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Abstract. Mathematical modeling and serial magnetic reso-
nance imaging (MRI) used to calculate patient‑specific rates 
of tumor diffusion, D, and proliferation, ρ, can be combined 
to simulate glioblastoma multiforme  (GBM) growth. We 
showed that the proportion and distribution of tumor cells 
below the MRI threshold are determined by the D/ρ ratio 
of the tumor. As most radiation fields incorporate a 1‑3 cm 
margin to account for subthreshold tumor, accurate charac-
terization of subthreshold tumor aids the design of optimal 
radiation fields. This study compared two models: a standard 
one‑dimensional (1D) isotropic model and a three‑dimen-
sional (3D) anisotropic model using the advanced imaging 
method of diffusion tensor imaging (DTI) ‑ with regards to 
the D/ρ ratio's effect on the proportion and spatial extent of 
the subthreshold tumor. A validated reaction‑diffusion equa-
tion accounting for tumor diffusion and proliferation modeled 
tumor concentration in time and space. For the isotropic and 
anisotropic models, nine tumors with different D/ρ ratios 
were grown to a T1 radius of 1.5 cm. For each tumor, the 
percent and extent of tumor cells beyond the T2 radius were 
calculated. For both models, higher D/ρ ratios were correlated 
with a greater proportion and extent of subthreshold tumor. 
Anisotropic modeling demonstrated a higher proportion 
and extent of subthreshold tumor than predicted by the 
isotropic modeling. Because the quantity and distribution 
of subthreshold tumor depended on the D/ρ ratio, this ratio 
should influence radiation field demarcation. Furthermore, 
the use of DTI data to account for anisotropic tumor growth 
allows for more refined characterization of the subthreshold 
tumor based on the patient‑specific D/ρ ratio.

Introduction

Glioblastoma multiforme  (GBM) represents the most 
common as well as most aggressive primary brain tumor, 
with a mean survival time of ~12‑14 months following diag-
nosis (1‑4). The highly proliferative and invasive nature of 
GBM leads to rapid tumor growth and poor prognosis despite 
treatment with a combination of surgery, radiotherapy, and 
chemotherapy. In treating GBM, the presumption of a clini-
cally significant proportion of tumor cells below the imaging 
threshold of standard modalities such as magnetic resonance 
imaging (MRI) drives the clinical practice of incorporating 
large margins in the design of radiation fields. The inherent 
trade‑off in establishing such large treatment margins is the 
increased radiation of normal brain tissue. Just as notable 
as the magnitude of these margins is the wide range of 
clinically acceptable margins. For example, radiation fields 
typically include a 1‑3 cm margin beyond the observable 
tumor boundaries on MRI  (5). Thus, a patient‑specific, 
quantitative approach to assessing the proportion and 
extent of tumor cells beyond the T2 imaging threshold may 
provide insight into the optimal size and shape of radiation 
fields on an individual patient basis, ultimately leading to 
improved outcomes. One approach to individually tailored 
quantitative analysis of subthreshold tumor relies on the 
combination of standard MRI imaging techniques with 
mathematical modeling of GBM growth (6‑9). According 
to the assumptions of the model, serial MR imaging can be 
used to calculate patient‑specific rates of tumor cell diffu-
sion and proliferation, termed D and ρ, respectively (8,10). 
These rates are then incorporated into the reaction‑diffusion 
partial differential equation model of glioblastoma growth, 
allowing for individualized simulation of tumor growth and 
calculation of tumor cell concentrations as a function of time 
as well as space.

This model has been used in a variety of applications, 
including modeling the effects of surgery, chemotherapy and 
radiation therapy (7,11‑13). It has also been used to suggest a 
tumor classification based on individual values of D and ρ (14). 
This report focuses on the relative effects of diffusion and 
proliferation, i.e., the D/ρ ratio, which can be shown to dictate 
the spatial distribution of tumor cells at any given time (8,10). 
In this study, we demonstrated how the D/ρ ratio, which may 
also be referred to as the ‘invisibility index’ of the tumor, can 
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be used to predict the percent and extent of tumor cells beyond 
the T2 threshold, i.e., beyond the visible tumor margins on 
traditional clinical MRI sequences. These predictions can, in 
turn, be used as a tool for more optimal design of radiation 
fields (or surgical resection planning).

