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Abstract. The aims of the present study were to undertake 
gene expression profiling of the blood of glioma patients to 
determine key genetic components of signaling pathways and 
to develop a panel of genes that could be used as a potential 
blood-based biomarker to differentiate between high and low 
grade gliomas, non-gliomas and control samples. In this study, 
blood samples were obtained from glioma patients, non-glioma 
and control subjects. Ten samples each were obtained from 
patients with high and low grade tumours, respectively, ten 
samples from non-glioma patients and twenty samples from 
control subjects. Total RNA was isolated from each sample 
after which first and second strand synthesis was performed. 
The resulting cRNA was then hybridized with the Agilent 
Whole Human Genome (4x44K) microarray chip according to 
the manufacturer's instructions. Universal Human Reference 
RNA and samples were labeled with Cy3 CTP and Cy5 CTP, 
respectively. Microarray data were analyzed by the Agilent 
Gene Spring 12.1V software using stringent criteria which 
included at least a 2-fold difference in gene expression between 
samples. Statistical analysis was performed using the unpaired 
Student's t-test with a p<0.01. Pathway enrichment was also 
performed, with key genes selected for validation using 
droplet digital polymerase chain reaction (ddPCR). The gene 
expression profiling indicated that were a substantial number 
of genes that were differentially expressed with more than 
a 2-fold change (p<0.01) between each of the four different 
conditions. We selected key genes within significant pathways 
that were analyzed through pathway enrichment. These key 

genes included regulators of cell proliferation, transcription 
factors, cytokines and tumour suppressor genes. In the present 
study, we showed that key genes involved in significant and 
well established pathways, could possibly be used as a poten-
tial blood-based biomarker to differentiate between high and 
low grade gliomas, non-gliomas and control samples.

Introduction

Cancer is the leading cause of morbidity and mortality 
worldwide with the number of cases expected to increase by 
70% over the next 2 decades (1). Brain and central nervous 
system  tumors are ranked 17th in incidence among all cancers 
worldwide, being the 13th and 15th most common tumor in 
men and women, respectively (2). Cancer is the 2nd leading 
cause of death in the paediatric age group (3), with brain and 
other nervous system tumors ranked 2nd in incidence after 
leukaemias (4).

Brain tumors can be either primary or secondary. Gliomas 
are the most common of the primary brain tumors consisting 
mainly of oligodendroglioma and astrocytoma with a small 
number of mixed oligoastrocytoma. Glioblatoma multi-
forme (GBM) is the most malignant and aggressive of these 
tumors (5).

Despite advances in surgery, radiation and chemotherapy 
together with more recently available therapies such as molec-
ularly targeted therapies, prognosis is generally poor. The 
median survival for patients with malignant gliomas is less 
than 15 months with GBM patients having the worst prognosis 
with less than 5% surviving after 5 years (6).

One of the reasons that cancers are detected at a late stage is 
because many tumors do not have symptoms until the disease 
has spread. The current methods available for the detection of 
gliomas are computed tomography (CT) scan and magnetic 
resonance imaging (MRI) of the brain. However, the defini-
tive diagnosis is by stereotactic guided biopsy of the tumor 
sample which is technically demanding and has its risks but is, 
however, considered acceptable (7-9). Therefore, the develop-
ment of a simple, non-invasive blood test which involves RNA 

A blood-based gene expression and signaling pathway analysis 
to differentiate between high and low grade gliomas

Stephen N. Ponnampalam1,  Nor Rizan Kamaluddin1, 
Zubaidah Zakaria1,  Vickneswaran Matheneswaran2,  Dharmendra Ganesan2, 

Mohammed Saffari Haspani3,  Mina Ryten4  and  John A. Hardy4

1Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur; 
2Department of Neurosurgery, University Malaya Medical Centre, Jalan Universiti, 50603 Kuala Lumpur; 

3Department of Neurosurgery, Hospital Kuala Lumpur, Jalan Pahang, 50586 Kuala Lumpur, Malaysia; 4Department of 
Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK

Received July 5, 2016;  Accepted November 15, 2016

DOI: 10.3892/or.2016.5285

Correspondence to: Dr Stephen Navendran Ponnampalam, Cancer 
Research Center, Institute for Medical Research, Jalan Pahang, 
50588 Kuala Lumpur, Malaysia
e-mail: ponnams99@yahoo.com

Key words: blood, biomarker, gene expression, signaling pathway, 
glioma



PONNAMPALAM et al:  BLOOD-BASED BIOMARKER FOR GLIOMAS 11

profiling in whole blood, can be used as an addition to the more 
traditional methods of cancer screening and detection (10).

