)	 M-LAC	 35	 55	 HCC vs. LC and HC	 85.0	 80.0	 0.88
					     HCC vs. LC	 83.0	 64.0	 0.70

  FucPON1	 (110)	 AAL-ELISA	 90	 90	 HCC vs. LC	 80.0	 64.4	 0.80

DNA methylation

  HOXA9	 (115)	 qMSP	 40	 34	 HCC vs. HC 	 73.30	 97.10	 0.84

  INK4A	 (118)	 Pyro-sequencing	 66	 43	 HCC vs. CLD	 65.30	 87.20	 0.82

microRNAs

  miR-139	 (126)	 qRT-PCR	 31	 31	 HCC vs. HBV hepatitis 	 58.61	 80.60	 0.76

  miR-182	 (132)	 qRT-PCR	 103	 135	 HCC vs. LC, hepatitis, NAFLD	 78.64	 91.58	 0.91

  miR-331-3p	 (132)	 qRT-PCR	 103	 135	 HCC vs. LC, hepatitis, NAFLD	 79.61	 86.32	 0.89

  miR-199a-3p	 (150)	 qRT-PCR	 78	 156	 HCC vs. HC 	 71.80	 86.10	 0.88

AAL, Aleuria aurantia lectin; AUC, area under the curve; BLT, benign liver tumor; hCE1, human carboxyesterase 1; CLD, chronic liver disease; CLIA, chemi-
luminescence immunoassay; ConA-pCD, concanavalin A binding procathepsin D; EGF, epidermal growth factor; ELISA, enzyme-linked immunosorbent assay; 
GDF15, growth and differentiation factor 15; HBV, hepatitis B virus; HC, healthy controls; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; LC, liver 
cirrhosis; LTBP-2, latent TGF-β binding protein-2; MCM6, minichromosome maintenance complex component 6; MCP-1, monocyte chemoattractant protein-1; 
M-LAC, multi-lectin affinity chromatography; NAFLD, non-alcoholic fatty liver disease; ND, not determined; PON1, paraoxonase 1; qMSP, quantitative 
methylation-specific PCR; qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction; YB-1, Y-box binding protein 1.
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EGF. Epidermal growth factor (EGF) signaling is involved in 
the tumorigenesis of many cancers, including HCC. Alterations 
in serum EGF levels have been reported, with decreases in 
non-small cell lung and head and neck carcinomas  (55). 
Increased EGF concentrations were observed in sera from 
pancreatic and thyroid cancer patients (56,57). Its receptor, 
EGFR is considered as a major regulator of hepatocarcinogen-
esis by integrating several proliferation and survival signals. 
Evaluation of EGF concentrations was performed in sera 
of 20 HCV-positive controls as well as 30 HCC patients by 
ELISA (Table II) (58). A sensitivity of 63.3%, a specificity 
of 87.5% and a corresponding AUC of 0.80 were observed. 
Notably, EGF concentrations were not significantly increased 
in early HCC patients and no corresponding ROC curve 
analysis was performed.

GDF15. Growth differentiation factor 15  (GDF15), also 
known as macrophage inhibitory cytokine-1 belongs to 
the transforming growth factor  (TGF)-β superfamily  (59). 
Under physiological conditions, it is exclusively expressed in 
placental tissue but can be induced in activated macrophages 
by pro‑inflammatory cytokines, such as tumor necrosis 
factor-α and interleukin-6 (60). In this context, GDF15 may 
act in a negative autocrine feedback loop, since it suppresses 
the production of pro-inflammatory cytokines and inhibits the 
proliferation of blood mononuclear cells (61). Like TGF-β1, 
GDF15 was shown to play contradictory roles in cancer 
development, inhibiting early cancerogenesis but promoting 
tumor progression at later stages (62). Its tumor-promoting 
effects, such as enhanced migration, angiogenesis or immu-
nosuppression were demonstrated in malignant glioma, 
myeloma, glioblastoma, melanoma, prostate, gastric and breast 
cancer (61). In HCC, GDF15 was shown to be upregulated 
upon HCV infection and was recently investigated concerning 
its potential as a serum biomarker  (Table  II)  (63). To this 
end, serum concentrations in 223 HCCs of all stages, 88 liver 
cirrhosis patients, 51 HBV carriers, 50 HCV carriers and 
202 healthy controls were assessed by ELISA. Discrimination 
of HCC patients from all other conditions (LC, HBV, HCV 
and healthy controls) achieved an AUC of 0.843 with 86.8% 
sensitivity and 72.7% specificity. It has to be noted that GDF15 
levels were equally elevated in cirrhosis patients and in HCC, 
as compared to healthy controls. Thus, the diagnostic power 
for HCC vs. cirrhosis is anticipated to be low, limiting the 
usefulness of GDF15 for differential diagnosis of high-risk 
populations.