Traditional applications of the reaction‑diffusion model 
have simulated glioblastoma growth in one spatial dimension 
and conceive of the patient‑specific rate of diffusion, D, as a 
single value applicable throughout the brain, thereby modeling 
isotropic tumor growth (6‑8,12,13). Based on the finding that 
glioma cells diffuse more quickly through white matter than 
gray matter, a refinement of the model by Swanson et al used 
Brain Atlas Data to incorporate preferential white matter 
diffusion into the reaction‑diffusion tumor model, with D now 
being a spatially varying parameter D(x), which would take 
different values in gray matter Dg and white matter Dw, with 
Dw being 5‑100 times greater than Dg (15). However, even in 
white matter, it is known that diffusion is not isotropic, and 
that tumor cells migrate preferentially in the direction of white 
matter tracts (16‑20). Therefore, a uniform Dw parameter is not 
strictly adequate.

Thus, the most recent research study has begun to incor-
porate diffusion tensor imaging (DTI) data into models of 
glioma growth, allowing for modeling anisotropic tumor 
spread  (21). DTI represents an important advancement in 
tumor growth modeling because it allows for three‑dimen-
sional (3D) tumor modeling in the anatomical context of the 
brain. Specifically, the advent of diffusion tensor MR imaging 
has provided the capacity to map main fiber tracts, and provide 
directionality to the diffusion coefficient based on a diffusion 
tensor associated with each voxel. Therefore, the next step in 
model refinement was the incorporation of DTI data to allow 
a more realistic anisotropic diffusion of tumor cells and their 
preferential migration along fiber tracts  (21), with D now 
being a tensor incorporating the magnitude and directionality 
of the diffusion coefficient. This has been shown to enhance 
the accuracy of predicted tumor growth modeling (21). This 
more anatomically nuanced approach to GBM modeling has 
the potential to allow for more accurate assessment of the 
subthreshold tumor and, therefore, more optimal planning of 
radiation fields. Thus, the current report combines routine MR 
patient data to estimate bulk values of D and ρ and DTI data 
to refine directionality of simulated tumor growth. Results 
of this DTI‑based anisotropic model are compared to that of 
the traditional one‑dimensional (1D), isotropic simulation of 
GBM growth with regards to the effect of the D/ρ ratio on the 
percent and spatial extent of tumor cells beyond the visible T2 
boundary. Furthermore, we extended this analysis to consider 
how, for a given D/ρ ratio, the initial location of tumor cells 
can lead to different tumor growth patterns in the anisotropic 
growth model and how this, in turn, affects the quantity and 
distribution of subthreshold tumor.

Materials and methods

Mathematical model. The mathematical model of glio-
blastoma growth employs a reaction‑diffusion partial 
differential equation to calculate tumor cell density as a func-
tion of both time and space. Conceptually, the model relies 
on a mass‑balance approach, such that the number of tumor 

cells in any given location can increase only by the local 
proliferation of tumor cells or by the migration of tumor cells 
into that location. Thus, the model accounts for both the infil-
trative nature of the tumor using a diffusion term as well as 
the proliferation of tumor cells using a proliferation term. The 
proliferation of the tumor is typically modeled using a logistic 
growth term, such that the rate of proliferation in any given 
location decreases as the tumor cell density approaches the 
tissue carrying capacity (6).

In words, the tumor model can be stated as follows: Rate 
of change of tumor cell density (at a location x) = Net inva-
sion (diffusion) of tumor cells + Net proliferation of tumor 
cells. Traditionally, this equation has been used to model 
isotropic diffusion of tumor cells in one spatial dimension. 
In such a context, there is a single, constant value of D that 
is applicable throughout the domain of the brain and so the 
model can be written in mathematical terms as the classical 
Fisher‑Kolmogorov reaction‑diffusion equation (6,7,9):

where the various terms of the equation are defined as follows.
In this equation, c(t,x) represents the tumor cell density, in 

units of cells/mm3, which is a function of position x and time t. 
D is the diffusion term, in mm2/day, which models local inva-
sion of tumor cells. ρ is the tumor proliferation rate in units of 
(/day), and K is the tissue tumor‑carrying capacity in units of 
cells/mm3 and is typically set at 105 cells/mm3 (22).

