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Abstract. Epithelial-mesenchymal transition (EMT) and 
stem-like glioma cells display hallmark therapeutic resistance. 
Understanding of the mechanisms underlying these properties 
will be vital for the development of effective therapies. In this 
study, we found that VSIG4 protein is upregulated in glioblas-
toma. Overexpressing VSIG4 induced EMT and significantly 
promoted invasion and migration in glioblastoma U-87MG 
cells. Moreover, we showed that its overexpression promoted 
formation of glioma stem cell phenotypes in U-87MG cells. 
P4HB, VAMP8 and Connexin  43 (CX43) can promote 
temozolomide (TMZ) resistance in human glioma cells. We 
showed that P4HB, VAMP8 and CX43 protein were upregu-
lated by VSIG4 in U-87MG cells, implying its upregulation 
might be a cause for temozolomide resistance. We found that 
let-7g-5p can inhibit VSIG4 protein expression, but it cannot 
degrade VSIG4 mRNA in U-87MG cells. Contrary to VSIG4, 
we demonstrated that overexpressing let-7g-5p promoted 
mesenchymal-epithelial transition (MET) and significantly 
inhibited invasion and migration consistent with the reduction 
of glioblastoma stem cell phenotypes in U-87MG cells. Thus, 
we concluded that let-7g-5p inhibits epithelial-mesenchymal 
transition (EMT) consistent with reduction of glioma stem cell 
(GSC) phenotypes by targeting VSIG4 in glioblastoma.

Introduction

Glioblastoma multiforme (GBM) is the most common form 
of human primary malignant brain tumors and it accounts for 
>60% of all primary brain tumors in adults (1,2). Because of 
resistance to conventional therapies, the prognosis of GBM 

remains dismal with median survival of ~14 months and 5-year 
survival only ~3% (3). Understanding molecular mechanisms 
underpinning resistance of conventional therapies of glioblas-
toma will offer novel targets for effective therapies.

MicroRNAs (miRNAs) are small, non-coding RNAs that 
post-transcriptionally regulate gene expression (4) and play 
significant roles in maintaining normal cellular functions (5). 
Deregulation of miRNA expression leads to diverse disease 
types, including cancers (6) as exemplified by their differential 
expression in carcinomas (7), sarcomas (8,9), and hematologic 
tumors (10). Let-7g-5p is significantly downregulated in the 
serum of GBM patients and it has been proposed as a tumor 
suppressive gene (11,12).

Glioma stem cells (GSCs) or glioma initiating cells (GICs) 
have been identified and shown to constitute a primitive cell 
population capable of self-renewal and differentiation that 
has the unique capacity to give rise to new tumors upon 
serial transplantation (13-16). Cancer stem/initiating cells are 
believed to play an essential role in tumor recurrence after 
therapeutic intervention (17), and their high chemo-resistance 
and radiation resistance (18) require the identification of alter-
native therapeutic strategies that could effectively lead to their 
functional or physical eradication. Although a few signaling 
pathways, including Sonic-Hedgehog (19), and the bone 
morphogenic proteins BMP4 and BMPR1B (20,21) have been 
shown to be implicated in GSCs maintenance, the mechanisms 
underlying GSCs generation, and propagation have yet to be 
elucidated.

Epithelial to mesenchymal transition (EMT) is an essen-
tial process for driving plasticity during development, but is 
also an unintentional behavior of cells during progression of 
malignant tumor (22-24). EMT confers mesenchymal proper-
ties on epithelial cells and has been closely associated with 
the acquisition of aggressive traits by carcinoma cells (25). 
Disturbance of a controlled epithelial balance is triggered by 
altering several layers of regulation, including the transcrip-
tional and translational machinery, expression of non-coding 
RNAs, alternative splicing and protein stability (26-28).

In this study, we found that VSIG4 protein is upregulated 
in glioblastoma. Overexpressing VSIG4 induced epithelial-
mesenchymal transition (EMT) and significantly promoted 
invasion and migration in glioblastoma U-87MG cells. 