hCE-1. Human carboxylesterase  1  (hCE-1) is a serine 
esterase expressed in many tissues. It plays a role in the 
metabolism of xenobiotic compounds in the liver  (64). 
A recent study explored its diagnostic performance by 
ELISA in 57 HCC patients of all stages and in 27 cirrhotic 
controls (Table II) (65). The analysis yielded a sensitivity 
of 89.2%, a specificity of 77.7% and a corresponding AUC 
of 0.918. Of note, 37 chronic hepatitis patients were also 
enrolled in the study but were excluded from this review 
due to the missing ROC curve analysis. Furthermore, HCC 
patients were grouped into early and advanced HCC and 
respective sensitivities and specificities were given. Again, 
without a threshold-independent approach (i.e., ROC curve 

analysis), a valid assessment of diagnostic performance was 
impossible.

Ku86 antibody. Ku86 (also known as Ku80), an ATP-dependent 
DNA helicase II, is part of the DNA-dependent protein kinase, 
which plays a key role in DNA repair via non-homologous end 
joining. More specifically, Ku86 dimerizes with Ku70 and 
binds to the ends of double-strand breaks, thereby acting as a 
scaffold to facilitate alignment and DNA repair by polymer-
ases, nucleases and ligases (66). Interruption of these functions 
has been associated with chromosomal aberrations and tumor 
development in mice  (67). In humans, development and 
progression of several gastrointestinal tumors, including liver 
cancer, have been linked to reduced Ku86 expression (68,69). 
One recent study evaluated the occurrence of auto-antibodies 
against Ku86 by ELISA in 97  patients with HBV-related 
liver cancer, as well as 30  randomly chosen patients with 
HBV-related liver cirrhosis and 30  healthy subjects as 
controls (Table II) (70). The comparison of HCC and grouped 
healthy as well as cirrhotic controls yielded an AUC of 0.794 
with sensitivity and specificity of 80.5 and 70.6%, respectively.

LTBP-2. Latent TGF-β binding protein  (LTBP)-2 belongs 
to the fibrillin family of extracellular matrix proteins. 
Unlike other LTBPs, it lacks a specific motif required for 
complex‑formation with TGF-β1 and its involvement in modu-
lation of TGF-β signaling remains unclear (71,72). LTBP-2 was 
shown to be dysregulated in esophageal carcinoma, pancreatic 
ductal carcinoma and melanoma. In this respect, it affects 
cell adhesion and overexpression of LTBP-2 impairs colony 
formation in vitro. Paradoxically, high LTBP-2 levels correlate 
with poor patient outcome (73-75). It was recently suggested 
as a biomarker for HCC following mass spectrometric 
profiling (Table II)  (76). LTBP-2 levels were subsequently 
determined in 183 HCC, 274 CLD (HBV- or HCV-positive) 
and 227 healthy controls from centers in Thailand (52 controls, 
49 CLD, 58 HCC), Gambia (50 controls, 50 CLD, 50 HCC) 
and France (75 controls, 75 CLD, 75 HCC) by ELISA. Results 
yielded AUCs of 0.94, 0.87 and 0.74 for Thailand, Gambia 
and France, respectively. No distinction was made between 
different stages of HCC. ROC analyses of LTBP-2 vs. CLD 
patients were only shown for HCC patients or CLD controls 
exhibiting <20 ng/ml AFP and the corresponding patient 
numbers were not indicated, rendering an evaluation impos-
sible. However, as for healthy controls, a much lower AUC 
was obtained in samples from France (0.57) as compared to 
Thailand (0.98) or Gambia (0.85), even though CLD controls 
were selected from a similar etiological background (HBV- or 
HCV-positive). Therefore, the diagnostic usefulness of LTBP-2 
as a biomarker of HCC remains unclear.