However, the assumption of a single value for diffusion 
coefficient applicable throughout the brain, in other words that 
the brain is an entirely homogenous mass, does not adequately 
account for the anatomical complexities of the brain. For 
example, it has been observed that tumor cells diffuse more 
quickly in white matter than in gray matter (15). Thus, a more 
accurate representation of the diffusion term of the model, as 
suggested by Swanson et al, defined D as a spatially dependent 
function, D(x), that has one value in gray matter, Dg, and a 
different value in white matter, Dw, as noted above. With this 
definition of D, the model can be rewritten as:

In this form, the equation treats the brain as a hetero-
geneous mass in which there is a different rate of diffusion 
in white matter as opposed to gray matter. However, even 
this formulation of the model does not fully capture the 
anatomical nuances of the brain, such as the anisotropy of 
the brain allowing for greater rates of tumor cell diffusion 
along the direction of white matter tracts. In order to account 
for anisotropic diffusion, this report follows the method of 
Jbabdi et al, modeling 3D growth of GBM guided by a cell 
diffusion tensor derived from the water diffusion tensor as 
given by MRI DTI imaging. Thus, the model can be rewritten 
as (21):

where D(x) is the 3x3 diffusion tensor that describes aniso-
tropic diffusion as a function of location. This diffusion tensor 
is derived from the standard water diffusion tensor:
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If we let (λi,ei)i = 1,2,3 correspond to the eigenvectors and 
eigenvalues of Dw, then D(x) can be written as follows: 
D(x) = λ1(r)e1 e1

T + λ2(r)e2 e2
T + λ3(r)e3 e3

T, where λi(r) modi-
fies the eigenvalues of the diffusion tensor to account for the 
fact that cellular migration along white matter tracts displays 
greater anisotropy than does water diffusion. The form of λi(r) 
is as per Jbabdi et al (21). In general, this is referred to as the 
‘stretch factor’, and is taken to be 10 for the purposes of this 
report (21). The cellular diffusion coefficient in any particular 
direction ν (where ν is a unit vector) can then be written as 
D(ν) = λ1(r)(ν • e1)2 + λ2(r)(ν • e2)2 + λ3(r)(ν • e3)2 (23). This will 
be useful in discretization of the solution, to calculate diffu-
sion coefficients from one voxel to its nearest neighbors.

Once D(x) has been calculated, the equation can be devel-
oped as follows, once again as per Jbabdi et al:

can be transformed into the following equation:

where

In other words 
~
D is derived from the tensor D by calcu-

lating its element by element gradient.
For any given initial condition c(0,x) = co(x), and zero flux 

boundary conditions such that tumor cells are prohibited from 
migrating outside the domain of the brain (D(x)∇c) • n = 0, this 
model can be used to evaluate tumor cell concentration as a 
function of both time and space. The initial condition used in 
this study is a tumor cell concentration of 0.8*K confined to a 
single voxel.

The model is then solved using a forward finite differences 
approach, using ∆t as a time step and (∆x,∆y,∆z) as space 
steps. If the cellular tumor concentration over the entire space 
at time n∆t is represented as Cn, then it is possible to develop 
the forward differences method in the form:

where A is a large sparse matrix. The elements of A are a 
function of D, 

~
D, ρ, and the discretization (∆t,∆x,∆y,∆z). The 

precise form of the matrix is developed as per Jbabdi et al (21).

Simulations. In this study, we investigate the effect of varying 
the D/ρ ratio on the percent and extent of tumor cells beyond 
the observable T2 boundaries for both the 1D isotropic growth 
model and the 3D anisotropic model. D/ρ was chosen as the 
parameter of interest because this ratio can be shown to be 
the primary driver of tumor cell distribution. This is shown by 
non‑dimensionalizing the Fisher‑Kolmogorov reaction‑diffu-

sion equation by introducing the following non‑dimensional 
parameters: t = ρt,  x = x/L,  c = c/K,  D* = D/(ρL2), where 
L is the length of the 1D domain for which numerical solu-
tions to the reaction‑diffusion partial differential equation 
will be calculated. Substituting these parameters into the 
Fisher‑Kolmogorov equation yields the following non‑dimen-
sionalized formulation of the model:

which can be further simplified to give:

In this form, it is evident that the equation, and therefore 
the description of tumor cell concentration as a function of 
time and space, is governed by the parameter D*. Given that 
L is constant value, it becomes clear that the D/ρ ratio is the 
parameter that determines the tumor cell distribution in time 
and space.