Let-7g-5p inhibits epithelial-mesenchymal transition consistent  
with reduction of glioma stem cell phenotypes 

by targeting VSIG4 in glioblastoma
Xin-Hua Zhang1,  Yun Qian1,  Zheng Li1,  Ning-Ning Zhang1  and  Yun-Jie Xie2

1Department of Neurosurgery, The Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000; 
2Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China

Received April 27, 2016;  Accepted September 2, 2016

DOI: 10.3892/or.2016.5098

Correspondence to: Dr Yun-Jie Xie, Department of Neurosurgery, 
Jining No. 1 People's Hospital, 6 Jiankang Road, Jining, Shandong 
272011, P.R. China
E-mail: xieyunjiejn@163.com

Key words: epithelial-mesenchymal transition, glioma stem cells, 
VSIG4, let-7g-5p, glioblastoma



Zhang et al:  targeted function of let-7g-5p on VSIG4 in glioblastoma2968

Moreover, we showed that its overexpression promoted forma-
tion of glioma stem cell phenotypes in U-87MG cells. We 
found that let-7g-5p can downregulate VSIG4 protein expres-
sion, but it cannot degrade VSIG4 mRNA in U-87MG cells. 
Contrary to VSIG4, we demonstrated that overexpressing 
let-7g-5p promoted mesenchymal-epithelial transition (MET) 
and significantly inhibited invasion and migration consistent 
with the reduction of glioblastoma stem cell phenotypes in 
U-87MG cells.

Materials and methods

Glioblastoma tissues. Glioblastoma tissues and adjacent 
normal tissues were obtained from the Department of 
Neurosurgery, The Affiliated Hospital of Taishan Medical 
University, Shandong, China. All tissues were examined 
histologically, and pathologists confirmed the diagnosis. 
Medical ethics committee approved the experiments. The use 
of human's tissue samples follows internationally recognized 
guidelines as well as local and national regulations. Informed 
consent was obtained from each individual.

Glioblastoma U-87MG cell line, VSIG4 expressing plasmids/
empty vectors, pre-let-7g-5p/control miR and transfection. 
Human glioblastoma cell line U-87MG was obtained from 
American Type Culture Collection. Briefly, cells were main-
tained in RPMI-1640 medium supplemented with 10% fetal 
bovine serum (FBS) (Gibco, Grand Island, NY, USA) and 
penicillin/streptomycin at 37˚C in a humidified atmosphere 
with 5% CO2. VSIG4 expressing plasmids/empty vectors 
(pcDNA3.1) were purchased from Tiangen (Beijing, China). 
Pre-let-7g and control miR were purchased from Ambion, Inc. 
(Ambion, Austin, TX, USA). For transfection experiments, the 
cells were cultured in serum-free medium without antibiotics 
at 60% confluence for 24 h, and then transfected with trans-
fection reagent (Lipofectamine 2000, Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer's instructions. After 
incubation for 6 h, the medium was removed and replaced with 
normal culture medium for 48 h, unless otherwise specified.

Western blot analysis. Western blot analysis was performed as 
described before (29). Briefly, after incubation with primary 
antibody anti-VSIG4 (1:500; Abcam, Cambridge, MA, USA), 
anti-CD133 (1:500; Abcam), anti-EZH2 (1:500; Abcam), anti-c-
Met (1:500; Abcam), anti-P4HB (1:500; Abcam), anti-VAMP8 
(1:500; Abcam), anti-CX43 (1:500; Abcam), anti-E-cadherin 
(1:500; Abcam), anti-TGFB1 (1:500; Abcam), anti-vimentin 
(1:500; Abcam), anti-SNAIL (1:500; Abcam), anti-Notch1 
(1:500; Abcam), anti-TLR9 (1:500; Abcam), anti-EphA2 
(1:500; Abcam), anti-MLK4 (1:500; Abcam) and anti-β-actin 
(1:500; Abcam) overnight at 4˚C, IRDye™-800 conjugated 
anti-rabbit secondary antibodies (Li-COR, Biosciences, 
Lincoln, NE, USA) were used for 30 min at room temperature. 
The specific proteins were visualized by Odyssey™ Infrared 
Imaging System (Gene Co., Lincoln, NE, USA).

Sphere growth. Cells (103/ml) in serum-free RPMI-1640/1 mM 
Na-pyruvate were seeded on 0.5% agar precoated 6-well 
plates. After 1 week, half the medium was changed every third 
day. Single spheres were picked and counted.

Immunofluorescence analyses. For U-87MG cell immuno-
fluorescence analyses, U-87MG cells were plated on glass 
coverslips in 6-well plates and transfected as indicated. At 
48 h after transfection, coverslips were stained with CD44 
(1:500; Abcam) or antibody anti-VSIG4 (1:500; Abcam). Alexa 
Fluor 488 goat anti-rabbit IgG antibody was used as secondary 
antibody (Invitrogen). Coverslips were counterstained with 
DAPI (Invitrogen-Molecular Probes, Eugene, OR, USA) 
for visualization of the nuclei. Microscopic analysis was 
performed with a confocal laser-scanning microscope (Leica 
Microsystems, Bensheim, Germany). Fluorescence intensities 
were measured in a few viewing areas for 300 cells per cover-
slip and analyzed using ImageJ 1.37v software (http://rsb.info.
nih.gov/ij/index.html).