MCM6. Minichromosome maintenance complex compo-
nent  6  (MCM6) is part of a multimeric protein complex 
involved in DNA synthesis and replication, specifically during 
initiation of S phase (77). Non-proliferating, somatic cells are 
devoid of MCM6 expression and upregulation of MCM family 
proteins has been associated with several cancers, including 
HCC  (78-82) One group investigated the performance of 
MCM6 protein levels as a biomarker of HCC by ELISA in sera 
from 61 HCC patients, including 14 small HCC cases (tumor 
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size <2 cm), as well as 29 cirrhotic controls and 30 healthy 
controls (Table II) (83). In this respect, MCM6 showed an 
AUC of 0.81 when discriminating HCC from cirrhotic controls 
with a sensitivity of 67.2% and a specificity of 86.2%. Notably, 
MCM6 exhibited an AUC of 0.825 in small HCCs vs. cirrhosis 
patients with sensitivity and specificity of 71.4 and 86.2%, 
respectively. However, one drawback of this study is the 
missing classification of HCC patients into BCLC stages, 
which take, besides tumor size, additional clinicopathological 
parameters into account. Thus, a clear evaluation of MCM6 as 
a marker for very early HCC is an open issue.

MCP-1. Monocyte chemoattractant protein-1 (MCP-1) is a 
potent chemotactic factor for monocytes. It is secreted by a 
variety of cell types and can be induced by oxidative stress, 
growth factors or cytokines (84). MCP-1 is associated with 
enhanced tumor infiltration by tumor associated macrophages 
and enhanced angiogenesis in gastric and breast carcinomas 
as well as in meningioma (85-87). In HCC, MCP-1 expression 
correlates with disease progression (88). In particular, hepatic 
stellate cells and myofibroblasts, which play a crucial role in 
liver fibrosis and malignant transformation of parenchymal 
liver cells, secrete large amounts of MCP-1, thus promoting 
migration and invasion of hepatoma cells (89). One recent 
study discovered MCP-1 as a promising marker for HCC by 
determination of serum levels in 120 HCC patients of all stages 
and 110 HBV-carrying controls by ELISA (Table  II)  (90). 
ROC analysis yielded an AUC of 0.823 with a sensitivity and 
specificity of 73.1 and 80.9%, respectively. Notably, samples 
were collected from patients who had previously undergone 
liver resection and were therefore designated as resectable. 
However, most patients included in this study exhibited 
advanced BCLC stages, which do not allow curative treatment 
such as liver resection.

Peroxiredoxin 3. Peroxiredoxin 3 (PRDX3) is a member of the 
peroxiredoxin protein family, involved in peroxide detoxifica-
tion (91). It was shown to be overexpressed in mesothelioma, 
breast cancer, ovarian cancer and liver cancer (92). PRDX3 
has also been suggested as a biomarker for HCC progres-
sion  (93). One group recently investigated PRDX3 as a 
diagnostic biomarker in the sera of 98 Chinese HCC patients 
of all stages, 96 cirrhosis patients and 103 healthy controls 
by ELISA (Table II) (94). ROC analysis of HCC vs. healthy 
controls gave an AUC of 0.865 with a sensitivity of 85.9% 
and a specificity of 75.3%. When HCCs were discriminated 
from liver cirrhosis patients, PRDX3 reached an AUC of 
0.717 with 73.2% sensitivity and 69.0% specificity, limiting its 
potential for differential diagnosis among high-risk popula-
tions. Furthermore, different cut-off values for PRDX3 were 
applied for cirrhotic patients and healthy controls vs. HCC. In 
addition, AFP performance in cirrhosis vs. HCC patients was 
not analyzed, rendering a comparison impossible.