In order to test the effect of the D/ρ ratio on the quantity 
and distribution of subthreshold tumor, the growth of nine 
tumors with D/ρ ratios ranging from 0.1 to 2.0 was simulated 
using the traditional 1D isotropic tumor growth model, and 
also simulated with incorporation of DTI data to account for 
3D anisotropic diffusion of tumor cells (Fig. 1). Previously 
published values for a group of 32  GBM had an average 
D‑value of 0.08 and an average p‑value of 0.09, and average 
D/ρ ratios well within the range tested in this study  (8). 
The DTI data used for the simulations was obtained from 
a healthy volunteer, and used uniformly for all simulations. 
For consistency, each simulated tumor in the 3D simulation 
had an identical starting location in the left parietal centrum 
semiovale. Also for consistency, each tumor was grown until 
its post‑contrast T1 radius reached 1.5 cm. For each tumor, the 
corresponding T2 radius as well as the percent of tumor cells 
beyond the T2 radius was also calculated. In order to calculate 
the T1 radius of the simulated tumors, the T1 boundary was 
conceptualized as an isocline of tumor cell concentration, 
such that any location in which the concentration of tumor 
cells was above a certain threshold, namely 80% of the tumor 
cell carrying capacity of brain tissue, was assumed to be 
visible on contrast‑enhanced T1 imaging as enhancing tumor. 
Calculation of the T2 radius was analogous, except that the T2 
threshold was set at 16% of the tumor cell carrying capacity 
of brain tissue. These values for the contrast‑enhanced T1 and 
T2 thresholds have been previously used in several studies 
and are based on the correlation between histopathological 
calculations of tumor cell concentration and observed glio-
blastoma radii on MR imaging (6,24,25). In calculating the 
farthest extent of tumor cells beyond the T2 radius, the farthest 
location from the center of the tumor in which tumor cell 
concentration was >10 cells/mm3 was calculated in both the 
1D isotropic model and the 3D anisotropic DTI model. This 
cut‑off was used as opposed to the point at which tumor cell 
concentration dropped to zero. The reason for this is that the 
highly infiltrative nature of GBM leads to diffuse spread of 
tumor cells such that tumor cells, albeit at very low concen-
trations of ~1 cell/mm3, may be found nearly throughout the 
brain within days of the onset of tumor growth regardless of 
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the relative rates of cellular diffusion and proliferation, as per 
the DTI model simulations. Interestingly, this matches with 
histologic GBM data in rats, where GBM cells could be found 
throughout the CNS within days of implantation  (26‑28). 
Thus, using 10 cells/mm3 as a minimum threshold provided 
a more clinically relevant assessment of tumor invasion that 
could be used to discriminate between tumors with different 
growth kinetics.

This initial investigation was extended to consider the 
effect of the initial tumor location in the anisotropic model on 
the percent and extent of tumor cells beyond the T2 boundary. 
While the isotropic growth model leads to the production of 
a spherically symmetrical tumor mass regardless of the theo-
retical starting location of the tumor, the shape of the tumor in 
the anisotropic model depends on the relative rates of diffusion 
in the local environment of the initial tumor cells. Therefore, 
tumors with the same D/ρ ratio may display different patterns 
of growth depending on where in the brain the tumor origi-
nates. To investigate this possibility, we simulated the growth 
of a tumor with D/ρ=2 in the left parietal centrum semiovale. 
The tumor was grown until its T1 radius was 1.5 cm and the 
number of days required to reach this radius was recorded. A 
second tumor with D/ρ=2 was grown for the same number of 
days in the corpus callosum. This was carried out in order to 
assess the effect on initial tumor location on tumor growth 
and, in particular, on the percent and extent of tumor cells 
beyond the T2 threshold.

Finally, the anisotropic growth model was applied to an 
actual patient in order to demonstrate how this model allows 
for clinically applicable and patient‑specific simulation 
of tumor growth and characterization of the subthreshold 
tumor. In order to do this, MR imaging from two different 
time points was used to calculate a radial velocity based 
on the change in enhanced tumor radius between the two 
imaging time points. It has previously been established that 
the radial velocity of glioblastoma growth can be reasonably 
described by an equation known as the Fisher approximation, 
which states that ν = 2√Dρ, where ν is the radial velocity of 
tumor growth (8,13,24). As outlined previously by several 
investigators, the Fisher approximation enables use of the 

patient‑specific radial velocity calculated from serial MR 
imaging to calculate the unique values of D and ρ for each 
patient's tumor (6,8,24).