Wound healing assay. Wound healing assay was performed as 
described before (30).

Migration and invasion assay. Migration and invasion assay 
was performed as described before (29).

Methods of bioinformatics. The analysis of potential 
microRNA target site using the commonly used prediction 
algorithms - miRanda (http://www.microrna.org/).

Real-time PCR for microRNAs. Total RNA from cultured 
cells, with efficient recovery of small RNAs, was isolated 
using the mirVana miRNA Isolation kit (Ambion). Detection 
of the mature form of miRNAs was performed using the 
mirVana qRT-PCR miRNA Detection kit and qRT-PCR 
Primer Sets, according to the manufacturer's instructions 
(Ambion). The U6 small nuclear RNA was used as an internal 
control.

Reverse transcription-polymerase chain reaction. It was 
performed as described before (31). Primers for VSIG4: 
forward, 5'-GTGTCCAGTTTGGCTAGTGCC-3'; reverse, 
5'-GACTGGAGAACAGAAGCAGGC-3'. Primers for 
GAPDH: forward, 5'-CGGAGTCAACGGATTTGGTCG 
TAT-3'; reverse, 5'-AGCCTTCTCCATGGTGGTGAAGAC-3'.

Northern blot analysis. Northern blot analysis for miRNAs 
were performed as described previously (32). Probes were 
labeled with [γ-32P]-ATP complementary to let-7g-5p and U6 
snRNA.

Statistical analysis. Data are presented as mean ± SEM. 
Student's t-test (two-tailed) was used to compare two groups 
(P<0.05 was considered significant), unless otherwise indi-
cated (χ2 test).

Results

VSIG4 promotes formation of stem cell-like population in 
glioblastoma U-87MG cells. In an attempt to identify VSIG4 
protein expression between glioblastoma tissues and adjacent 
normal tissues, we performed western blotting in tumor tissues 
versus normal tissues. Protein was isolated from 6 pairs of 
glioblastoma tissues and normal tissues (patient nos. 1-6). We 
found that VSIG4 protein was significantly increased in cancer 
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tissues, compared with adjacent normal tissues (Fig. 1A). It 
implied that VSIG4 could be an oncogene in glioblastoma.

In order to assess the role of VSIG4 in glioblastoma, we 
transfected U-87MG cells with VSIG4 expressing plasmids 
and then western blotting was performed. We found that VSIG4 
protein was significantly increased in the cells transfected with 
VSIG4 expressing plasmids (Fig. 1B). To determine whether 

VSIG4 can affect GSCs, we performed sphere forming assay 
to assess formation of stem cell-like population. We found that 
formations of spheres were increased by VSIG4 in U-87MG 
cells (Fig. 1C). CD133, EZH2, c-Met and CD44 are robust 
markers and are of functional importance for GSC for tumor 
initiation (33-36). In order to detect whether CD133, EZH2, 
c-Met and CD44 protein expression can be affected by VSIG4, 

Figure 1. VSIG4 promotes formation of stem cell-like population in glioblastoma U-87MG cells. (A) Western blotting for VSIG4 in glioblastoma tissues (C) and 
adjacent normal tissues (N). Patients were numbered 1-6. All the 6 patients were diagnosed with glioblastoma. β-actin was a loading control. n=6. (B) Western 
blotting for VSIG4 in U-87MG cells transfected with VSIG4 expressing plasmids or empty vectors (mock). β-actin was a loading control. n=3. (C) Sphere 
growth for U-87MG transfected with VSIG4 expressing plasmids or empty vectors (mock). (D) Western blotting for CD133, EZH2 and c-Met in U-87MG cells 
transfected with VSIG4 expressing plasmids or empty vectors (mock). β-actin was a loading control. n=3. (E) Western blotting for P4HB, VAMP8 and CX43 
in U-87MG cells transfected with VSIG4 expressing plasmids or empty vectors (mock). β-actin was a loading control. n=3. (F) Immunofluorescence analyses 
for CD44 in U-87MG cells transfected with VSIG4 expressing plasmids or empty vectors (mock). n=3.
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we performed western blotting and immunofluorescence. The 
results showed that CD133, EZH2, c-Met (Fig. 1D) and CD44 
protein were upregulated by VSIG4 (Fig. 1F).