Talin-1. Talin-1 was first identified as a cytoplasmic 
binding partner of integrins, essential for cell adhesion 
and motility (95). In this respect, binding of Talin-1 to the 
cytoplasmic NPXY motif of β-integrin can lead to integrin 
activation and affect adhesion, spreading and motility (96). 
Talin expression has been linked to endometrial as well as 

prostate cancers (97,98). Its potential as a biomarker for HCC 
was recently assessed by ELISA in a study including sera of 
40 HCC patients of all stages, 40 healthy as well as 40 cirrhotic 
controls (Table II) (99). Talin-1 exhibited 100% sensitivity and 
specificity and an AUC of 1.0 in differentiating HCCs from 
healthy controls. Compared against cirrhotic controls, Talin-1 
showed 100% sensitivity, 87% specificity and an AUC of 
0.90. The study also evaluated the performance of AFP in the 
same study population (sensitivity, 80% and specificity, 65%). 
However, combination of Talin-1 with AFP strongly affected 
AUC as well as specificity, reducing them to 0.79 and 57%, 
respectively. In addition, patient characteristics, such as BCLC 
stage, were not taken into account. Therefore, the suitability of 
Talin-1 as a tool for detection of early HCC remains uncertain.

YB-1. Y-box binding protein 1 (YB-1) is a pleiotropic tran-
scription/translation factor, belonging to the highly conserved 
cold-shock domain protein superfamily  (100). YB-1 is 
overexpressed in many cancer types (101). Even though it is 
predominantly localized in the nucleus, where it is involved in 
DNA excision repair, it can also be actively secreted in the pres-
ence of cytokines and upon oxidative stress (102). One recent 
study investigated the diagnostic performance of YB-1 in 
105 HCC patients of all stages vs. a control cohort comprising 
25 HBV, 25 cirrhotic and 50 healthy subjects (Table II) (103). 
Determination of YB-1 serum concentrations was performed 
using a newly developed sandwich-type chemiluminescence 
immunoassay. YB-1 displayed an AUC of 0.764, with a sensi-
tivity of 74.1% and a specificity of 63.0%. Controls were only 
assessed in combination and no separate analyses of healthy, 
HBV-bearing or cirrhotic controls vs. HCCs were performed.

ConA-pCD. Alterations in N-linked glycosylation of several 
proteins have been reported in liver cancer patients (104,105). 
In this context, the most prominent member of N-linked 
glycoproteins, AFP-L3% has been intensely studied, ulti-
mately resulting in its approval by the Food and Drug 
Administration (FDA) for HCC diagnosis in 2005. One recent 
study aimed at identifying additional N-linked glycoproteins 
in HCC tissue and serum samples by multilectin affinity 
chromatography (Table II) (106). This led to the discovery of 
concanavalin A (ConA) binding procathepsin D (ConA-pCD) 
as a candidate biomarker. Serum samples from 35  HCC 
patients as well as 29 cirrhotic and 26 non-cirrhotic controls 
were further analyzed by western blotting, followed by ConA 
affinity chromatography. ROC curve analysis of HCC vs. all 
controls resulted in an AUC of 0.88 with a sensitivity of 85% 
and a specificity of 80%. Analysis of HCC vs. cirrhotic controls 
yielded an AUC of 0.70 with sensitivity and specificity of 
83 and 64%, respectively.