MRI methods. Imaging was performed on a Siemens 3T 
Magnetom scanner, with standard T1 (TR 487  msec, TE 
16 msec, 5‑mm slice thickness) and T2 (TR 3,670 msec, TE 
93 msec, 5‑mm slice thickness). DTI imaging was performed 
using a 128x128 matrix with a voxel size of 1.7x1.7x4 mm, TR 
4,100 msec, TE 95 msec, using a bipolar diffusion schema with 
64 non‑colinear imaging directions, b=0 and 1,000 sec/mm2, 
NEX=3, with 30 contiguous slices covering the entire brain.

Results

For the nine simulated tumors with D/ρ ranging from 0.1 
to 2.0, higher values of D/ρ corresponded to higher propor-
tions of the subthreshold tumor in both the 1D isotropic and 
3D anisotropic growth models. Furthermore, the anisotropic 
growth model predicted a higher percentage of tumor cells 
beyond the T2 threshold than did the isotropic model. As an 
example of these two results, isotropic modeling of the tumor 
with D/ρ=0.1 demonstrated 1.9% of tumor cells beyond the T2 
threshold whereas anisotropic modeling suggested that 2.8% 
of tumor cells lied beyond the T2 threshold. In comparison, 
isotropic growth of a tumor with D/ρ=2.0 showed 7.6% of 
tumor cells beyond the T2 threshold whereas anisotropic 
modeling suggested that 8.9% of the tumor cells were invisible 
on standard MR imaging (Fig. 2). Results for the isotropic and 
anisotropic growth of the nine simulated tumors are illustrated 
in Fig. 3A.

Similar to the trends observed for the proportion of the 
subthreshold tumor, higher D/ρ ratios also corresponded with 
a greater spatial extent of tumor cells beyond the visible T2 
boundary. For the 1D isotropic growth model, the spatial 
extent beyond the T2 boundary ranged from 4 mm when D/ρ 
was set at 0.1, to 14 mm for D/ρ=2.0. Just as for the proportion 
of the subthreshold tumor, the 3D anisotropic growth model 
predicted a further spatial extent of tumor cells beyond the T2 
radius than the isotropic growth model. The minimum value, 

Figure 1. (A) Simulation of one‑dimensional (1D) isotropic GBM growth for a tumor with D/ρ=2.0. The shaded region in blue represents the subthreshold 
tumor. (B) Simulation of three‑dimensional (3D) anisotropic GBM growth for a tumor with D/ρ=2.0. The extent of the subthreshold tumor is represented by 
the magenta zone.
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with D/ρ=0.1, was 12 mm whereas the maximum value, when 
D/ρ=2.0, was 25 mm beyond the T2 radius. Full results for the 
nine simulated tumors are illustrated in Fig. 3B.

With the D/ρ ratio was kept constant at 2.0, tumor growth 
was simulated in two different locations: the corpus callosum 

and the left parietal centrum semiovale. As noted above, 
anisotropic modeling of the tumor centered in the left parietal 
centrum semiovale demonstrated that 8.9% of tumor cells 
fell below the T2 threshold and that the subthreshold tumor 
extended 25 mm beyond the T2 radius. In contrast, 8.0% of 

Figure 2. (A) The T1 boundary for the simulated tumor with D/ρ=0.1. (B) For D/ρ=0.1, the green region represents the visible T2 boundary whereas the 
blue region represents the subthreshold tumor. A total of 2.8% of tumor cells lie in the subthreshold region with a maximum extent of 12 mm beyond the 
T2 boundary. (C) T1 boundary for the simulated tumor with D/ρ=2.0. (D) For D/p=2.0 the green region represents the visible T2 boundary whereas the blue 
represents the subthreshold tumor. A total of 8.9% of tumor cells lie in the subthreshold region with a maximum extent of 25 mm beyond the T2 boundary.

Figure 3. (A) Comparison of one‑dimensional (1D) isotropic and three‑dimensional (3D) anisotropic calculation of the percent of tumor cells below the T2 
threshold for a D/ρ range from 0.1 to 2.0. (B) Comparison of isotropic and anisotropic calculation of the maximum extent (in millimeters) of tumor cells beyond 
the visible T2 boundary.
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tumor cells were subthreshold for the tumor centered in the 
corpus callosum with a maximum extent of 21 mm beyond 
the T2 boundary (Fig. 4). Thus, while the percent of tumor 
cells beyond the T2 boundary was similar for the two tumors, 
there was greater variability in the maximum extent of the 
subthreshold tumor.