P4HB, VAMP8 and Connexin 43 (CX43) can promote temo-
zolomide (TMZ) resistance in human glioma cells (37-39). To 
identify whether VSIG4 could have potential to affect temo-
zolomide (TMZ) resistance, we performed western blotting to 
detect P4HB, VAMP8 and Connexin 43 (CX43) protein. The 
results showed that P4HB, VAMP8 and Connexin 43 (CX43) 
protein were upregulated by VSIG4 in U-87MG cells (Fig. 1E).

Overexpressing VSIG4 promotes EMT in glioblastoma 
U-87MG cells. EMT has been shown to result in cancer cells 
with stem cell-like characteristics that have a propensity to 
invade surrounding tissue and display resistance to certain 
therapeutic interventions (40). In order to assess the role of 
VSIG4 in EMT of U-87MG, we transfected U-87MG cells with 
VSIG4 expressing plasmids and then we found that its over-
expression caused significant changes in the cell morphology 
(EMT, phenotype from a cobblestone-like to a spindle-like 
morphology) (Fig. 2A). To further verify that the changes in 

Figure 2. Overexpressing VSIG4 promotes EMT in glioblastoma U-87MG cells. (A) U-87MG cells were transfected with VSIG4 expressing plasmids or empty 
vectors (mock). Cells were photographed after 72 h of transfection. n=3. (B) Western blotting for E-cadherin, TGFB1, Vimentin, SNAIL, ZEB1 and Notch1 
in U-87MG cells transfected with VSIG4 expressing plasmids or empty vectors (mock). β-actin was a loading control. n=3. (C) Wound-healing assays for 
U-87MG cells transfected with VSIG4 expressing plasmids or empty vectors (mock). The cell layer was photographed. n=3. (D) Migration assays for U-87MG 
cells transfected with VSIG4 expressing plasmids or empty vectors (mock). n=3. (E) Invasion assays for U-87MG cells transfected with VSIG4 expressing 
plasmids or empty vectors (mock). n=3.
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cell morphology are caused by EMT, we performed western 
blotting to detect expression of epithelial and mesenchymal 
markers in U-87MG cells transfected with VSIG4 expressing 
plasmids and the cells transfected with empty vectors. The 
results revealed that epithelial marker (E-cadherin) was 
inhibited and the mesenchymal markers (TGFB1, Vimentin, 
SNAIL, ZEB1 and Notch1) were induced by VSIG4 in U-87 
MG cells (Fig. 1B).

EMT can result in increased cell invasion and migration 
(41-43). Thus, we reasoned that VSIG4 could also affect inva-
sion and migration in U-87 MG cells. To identify this reason, 
we performed would healing, invasion, and migration assays. 
We found that overexpressing VSIG4 resulted in enhanced 
migration (Fig. 1C and D) and invasion (Fig. 1E) in the cells.

Let-7g-5p inhibits VSIG4 in glioblastoma U-87MG cells. 
Having demonstrated that overexpressing VSIG4 promoted 
formation of stem cell-like population and EMT, next we 

studied the mechanisms regulating VSIG4 expression in the 
disease. MicroRNAs (miRs) are a class of small non-coding 
RNAs (~22 nucleotides) and negatively regulate protein-coding 
gene expression by targeting mRNA degradation or translation 
inhibition (44-46). To further confirm whether VSIG4 could 
be regulated by microRNA, we used the commonly used 
prediction algorithm - miRanda (http://www.microrna.org/
microrna/home.do) to analyze 3'UTR of VSIG4. A dozen of 
microRNAs were found by the algorithm. Nonetheless, we are 
interested in let-7g-5p, because let-7g-5p has been proposed as 
a tumor suppressive gene (47,48). However, its role still keeps 
emerging in glioblastoma.