Fucosylated PON1 (Fuc-PON1). Paraoxonase 1 (PON1) is 
a calcium‑dependent hydrolase, capable of hydrolyzing and 
thereby detoxifying organophosphorous compounds  (107). 
It is mainly expressed in the liver and secreted into the 
bloodstream. PON1 polymorphisms have been linked to the 
development of several malignancies, such as breast, lung 
and ovarian cancers as well as multiple myeloma (108). In 
HCC, its expression level was first established as a biomarker 
for microvascular invasion (109). Notably, PON1 is highly 
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fucosylated in HCC tissues and its fucosylation status was 
recently investigated as a diagnostic biomarker by Aleuria 
aurantia lectin-dependent ELISA. Fuc-PON1 levels were 
determined in sera of 90 liver cirrhosis and 90 HCC patients, all 
HBV-positive (Table II) (110). ROC analysis yielded an AUC 
of 0.803 with a sensitivity of 80.0% and a specificity of 64.4%. 
Of note, the control group was also subdivided and diagnostic 
performance was separately assessed among AFP-positive and 
AFP-negative HCC. Here, Fuc-PON1 achieved a lower AUC 
in AFP-positive (>20 ng/ml) patients (0.788).

3. DNA methylation for HCC diagnosis

HOXA9. Homeobox protein HOXA9 is a member of the 
homeobox genes, which show precise spatial and temporal 
regulation during embryonic development and determine 
the body plan (111). Upon knock out, a reduction of myeloid 
progenitor cells was observed in mice. HOXA9 is also highly 
expressed in hematopoietic stem cells and its expression 
gradually decreases with increasing extent of differentia-
tion (112,113). HOXA9 expression is frequently dysregulated 
in several cancers. In this context, its expression was found 
to be increased in colorectal, ovarian and prostate cancer as 
well as in glioblastoma, whereas decreased expression through 
promoter methylation was observed in breast cancer (114). 
One recent study discovered hypermethylation of HOXA9 in 
HCC samples by array analysis (Table II) (115). Methylation 
of HOXA9 was subsequently assessed by quantitative meth-
ylation-specific PCR (qMSP) in plasma from 40 HCC patients 
of all stages and 34 healthy controls. Statistical evaluation 
showed an AUC of 0.835 with 73.3% sensitivity and 97.1% 
specificity.

p16INK4A. p16INK4A is crucial in cell cycle regulation and consid-
ered as a tumor-suppressor. It interacts with cyclin-dependent 
kinases, thereby inhibiting their ability to phosphorylate 
and inactivate the retinoblastoma protein, ultimately leading 
to cell cycle arrest  (116). Promoter hypermethylation of 
p16INK4A and subsequent reduction of p16INK4A levels has been 
observed in a majority of HCC tissue samples (117). A recent 
study examined INK4A methylation via pyrosequencing, 
using circulating cell-free DNA from the blood samples of 
66 HCC patients and 43 controls with chronic hepatitis and 
liver cirrhosis (Table II) (118). The sensitivity and specificity 
observed for INK4A methylation were 65.3 and 87.2%, respec-
tively, with an AUC of 0.82.

4. MicroRNAs to detect HCC

miRs have received increasing attention as a new class 
of non-invasive biomarkers for many cancers, including 
HCC (119,120). miRs are small non-coding RNA molecules, 
which play an important role in post-transcriptional regulation 
of gene expression by either mRNA degradation or by blocking 
translation initiation. Importantly, miRs can also be released into 
the blood stream as free molecules or bound to proteins. In this 
context, they display exceptional stability against endogenous 
RNAse activity, which renders them ideally suited for detection 
and quantification by quantitative reverse‑transcription 
polymerase chain reaction  (qRT‑PCR)  (121). Many miRs 

were shown to be dysregulated in liver cancer and especially 
miRNA signatures, comprised of three or more miRs have 
been suggested for highly accurate HCC detection (122). The 
most novel developments in this field are outlined below.