The inspiration for whole-blood, transcriptome profiling 
in the context of gliomas originates from the ‘sentinel’ prin-
ciple (10). Inherent in this principle is the fact that blood is in 
intimate contact and interacts with all human tissues including 
cancerous tissue. Blood is considered a connective tissue and 
is a transporter for various substances such as oxygen, nutri-
ents, cells of the immune system including B cells, T cells, 
dendritic and natural killer cells, cytokines, growth factors and 
hormones (11). In addition, blood cells are affected in many 
disease processes such as hematological malignancies, solid 
tumors, asthma, autoimmune diseases such as rheumatoid 
arthritis to common chronic illnesses such as hypertension, 
diabetes and cardiovascular disease (12-15).

Peripheral blood cells have the ability to respond to 
changes that affect the physiology, microenvironment and 
systems biology of the human body. Perturbations or distur-
bances in the homeostasis of the system can also be subtly 
detected by peripheral blood cells (11,16). Thus, blood, being 
easily accessible could serve as a molecular gene expression 
profile reflecting changes that occur within tissues of the 
human body (10). The term ‘bloodomics’ has thus been coined 
to reflect this function of blood in regulation of gene expres-
sion and in the molecular profiling of human diseases (11).

One of the earliest models where the sentinel principle has 
been studied is colorectal carcinoma where a 5- and 7-gene 
biomarker panel has been developed to assess the current 
relative risk of patients developing this cancer in Canada and 
Malaysia (17-19). Molecular gene profiling of the blood tran-
scriptome has also been studied in other diseases including 
neurological disorders such as schizophrenia and bipolar disor-
ders,  chronic fatigue syndrome, tuberous sclerosis complex 2, 
neurofibromatosis type 1, Down's syndrome, epilepsy, Tourette 
syndrome, ischemic stroke, migraine, Huntington's and 
Alzheimer's diseases (20-27).

In the case of an insiduous development of a tumor, 
substances are secreted by the tumor into the bloodstream 
and as a systemic response, there are subtle alterations in the 
level of expression of genes within peripheral blood cells in 
order to maintain homeostasis or as a reaction to the disease 
entity itself (10). In the brain, disruption of the blood-brain 
barrier is due to loss of substances such as the tight junc-
tion proteins claudin-1 and claudin-3, decrease in polarity of 
glioma cells, loss of the molecule agrin and upregulation of 
the aqueous channel protein, aquaporin 4 (AQP4) resulting 
in brain oedema formation (28-34). Since blood-brain barrier 
disruption occurs in brain tumors (35,36), substances that play 
a role in both homeostasis and tumorigenesis are likely to be 
secreted into the bloodstream under such conditions and may 
give a molecular signature profile.

In this study, we have extrapolated the fascinating theory 
of the sentinel principle to the development of adult gliomas 
and to determine if such expression profiling in blood could be 
used to distinguish between high and low grade gliomas, non-
gliomas and control samples. The justification for the present 
study is that such profiling will help not only in the stratifica-
tion of gliomas, but also in the early detection of tumors when 
they are far more amenable to complete surgical resection, 
thus, improving prognosis and survival of the patient.

Materials and methods

Clinical patient data. Upon admission to the hospital, demo-
graphic data and a brief clinical history was elicited from 30 
of the 50 patients. The demographic data included the age and 
gender of the patient and the state in which the patient was 
domiciled. The 30 patients comprised of 10 high grade glioma 
(HG), 10 low grade glioma (LG) (Table I) and 10 non-glioma 
(NG) cases (Table II). The remaining 20 patients were normal, 
healthy controls (C) (Table III). The incidence of gliomas is 
2-3 new cases per 100,000 population per year (37). As such, 

Table I. WHO classification, histopathology of tumor samples 
and demographic data.

		  Age
Histopathology	 Grade	 (years)	 Gender

Pilocytic astrocytoma	 I	 31	 Male
Diffuse astrocytoma	 II	 17	 Male
Diffuse astrocytoma	 II	 32	 Male
Fibrillary astrocytoma	 II	 62	F emale
Recurrent astrocytoma	 II	 45	F emale
Diffuse astrocytoma	 II	 36	 Male
Low grade astrocytoma	 II	 59	 Male
Low grade oligodendroglioma	 II	 45	 Male
Low grade oligodendroglioma	 II	 56	 Male
Recurrent oligodendroglioma	 II	 59	 Male
Anaplastic oligoastrocytoma	 III	 37	F emale
Anaplastic oligoastrocytoma	 III	 58	 Male
Recurrent anaplastic oligoastrocytoma	 III	 66	 Male
Anaplastic astrocytoma	 III	 29	F emale
Anaplastic astrocytoma	 III	 43	 Male
Glioblastoma multiforme	 IV	 24	 Male
Glioblastoma multiforme	 IV	 54	 Male
Glioblatoma multiforme	 IV	 24	 Male
Glioblastoma multiforme	 IV	 34	 Male
Glioblastoma multiforme	 IV	 56	F emale

Table II. Demographics and types of non-glioma samples.