Target sites on 3'UTR of VSIG4 are shown in Fig. 3A. We 
reasoned that let-7g-5p could downregulate VSIG4 expression 
by targeting its 3'UTR in glioblastoma. Downregulation of 
let‑7g-5p can contribute to upregulation of VSIG4 in glioblas-
toma. In an attempt to identify the role of let-7g-5p in regulating 
VSIG4 expression in glioblastoma, we transfected U-87MG 

Figure 3. Let-7g-5p inhibits VSIG4 in glioblastoma cells. (A) Schematic of predicted let-7g-5p binding sites in the 3'UTR of VSIG4 mRNA by TargetScan. 
(B) Real-time RT-PCR for let-7g-5p in U-87MG cells transfected with pre-let-7g-5p or control miR (mock). U6 was a loading control. n=3. (C) Immunofluorescence 
analyses for VSIG4 in U-87MG cells transfected with pre-let-7g-5p and control miR (mock). Upper panel shows microscopic images of immunofluorescence 
staining of one representative experiment (x100 magnification). Bottom panel shows graphic presentation of mean fluorescence intensities. n=3. (D) Western 
blotting for VSIG4 in U-87MG cells transfected with pre-let-7g-5p and control miR (mock). β-actin was a loading control. n=3. (E) RT-PCR for VSIG4 in 
U-87MG cells. U-87MG cells were transfected with pre-let-7g-5p and control miR (mock). GAPDH was a loading control. n=3.
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cells with pre-let-7g-5p and control miR. After transfection, 
let-7g-5p expression was detected by real-time PCR and the 
results showed that let-7g-5p was significantly increased by 
pre-let-7g-5p in the cells (Fig. 3B).

To confirm the reason, we performed immunofluorescence 
analyses in U-87MG cells transfected with pre-let-7g-5p and 
control miR. The results showed that VSIG4 protein was 
evidently inhibited in the cells transfected with pre-let-7g-5p 
(Fig. 3C). We next performed western blotting and RT-PCR 
to detect VSIG4 expression in U-87MG cells transfected with 
pre-let-7g-5p and control miR. The results showed that VSIG4 
protein (Fig. 3D) was significantly downregulated in the cells 
transfected with pre-let-7g-5p. However, we found that let‑7g-5p 
did not degrade VSIG4 mRNA (Fig. 3E).

Let-7g-5p inhibits formation of stem cell-like population in 
glioblastoma U-87MG cells. In an attempt to identify let‑7g-5p 
expression between glioblastoma tissues and adjacent normal 
tissues, we performed northern blotting in tumor tissues versus 
normal tissues. Protein was isolated from 6 pairs of glioblas-
toma tissues and normal tissues (patient nos. 1-6). We found 
that let-7g-5p was significantly decreased in glioblastoma 
tissues, compared with adjacent normal tissues (Fig. 4A). It 
indicated that let-7g-5p could be a tumor suppressive gene in 
glioblastoma. In order to assess the role of let-7g-5p in glio-
blastoma, we transfected U-87MG cells with pre-let-7g-5p and 
then northern blot analyses were performed. We found that 

let-7g-5p was significantly increased in the cells transfected 
with pre-let-7g-5p (Fig. 4B).

To determine whether let-7g-5p could affect stem-like cell 
characteristics, we performed sphere forming assay to assess 
the capacity of CSC or CSC-like cell self-renewal in this 
study. We found that formations of spheres were decreased 
by let‑7g-5p in U-87MG cells (Fig. 4C). We also performed 
western blotting to detect whether GSCs markers, CD133, 
EZH2, c-MET, TLR9, EphA2 and MLK4 can be affected by 
let-7g-5p in the cells. The results showed that CD133, EZH2, 
c-MET, TLR9, EphA2 and MLK4 protein was significantly 
decreased by let-7g-5p in U-87MG cells (Fig. 5D and E).

Overexpressing let-7g-5p promotes MET in glioblastoma 
U-87MG cells. To assess the role of let-7g-5p in U-87MG 
cells, we transfected U-87MG cells with pre-let-7g-5p and 
control miR. We found that its overexpression caused slight 
changes in the cell morphology (MET, phenotype from a 
spindle-like morphology to a cobblestone-like) (Fig. 5A). To 
further verify that the changes in cell morphology are caused 
by MET, we performed western blotting to detect expression 
levels of epithelial and mesenchymal markers in U-87MG 
cells transfected with pre-let-7g-5p and the cells transfected 
with control miR. The results revealed that epithelial marker 
(E-cadherin) was induced and the mesenchymal markers 
(TGFB1, Vimentin, SNAIL, ZEB1 and Notch1) were inhibited 
by let-7g-5p in U-87 MG cells (Fig. 5B).