miR-139. miRNA-139 was shown to be aberrantly expressed in 
many cancers, including HCC. Notably, it can suppress epithe-
lial-mesenchymal transition (EMT), migration and invasion in 
HCC via targeting of ZEB1 and ZEB2. Accordingly, it is down-
regulated in a majority of HCC tissue samples (123). miR-139 
was also shown to reduce Rho-kinase 2 expression in HCC, 
thereby inhibiting migration, invasion and metastasis (124). 
Furthermore, it regulates proliferation and invasion of HCC 
cells by targeting T-cell factor (TCF)-4 mRNA, resulting in 
decreased β-catenin/TCF-4 transcriptional activity  (125). 
This mechanism could also be involved in the suppression of 
EMT by miR-139. Thus, it is not surprising that miR-139 was 
recently investigated regarding its performance as a biomarker 
of HCC by qRT-PCR in sera of 31 HCC patients and 31 chronic 
HBV patients as controls (Table II) (126). The analysis showed 
a downregulation of miRNA-139 in HCC patients with an 
AUC of 0.761, a specificity of 58.1% and a sensitivity of 80.6%. 
However, clinicopathological and etiological characteristics 
were not defined.

miR-182. miR-182 belongs to a polycistronic cluster comprised 
of three miRNAs and located on chromosome 7. miR-182 is 
predominantly expressed in sensory organs such as the retina, 
the nose and the inner ear and shows a specific expression 
pattern during the development of these structures  (127). 
miR-182 was shown to be overexpressed in breast carcinoma, 
melanoma, glioma, ovarian, prostate and colorectal cancers. 
In contrast, miR-182 plays a more ambiguous role in lung 
cancer, where overexpression of miRNA-182 was shown to 
inhibit cancerogenesis in vivo (128). In HCC, upregulation of 
miR-182 is associated with increased resistance to cisplatin as 
well as enhanced proliferation and invasive abilities (129-131). 
miR-182 was recently investigated as a candidate serological 
biomarker in serum samples of 103 HCC patients of all stages, 
95 CLD patients [39 patients with cirrhosis, 47 with chronic 
hepatitis and 9 with non-alcoholic fatty liver disease (NAFLD)] 
and 40 healthy controls by qRT-PCR (Table II) (132). ROC 
curve analysis showed an AUC of 0.911 for the discrimination 
between HCC and CLDs with a sensitivity of 78.6% and a 
specificity of 91.6%.

miR-331-3p. miR-331-3p was first discovered during miR 
expression profiling of chronic and acute lymphocytic 
leukemia, along with one of its putative targets SOCS1 
which regulates STAT activation enhancing cell survival 
and proliferation (133). miR-331-3p was subsequently shown 
to be dysregulated in several malignancies, such as prostate, 
lung, breast and gastric cancer as well as in glioblastoma. 
Notably, it is also involved in the induction of EMT in pros-
tate cancer (134-138). In HCC, miR-331-3p was suggested as 
a possible prognostic marker and it was recently shown to 
promote proliferation and metastasis via targeting of the PH 
domain and leucine-rich repeat protein phosphatase (139,140). 
The diagnostic potential of serum miR-331-3p was explored 
in the same cohort as described for miR-182 (Table II) (132). 
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In this context, miR-331-3p was upregulated and showed 
comparable diagnostic performance, with an AUC of 0.890, a 
sensitivity of 79.6% and a specificity of 86.3% when discrimi-
nating HCC from CLDs.

miR-199a-3p. Altered expression of miR-199a-3p has been 
shown in a variety of tumors, such as ovarian, breast, esopha-
geal, colorectal and gastric cancer, as well as in osteosarcoma. 
In this respect, it was also suggested as a serum biomarker 
for colorectal carcinoma (141-147). Furthermore, both higher 
and lower expression levels have been observed in different 
tumor types as compared to normal tissue and accordingly, 
tumor-suppressive as well as tumor-promoting abilities of 
miR-199a-3p have been described. Notably, miR-199a-3p 
interferes with the expression of Axl, thereby inhibiting the 
progression and metastasis of osteosarcoma (144). In HCC, 
miR-199a-3p regulates mTOR and c-Met signaling, thereby 
attenuating the invasive potential and increasing chemosen-
sitivity. Accordingly, miR-199a-3p is often downregulated in 
human HCC (148). It targets CD44 and subsequently reduces 
proliferation in CD44-positive HCC cells (149). Decreased 
serum levels of miR-199a-3p were investigated for their diag-
nostic value in the sera of 78 HCC patients of all stages and in 
156 healthy controls by qRT-PCR (Table II) (150). ROC curve 
analysis yielded an AUC of 0.883 with 71.8% sensitivity and 
86.1% specificity.