Patient	 Age
no.	 (years)	 Gender	 Sample type

  1	 40	 Male	 Hemangioblastoma
  2	 77	 Male	 Blood clot
  3	 44	F emale	 Inflammatory pseudotumour
  4	 27	 Male	 Arteriovenous malformation (AVM)
  5	 51	F emale	 Ischaemic stroke
  6	 53	F emale	 Hemangioblastoma
  7	 61	 Male	 Haemorrhagic stroke
  8	 56	F emale	 Multiple sclerosis
  9	 34	F emale	 Ischaemic stroke
10	 46	F emale	 Haemorrhagic stroke
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the number of samples we were able to collect on our own was 
small.

Informed consent was obtained prior to blood taking and 
brain tumor removal from the patient during surgery. After 
obtaining consent, blood was immediately drawn from the 
patient on the day before surgery. Surgery was performed the 
next day, typically within 12-24 h of obtaining consent and 
drawing blood from the patient. In addition, this study received 
ethics approval from the Medical Research Ethics Committee 
(MREC) of the Ministry of Health, Malaysia.

Histopathological examination. Brain tumor tissue was 
sectioned onto glass slides and stained with hematoxylin and 
eosin (H&E). The slides were read by neuropathologists at 
the respective hospital. The diagnosis was made based on the 
World Health Organization (WHO) classification of tumors 
of the central nervous system (2007)  (5). Of the 20 tumor 
samples, 10 each were high and low grade gliomas, respec-
tively. Grade I and II tumors were classified as low grade while 
grade III and IV tumors were classified as high grade.

Non-glioma and control samples. In addition to the 20 
tumor samples, 10 non-glioma and 20 control samples were 
also obtained. The 10 non-glioma cases constituted patients 
with an inflammatory, non-malignant condition of the brain 
and included cases of hemangioblastoma, haemorrhagic and 
ischaemic stroke, inflammatory pseudotumor, arteriovenous 
malformation and multiple sclerosis (Table  II). The 20 
control subjects were healthy with no known medical illness 
(Table III).

Blood sample collection. A total of 2.5 ml of venous blood 
was drawn from each patient using the BD Vacutainer 
(Becton‑Dickinson, Franklin Lakes, NJ, USA) with attached 
21G x 3/4" x 12" butterfly needle directly into the PreAnalytiX 
PAXgene Blood RNA Tube (BRT) (Qiagen, Hilden, Germany). 
The samples were kept at room temperature for 2 h to allow 
for complete lysis of cell components after which they were 
stored at -20˚C.

RNA extraction. RNA was extracted from each blood 
sample using the PreAnalytiX PAXgene™ Total RNA Blood 
Extraction kit (Qiagen). After collection, the blood sample 
in the PAXgene Blood RNA Tube (BRT) was incubated at 
a minimum of 2 h at room temperature to ensure complete 
lysis of blood cells. The BRT was then spun for 10 min at 
3,000-5,000 x g. The supernatant was removed and the pellet 
containing the blood cells vortexed until dissolved in 4 ml of 
RNase-free water. The BRT was centrifuged again and the 
supernatant removed. A total of 350 µl of resuspension buffer 
was added and the pellet vortexed until dissolved. The sample 
was transferred into a 1.5-ml microcentrifuge tube where 
300 µl of binding buffer was added to bind the RNA which was 
predominantly derived from leukocytes; 40 µl of proteinase 
was also added to dissolve any protein present in the sample. 
The lysate was transferred directly into a PAXgene Shredder 
spin column and centrifuged to remove cell debris. The flow 
through supernatant containing the total RNA was mixed with 
350 µl of 96-100% ethanol and vortexed. Sample (700 µl) was 
pipetted into the PAXgene RNA spin column to which DNase I 
was added to remove any contaminating DNA. The PAXgene 
RNA spin column was washed several times with wash 
buffers 1 and 2 after which 40 µl of elution buffer was added 
directly onto the PAXgene RNA spin column membrane. This 
was centrifuged for 1 min at 8,000-20,000 x g to elute the 
RNA. The eluate containing the total RNA was incubated at 
65˚C for 5 min and then chilled immediately on ice.