Finally, we applied the anisotropic growth model to 
a patient diagnosed with GBM in the left parietal lobe. 
Serial MR imaging revealed an increase of 4.0 mm in the 
contrast‑enhanced T1 radius of the tumor from 9.1 to 13.1 mm 
over the course of 30 days, corresponding to a radial tumor 
growth velocity of 0.13 mm/day. This radial velocity yielded 
patient‑specific rates of tumor diffusion and proliferation of 
0.0825 mm2/day and 0.33/day respectively. These rates were 
applied to the anisotropic growth model and the simulated 
tumor was grown to a T1 radius matching that from the second 
day of observation. Based on the specific growth kinetics of 
this patient's tumor as well as the initial location of this patient's 
tumor, the anisotropic model suggests that 5.1% of tumor cells 
fell below the T2 threshold and that the subthreshold tumor 
extended 11.9 mm beyond the visible T2 margin (Fig. 5).

Discussion

The combination of serial MR imaging and mathematical 
modeling represents an innovative and important approach 
to individually tailored simulation of glioblastoma growth 
on a patient‑by‑patient basis (6,8,9). The reaction‑diffusion 
partial differential equation model presented above accounts 
for both the proliferative and invasive properties of GBM 
that, taken together, lead to poor prognoses with relatively 
short survival times. The relative rates of tumor cell diffusion 
and proliferation, i.e., the D/ρ ratio or invisibility index of the 
tumor, correlate to the proportion of cells beyond the visible 
T2/FLAIR margin (6). Additionally, it was shown that the D/ρ 
ratio was correlated to the maximum spatial extent of tumor 
cells beyond the T2 boundary such that tumors with higher 
D/ρ ratios extended farther beyond visible tumor margins. This 
correlation may significantly affect the outcome of radiation 
therapy or surgical resection. To this end, it has already been 
preliminarily demonstrated that the D/ρ ratio, used in the 
context of the above model and incorporating the extent of 
surgical resection, aids in the accurate prediction of survival 
of GBM patients (10).

Hence, this sort of modeling has the potential to offer 
clinically significant information. Initial modeling efforts 
considered the brain to be a 1D homogenous mass, through 
which tumor cells diffuse at a rate independent of their loca-
tion (6‑8,12,13). While subsequent studies have recognized the 
increased diffusion of tumor cells in white matter, it is only 
the most recent research that has begun to incorporate DTI 
data in order to model anisotropic tumor growth (15,21). The 
advantages of the anisotropic tumor growth model are several. 
Firstly, simulations of tumor growth incorporating DTI data 
have already demonstrated a better empirical fit to actual tumor 
progression as observed on MR imaging. One study focused 
on using DTI data to model the growth of low‑grade gliomas 
concluded that the observed tumor shapes could only be repro-
duced by simulation with the anisotropic growth model. In 
contrast, the isotropic growth models, even those accounting 

for differing rates of diffusion in white and gray matter, could 
not adequately reproduce the shape of a patient's tumor (21). In 
this study, we corroborated that result by applying the aniso-
tropic growth model to a patient with glioblastoma in the left 
parietal lobe. Comparison of the T1 boundary of the simulated 
tumor to that of the actual patient demonstrated that the 3D 
anisotropic model more closely resembled the patient's tumor 
than the isotropic model would, which would simply produce 
a spherical tumor in three dimensions (Fig. 5). Thus, the close 
correspondence between observed tumor growth and the 
results of the anisotropic growth model suggest an improved 
accuracy of the anisotropic model over the isotropic model.

The ability of the anisotropic model to more accurately 
predict the cellular distribution of the visible portion of tumor 
on MR imaging supports the notion that this model can also 
more accurately predict the quantity and spatial distribution of 
the subthreshold tumor. Thus, this study describes two signifi-
cant results with respect to the subthreshold component of 
GBM. Firstly, higher D/ρ ratios lead to an increased proportion 
of tumor cells as well as a greater spatial distribution of tumor 
cells beyond the T2 radius ‑ a finding that held for both the 
isotropic and anisotropic growth models. Secondly, although 
the isotropic and anisotropic models demonstrated similar 
trends of greater subthreshold tumor for greater D/ρ ratios, the 
anisotropic model consistently and significantly predicted a 
higher proportion and greater spread of tumor cells beyond 
the T2 boundary for any given D/ρ ratio.