5. Conclusion

The clinicopathological and etiological characteristics specific 
for HCC represent a massive challenge for validating and 
establishing promising candidate biomarkers in clinical 
practice. HCC can develop in response to direct carcinogenic 
events, such as Aflatoxin B1 adducts, but in the majority of 
cases, liver cancerogenesis is a multi-step process driven by 
chronic inflammation due to oxidative stress caused by HBV 
or HCV infection, alcohol abuse and/or NAFLD. These insults 
cause senescence of hepatocytes and concomitant activation 
of stellate cells, leading to fibrosis and ultimately cirrhosis of 
the liver, which is considered a pre-malignant state and the 
major risk factor for HCC (151). Thus, biomarkers permitting 

accurate differential diagnosis between cirrhotic and cancer 
patients are most desirable. Additionally, HCCs exhibit a vast 
genetic and pathological heterogeneity due to the variety of 
underlying CLDs, which must be especially considered when 
evaluating the performance of a biomarker. Furthermore, the 
accuracy of biomarkers must be viewed in light of the etiology 
as well as the respective controls since the prevalence of 
different etiologies shows great variation depending on the 
geography. Notably, HBV is the leading cause of HCC in Asia, 
whereas alcohol-, NAFLD- and HCV-induced HCCs are more 
prevalent in Western countries (152).

HCC detection at the earliest stage is of outmost relevance 
for anticancer therapy. The BCLC staging system classifies 
early HCC as a solitary tumor of up to three nodules, each 
below 3 cm in size within preserved liver functions (153). 
In these cases, curative therapeutic interventions by surgical 
resection, liver transplantation or percutaneous ablation show 
high 5-year survival rates. Yet, every 3-month waiting period 
for a liver transplant is expected to increase pre‑transplantation 
mortality by 10%. Furthermore, liver resection poses a risk 
of recurrence depending on tumor size and number (5,154). 
In this respect, minimally invasive percutaneous abla-
tion methods achieve complete tumor necrosis in 100% of 
solitary HCC <2 cm, whereas the success rate is 70-80% in 
HCC <3 cm (5). Furthermore, a study examining 218 patients 
with tumors <2 cm showed sustained responses following 
RFA in 97% of patients during the 31-month follow-up 
period (155). Therefore, HCC detection at the earliest stage, 
defined as BCLC 0 (a solitary tumor <2 cm) could minimize 
waiting periods and many risks associated with liver resection 
or transplantation. Thus, biomarkers showing high diagnostic 
power in both HCC detection and distinction from cirrhosis, 
while taking tumor stage and patient etiology into account, are 
the most promising. Annexin A2, MCM6, sAxl and thiore-
doxin were evaluated in early or very early HCCs vs. cirrhotic 
or CLD patients and achieved high AUCs. LTBP-2 and sAxl 
were also investigated in Eastern as well as Western patient 
populations. However, LTBP-2 exhibited a drop in diagnostic 
performance in European HCC patients and no independent 
comparison with cirrhotic controls was provided, whereas 
sAxl performed equally well in all populations examined. 

Table III. Diagnostic performance of promising markers in early-stage HCC patients vs. high-risk groups.

Marker	 Refs.	 Comparison		  Sensitivity (%)	 Specificity (%)	 AUC

Annexin A2	 (30)	 Early HCC vs. LC	 Annexin A2	 86.4	 73.5	 0.80
			   AFP	 ND	 ND	 0.66
			   Combined	 ND	 ND	 0.83

sAxl	 (37)	 Very early HCC vs. LC	 sAxl	 80.8	 66.7	 0.84
			   AFP	 42.3	 93.3	 0.66
			   Combined	 88.5	 76.7	 0.90

Thioredoxin	 (45)	 Very early HCC vs. LC and CLD	 Thioredoxin	 74.5	 79.6	 0.84
			   AFP	 70.1	 69.8	 0.73
			   Combined	 81.6	 87.4	 0.88