The concentration and purity of the RNA was analyzed 
using the Spectrophotometer NanoDrop ND-1000 (Thermo 
Fisher scientific, Tewksbury, MA, USA). The integrity of the 
RNA was analyzed using the Agilent 2100 BioAnalyzer RNA 
6000 Nano Chip platform (Agilent Technologies, Santa Clara, 
Ca, USA). The concentration of RNA obtained ranged from 37 
to 442 ng/µl. The average value for the RNA integrity number 
(RIN) for the samples was 7.4 with a standard deviation of 
0.87. The samples were stored at -80˚C until further use.

Microarray processing. Two-colour microarray-based gene 
expression utilizing the Agilent 4x44K whole human genome 
microarray, was performed on RNA isolated from the 50 
blood samples. Standard protocols were followed for sample 
preparation, probe labeling and hybridization according to 
the Two-Colour Microarray-Based Gene Expression Analysis 
Protocol (Agilent Technologies).

For sample preparation, the Two-Colour RNA Spike-In 
kit (Agilent Technologies) was used. Spike A and Spike B 
Mix were thawed, mixed vigorously on a vortex mixer and 
then heated at 37˚C in a water bath for 5 min. Three serial 
dilutions of 1:20, 1:40 and 1:4 were performed for each spike 
mix. For the labeling reactions, the Low Input Quick Amp 
Labeling kit (Agilent Technologies) was used. Total RNA 

Table III. Demographics of control samples.

Patient no.	 Age (years)	 Gender

  1	 30	F emale
  2	 38	F emale
  3	 41	 Male
  4	 57	 Male
  5	 25	 Male
  6	 57	 Male
  7	 33	 Male
  8	 51	 Male
  9	 28	 Male
10	 25	 Male
11	 56	 Male
12	 32	 Male
13	 22	 Male
14	 59	F emale
15	 42	F emale
16	 55	 Male
17	 58	 Male
18	 48	 Male
19	 33	 Male
20	 55	 Male
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(150 ng) to a volume of 1.5 µl was labeled; 2 µl of the Spike 
A Mix/Cy3-CTP was used to label the Universal Human 
Reference RNA (Stratagene, La Jolla, CA, USA) while 2 µl 
of the Spike B/Cy5-CTP was used to label the HG, LG, NG 
and C samples, respectively. A total of 1.8 µl of T7 Promoter 
Primer Mix (consisting of 0.8 µl T7 promoter primer and 1 µl 
nuclease-free water) was added to the reaction containing 
3.5 µl of total RNA and diluted RNA spike-in mix. The 
primer and template were denatured by incubating the reac-
tion in a water bath at 65˚C for 10 min. The reactions were 
then placed on ice for 5 min. cDNA master mix (4.7 µl) (2 µl 
5X first strand buffer, 1 µl 0.1 M DTT, 0.5 µl 10 mM dNTP 
and 1.2 µl AffinityScript RNase block mix) was added to each 
sample tube to a total volume of 10 µl. Samples were incubated 
at 40˚C in a water bath for 2 h after which they were moved 
to a 70˚C water bath and incubated for a further 15 min. The 
samples were then incubated on ice for 5 min. Finally, 6 µl of 
transcription master mix (0.75 µl nuclease-free water, 3.2 µl 5X 
transcription buffer, 0.6 µl 0.1 M DTT, 1 µl NTP mix, 0.21 µl 
T7 RNA polymerase blend and 0.24 µl Cy3-CTP/Cy5-CTP) 
was added to each sample tube for a total volume of 16 µl and 
incubated at 40˚C in a water bath for 2 h.

The resulting labeled/amplified cRNA was purified as per 
protocol using the RNeasy mini spin columns (Qiagen). The 
cleaned cRNA sample was eluted by transferring the RNeasy 
column to a new 1.5 ml collection tube. RNase-free water 
(30 µl) was added directly onto the RNeasy filter membrane 
and allowed to stand for 60 sec. The RNeasy column in the 
collection tube was then centrifuged at 4˚C for 30  sec at 
13,000 rpm. The flow-through containing the cRNA sample 
was maintained on ice. If not used immediately, the samples 
were stored at -80˚C. 