These results are of great clinical importance. Despite 
the overall modest response of GBM to treatment with 
surgery, chemotherapy, and radiotherapy, radiotherapy has 
been shown to be the most effective of the three treatment 
modalities with regards to improving patient prognosis (29). 
Therefore, the ability to individualize and optimize radiation 
plans provides an important avenue for achieving optimal 
patient outcomes. As mentioned above, radiation fields 
typically employ margins of 1‑3 cm beyond the region of 
observable tumor on imaging (5). Given the dimensions of 
the brain, this wide range of clinically acceptable margin 
underscores the very large degree of variability in possible 
radiation fields. It is in this context that accurate charac-
terization of the subthreshold tumor can provide important 
information for determining the shape and size of optimal 
radiation fields designed to deliver large doses of radiation 
to a tumor while sparing, as much as possible, normal brain 
tissue from potentially harmful exposure to radiation. For 
example, the tumor simulated in this study with D/ρ=0.1 had 
a greatest cellular extent of 12 mm beyond the T2 radius. 
Thus, for tumors with low D/ρ such as this, a 3 cm margin 
may lead to excessive radiation of brain tissue containing 
an exceedingly small concentration of tumor cells. Such a 
tumor may theoretically benefit from larger radiation doses 
confined to a smaller field. Contrarily, tumors with larger D/ρ 
ratios, such as the simulated tumor with D/ρ=2.0, may have 
an extent of tumor cells >2.5 cm beyond the T2 radius. For 
such tumors, radiation fields with a margin of 1 or 2 cm would 
not adequately treat the tumor. Furthermore, the anisotropic 
model serves as a better clinical tool than the 1D isotropic 
model for assessing the trade‑off between establishing larger 
margins at the cost of delivering higher doses to normal 
brain tissue as opposed to establishing smaller margins at the 
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cost of failing to deliver radiation to the tumor cells beyond 
the treatment margins. For example, 1D isotropic modeling 
of the tumor with D/ρ=2.0 suggests that margins of 1.5 cm 
would deliver radiation to the entire tumor mass. However, 
the more accurate 3D anisotropic modeling demonstrates that 

tumor cells extend farther than 2 cm beyond the T2 radius. 
Thus, the more accurate characterization of the subthreshold 
tumor offered by the anisotropic growth model allows for 
more informed clinical decisions with regards to radiation 
therapy planning.

Figure 5. (A) Observed T1 weighted MRI for a patient with GBM in the left parietal lobe. Values of D and ρ were calculated for this patient to be 0.0825 mm2/day 
and 0.33/day respectively. (B) Anistropically simulated T1 boundary for GBM with equivalent values of D and ρ. (C) For the simulated tumor, the T1 region 
is shown in red while the extent of the subthreshold tumor is shown in pink. The relatively small zone of subthreshold tumor infiltration in this patient reflects 
the low D/ρ ratio, and illustrates the direct correlation between the size of this zone and the magnitude of that ratio.

Figure 4. (A) Simulated T1 radius for a tumor with D/ρ ratio=2.0 centered in the left parietal centrum semiovale. (B) Corresponding subthreshold tumor, 
containing 8.9% of tumor cells with a maximum extent of 25 mm beyond the T2 radius. (C) Simulated T1 radius for a tumor with D/ρ=2.0 centered in the 
corpus callosum. (D) Corresponding subthreshold tumor, containing 8.0% of tumor cells with a maximum extent of 21 mm beyond the T2 radius. It is noted 
that the extent and the shape of the zone of the subthreshold tumor critically depends on the tumor's location. This reflects a significant contribution of the DTI 
model, potentially allowing the design of treatment fields to reflect expected tumor infiltration along local white matter tracts.
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This point is of particular importance given recent efforts 
to find optimal treatment schemes to improve patient survival 
while at the same time decreasing aggregate dose to normal 
brain tissue. One such study using an isotropic growth model 
determined that optimal dosing schemes delivered spatially 
variable dose within the radiation field in a manner deter-
mined by the spatial distribution of tumor cells within the 
field, as dictated by the patient‑specific D/ρ ratio (24). This 
result implies that true optimization of radiation therapy plans 
depends on the ability to accurately use the patient‑specific D/ρ 
ratio to describe tumor cell concentration in space. Because 
the use of DTI data to model anisotropic tumor growth allows 
for more accurate modeling of tumor cell concentration based 
on the D/ρ ratio, anisotropic tumor modeling represents 
an important advancement in efforts to optimize radiation 
therapy protocols.