Figure 4. Let-7g-5p inhibits formation of stem cell-like population in glioblastoma U-87MG cells. (A) Northern blotting for let-7g-5p in glioblastoma tissues (C) 
and adjacent normal tissues (N). Patients were numbered 1-6. All the 6 patients were diagnosed as glioblastoma. U6 was a loading control. n=6. (B) Northern 
blotting for let-7g-5p in U-87MG cells transfected with pre-let-7g-5p and control miR (mock). U6 was a loading control. n=3. (C) Sphere growth for U-87MG 
cells transfected with pre-let-7g-5p or control miR. (D) Western blotting for CD133, EZH2 and c-Met in U-87MG cells transfected with pre-let-7g-5p and 
control miR (mock). β-actin was a loading control. n=3. (E) Western blotting for TLR9, EphA2 and MLK4 in U-87MG cells transfected with pre-let-7g-5p and 
control miR (mock). β-actin was a loading control. n=3.
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To identify whether let-7g-5p could inhibit migration and 
invasion, we performed wound-healing, migration and inva-
sion assays. We found that overexpressing let-7g-5p resulted 
in decreased migration (Fig. 5C and D) and invasion (Fig. 5E) 
in the cells.

Discussion

Recently, it was reported that VSIG4 is highly expressed in 
glioblastoma and correlated with poor prognosis of high-grade 
glioma patients (49). However, its role has not been reported 

in glioblastoma cells. Consistent with the previous report, 
we found that VSIG4 protein is upregulated in glioblastoma. 
Ionizing radiation represents the most effective therapy for 
glioblastoma (50), but radiotherapy remains only pallia-
tive (51) because of radio-resistance. Glioma stem cells can 
promote radio-resistance (18). We showed that overexpressing 
VSIG4 promoted glioma stem cell phenotypes in U87MG 
cells, implying that VSIG4 might play an important role in 
radio-resistance. The emerging role of VSIG4 in glioblastoma 
response to radiotherapy urges further investigation. Notch1 
and Notch2 can promote radio-resistance of GSCs in glioma 

Figure 5. Overexpressing let-7g-5p promotes MET in glioblastoma U-87MG cells. (A) U-87MG cells were transfected with pre-let-7g-5p and control miR 
(mock). Cells were then photographed after 72 h of transfection. n=3. (B) Western blotting for E-cadherin, TGFB1, Vimentin, SNAIL, ZEB1 and Notch1 in 
U-87MG cells transfected with pre-let-7g-5p and control miR (mock). β-actin was a loading control. n=3. (C) Wound-healing assays for U-87MG cells trans-
fected with pre-let-7g-5p and control miR (mock). The cell layer was photographed. n=3. (D) Migration assays for U-87MG cells transfected with pre-let-7g-5p 
and control miR (mock). n=3. (E) Invasion assays for U-87MG cells transfected with pre-let-7g-5p and control miR (mock). n=3.
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(52). We found that VSIG4 can evidently promote Notch1 
protein expression. The results further indicated that VSIG4 
is a potential candidate to prevent radiotherapy resistance. 
Moreover, VAMP8 can promote temozolomide resistance in 
human glioma cells (37). Our results also found that VSIG4 
can upregulate VAMP8 protein expression in glioblastoma 
cells, indicating its upregulation might be a cause for temo-
zolomide resistance.

Although the cell origin of cancer stem cells (CSCs) 
remains to be fully elucidated, mounting evidence has demon-
strated that epithelial-to-mesenchymal transition, induced by 
different factors, is associated with tumor aggressiveness and 
metastasis and these cells share molecular characteristics with 
CSCs (53). We found that VSIG4 induced epithelial-to-mesen-
chymal transition consistent with glioma stem cell phenotypes 
in glioblastoma cells.

Let-7g-5p is significantly downregulated in the serum of 
GBM patients and it has been proposed as a tumor suppres-
sive gene in glioblastoma (11,12). Our results showed that 
its overexpression inhibited VSIG4 protein in glioblastoma 
cells. Contrary to VSIG4, overexpressing let-7g-5p promoted 
mesenchymal-epithelial transition and significantly inhibited 
invasion and migration consistent with the reduction of glio-
blastoma stem cells phenotypes in U87MG cells.

Elucidating the mechanism that let-7g-5p inhibits 
epithelial-mesenchymal transition consistent with the reduc-
tion of glioma stem cell phenotypes by targeting VSIG4 in 
glioblastoma will help us to better understand the molecular 
mechanism of epithelial-mesenchymal transition and glioma 
stem cells in glioblastoma. Thus, restoration of let-7g-5p may 
represent a promising therapeutic way to inhibit VSIG4-
mediated EMT and GSCs regulation. However, the roles of 
let-7g-5p/VSIG4 need to be further confirmed in vivo.
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