AFP, α-fetoprotein; AUC, area under the curve; CLD, chronic liver disease; HCC, hepatocellular carcinoma; LC, liver cirrhosis; ND, not determined.
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Moreover, most diagnostic strategies using serum samples 
rely on the combination of novel biomarkers with established 
ones, especially AFP, to increase diagnostic performance. 
In this context, annexin  A2 showed a combined AUC of 
0.83 for early HCC. In the case of sAxl and thioredoxin, 
combined AUCs of 0.901 and 0.875 were achieved for very 
early HCC (<2 cm), respectively, emphasizing their potential 
clinical relevance (Table III) (37,45). For thioredoxin and AFP, 
these results could be verified in a validation cohort, with a 
combined AUC of 0.870. The authors also reported that 69.2% 
of AFP-negative patients were detectable by thioredoxin. 
However, no corresponding ROC analysis was performed (45). 
Although no matched validation cohort was evaluated for sAxl 
and its combination with AFP, it achieved high performance 
in all patient populations evaluated in the multicenter study. 
Furthermore, sAxl displayed a sensitivity of 86.7% and an 
AUC of 0.858 for very early, AFP-negative HCC, underlining 
its potential in complementing AFP  (37). For MCM6, the 
combined AUC was not indicated, but the specificity dropped 
to 50.8% (83).

Although miRs exhibit exceptional diagnostic accuracy, 
several methodological limitations must be considered for this 
new class of HCC biomarkers. For example, sample collec-
tion and processing have a significant impact on the result of 
miR quantification, since platelets contain a wide spectrum of 
miRs, which may be released into the sample during coagu-
lation (156). Thus, significant differences can arise between 
serum and plasma samples. The fasting status may further 
affect the miR status, as their carriers, such as proteins or 
lipoprotein particles, may be more or less abundant  (157). 
Furthermore, different extraction methods can strongly bias 
the resulting miR levels and subsequent quantification (158). 
In addition, qRT-PCR analysis as the most common method 
of miR detection lacks universally accepted normalization 
controls (159). These restrictions currently limit the usability 
and reproducibility of miR data for the detection of HCC.

Despite increasing overall complexity, the availability of 
high throughput technologies has considerably improved our 
understanding of HCC pathogenesis. As a result, new molecules 
and strategies in HCC biomarker research are continuously 
emerging. The analysis of exosomes, small membranous vesi-
cles of 30-100 nm in diameter, is among the most promising 
strategy in this respect. They are derived from multi-vesicular 
bodies and can be secreted into the extracellular space by most 
cell types, including HCC cells (160). Exosomes can transport a 
variety of molecules such as proteins, mRNAs and miRs (161). 
Although their discovery dates back to 1983, their potential as 
biomarkers for HCC has only been recently recognized (162). 
In rats, a combination of AFP, exosomes and circulating miRs 
(miR‑10b, miR-21, miR-122 and miR-200a) detects HCC more 
accurately with an AUC of 0.943 as compared to AFP alone 
(AUC 0.826)  (163). In humans, exosomal HCC-associated 
miR-21 increases in sera of HCC patients  (164). Recently, 
another class of molecules has drawn attention in HCC 
research, namely long non-coding RNAs (lncRNAs). lncRNAs 
are longer than 200 nucleotides and are present in virtually 
all cell types, regulating gene expression via cis- and trans-
acting mechanisms. In this regard, lncRNAs play significant 
roles in many cellular processes, such as chromatin remod-
eling, cell cycle control, apoptosis or cell fate specification. 

Importantly, lncRNAs were shown to be dysregulated in HCC, 
promoting cell proliferation and tumor progression (165). In 
this context, a recent study investigated the expression profile 
of lncRNAs in the sera of HCC patients for its suitability as a 
biomarker (166). The authors discovered a significant increase 
in lncRNA-UCA1 and lncRNA-WRAP53 in HCC vs.  healthy 
or HCV controls. This suggests that lncRNAs may represent 
an important new class of HCC biomarkers, in addition to miR 
and protein biomarkers.
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