The true clinical value of the reaction‑diffusion model 
for glioblastoma growth lies in the potential to personalize 
this model to each patient's tumor. Traditionally, individu-
alization of the model to each patient entails the calculation 
of tumor‑specific values of D and ρ to describe the rates of 
diffusion and proliferation particular to each patient. However, 
the implementation of anisotropic modeling in this study 
suggests that tumors with the same values of D and ρ, and 
thus the same D/ρ ratio, will display different growth patterns 
and have different proportions and spatial distribution of the 
subthreshold tumor depending on the initial location of tumor 
growth. In this way, incorporation of DTI data to model 
anisotropic tumor growth does more than simply improve the 
accuracy of already established methods; rather it reframes 
the notion of personalized tumor modeling to designate initial 
tumor location as a personalized modeling parameter along-
side the already established individualized values of D and ρ.

Clearly, mathematical models are idealizations of a much 
more complex underlying biology, but they have utility if they 
can capture essential features of the phenomenon under study. 
Nevertheless, this model has several limitations. In general, 
of course, there is cellular heterogeneity within all tumors, 
and hence calculation of parameters such as D and ρ repre-
sents an aggregate measure. Furthermore, precise values of 
D and ρ may vary temporally, as the tumor de‑differentiates 
over time. Another limitation is that invasiveness is an active 
process, and can only be roughly modeled as a passive diffu-
sion phenomenon. A significant limitation also has to do 
with the cell‑density thresholds set up for tumor visibility on 
contrast‑enhanced T1 and on T2 weighted images. At present, 
these are only rough approximations, and would certainly be 
expected to have some variations across different tumors, based 
on the extent of neovascularity and the extent of breakdown of 
the blood‑brain barrier. With regards to DTI data, the present 
study does not account for possible variability in the diffusion 
tensor due to mass effect of the tumor as it grows. Therefore, 
the quantitative data generated by the model are of necessity 
inexact. However, they can be regarded as giving some impor-
tant qualitative insights regarding expected behavior of tumors 
based on their D/ρ ratio, and can serve as a rough guide in 
adjusting radiation fields or surgical margins.

In conclusion, since its initial use, the reaction‑diffusion 
model for glioma growth has evolved with regards to its 
primary applications. While the model was initially used to 

simulate untreated glioma growth, subsequent studies have 
incorporated the effects of radiation therapy to simulate 
tumor growth with standard radiotherapy protocols. Still 
more recent studies have sought to use the extended radiation 
therapy model to search for optimized radiotherapy regimens 
with the finding that optimal treatment depends on the partic-
ular D/ρ ratio for each patient's tumor ‑ as it is the D/ρ ratio 
that dictates the spatial distribution and cell concentration 
of tumors even beyond the observable tumor boundaries on 
MR imaging. Simultaneous with this evolution of application, 
the reaction‑diffusion model has also evolved with regards to 
implementation. Initial studies modeled GBM growth in one 
spatial dimension and conceived of the diffusion coefficient, 
D, as a single constant value applicable throughout the brain. 
While later studies assigned one value of D for diffusion of 
tumor cells through gray matter and a separate value of D for 
diffusion in white matter, it is only the most recent studies 
that have begun implementing DTI as a means of modeling 
3D anisotropic glioma growth. With its ability to account 
for anatomical boundaries, increased diffusion of tumor 
cells in white matter, and increased diffusion of tumor cells 
along the direction of white matter tracts, DTI represents the 
most sophisticated and accurate implementation of the reac-
tion‑diffusion model to date. It is in this context, with regards 
to both application and implementation, that the current study 
seeks to use anisotropic modeling of glioblastoma growth 
to examine the effects of different D/ρ ratios and different 
initial tumor location on the quantity and distribution of the 
subthreshold tumor. This is important, as accurate character-
ization of the subthreshold tumor has direct implications on 
the establishment of radiation field margins. Furthermore, the 
tumor cell distribution, as dictated by the invisibility index, 
has direct applications to the optimization of dose distribution 
within the chosen radiation field.
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