The cRNA was quantified using the Nanodrop spectropho-
tometer as previously described. The yield and specific activity 
of each reaction was determined respectively as follows: 

(Concentration of cRNA) x 30 µl (elution volume)
-----------------------------------------------------------------------------------------     = µg of cRNA
                                     1000

Concentration of Cy3 or Cy5
------------------------------------------------ x 1000 = pmol Cy3 or Cy5 per µg cRNA
    Concentration of cRNA

For the 4-pack microarray format, almost all yields 
obtained were ≥0.825 µg and had specific activity (pmol Cy3 
or Cy5 per µg cRNA) ≥6.

The initial step for the hybridization reactions involved 
the fragmentation of RNA. For the 4-pack microarray 
format, 825 ng each of Cy3- and Cy5-labeled, linearly ampli-
fied cRNA, 11 µl of 10x blocking agent were made up to a 
volume of 52.8 µl with nuclease-free water, after which 2.2 µl 
of 25x fragmentation buffer was added to a total volume of 
55 µl. The samples were incubated at 60˚C for exactly 30 min 
to fragment the RNA and then immediately cooled on ice 
for 1  min. Fragmentation mix (55  µl) containing cRNA 
was mixed with an equal volume of 2x GE hybridization 
buffer HI-RPM. The samples were spun in a microcentrifuge 
at 13,000 rpm for 1 min at room temperature to drive any 
residual sample from the walls and lid of the tubes and to 
help with bubble reduction. The samples were then placed on 
ice and loaded onto the array immediately. Sample (100 µl) 

was pipetted into the gasket slide well of the Agilent SureHyb 
chamber and the ‘active side’ of the array placed directly on 
top of the gasket slide to form a sandwich pair. The SureHyb 
chamber cover was placed on the sandwich slides and the 
clamp assembly tightened onto the chamber. The assembled 
slide chamber was then placed in a rotisserie hybridization 
oven at 20 rpm and the samples allowed to hybridize at 65˚C 
for 17 h. The slides were then washed with Gene Expression 
Wash Buffer 1 followed by Prewarm Gene Expression Wash 
Buffer 2. In addition, 0.0005% Triton X-102 was added to 
both buffers which reduced the possibility of array wash 
artifacts. The microarray slides were scanned using the DNA 
microarray scanner (Agilent Technologies).

Data extraction. Data were extracted using Agilent feature 
extraction software analyzed with Gene Spring version GX 
12.5V (Agilent Technologies). The data files were extracted in 
text (.txt) format after Lowess normalization. The sequence of 
events involved in processing of the data files were as follows: 
thresholding, summarization, dye swap, ratio computation, 
log transformation and baseline transformation.

Thresholding involved a substitution step where all 
expression values below a certain specified value were 
made constant. Thresholding was done to remove very 
small expression values or negative values in the dataset. 
This was to ensure that there were no very large negative 
numbers when the data was log transformed. Summarization 
was done by calculating the geometric mean of the expres-
sion values. Raw signal values were then generated which 
essentially were linear data that had undergone thresholding 
and summarization for the individual channels (Cy3 and 
Cy5). Normalized signal values refer to the data after it has 
undergone ratio computation, log2 transformation and base-
line transformation. Normalization was also done using the 
Human Reference RNA.

Dye-swapping accounts for dye related bias as different 
dyes (Cy3 and Cy5) bind DNA with different affinities. This 
dye related bias cannot be removed by standard normalization 
methods. In GeneSpring, samples that have been marked as 
dye-swapped were treated as follows: Cy3 was designated as 
‘signal’ and Cy5 as ‘control’ and the signal was computed as 
Cy3/Cy5. For samples that have not undergone dye-swapping, 
GeneSpring treats Cy5 as ‘signal’ and Cy3 as ‘control’ and the 
signal is computed as Cy5/Cy3.

In baseline transformation, the baseline to median of 
control samples was performed. In the Agilent 4x44K Human 
Array, there are a set of samples designated as controls that 
can be used for all samples. In this baseline transformation, 
for each probe, the median of the log summarized values from 
the control samples was first computed, after which, this value 
was subtracted from the sample.

As mentioned previously, Lowess normalization was 
performed before the raw data were extracted. Lowess 
normalization is critical for reducing intra-array (within 
slide) variation. In 2 colour experiments, 2 fluorescent dyes, 
red and green, are used. The intensity-dependent variation 
in dye bias may introduce spurious variations in the dataset. 
Lowess normalization is performed which merges the 2 colour 
data and applies a smoothing adjustment which removes such 
variations.
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Investigating the effects of tumor status, age, gender and 
experimental array batch on gene expression. A linear mixed 
regression analysis was performed using the ‘R’ statistical 
package, to investigate the effects of tumor pathology, age, 
gender and experimental batch effects on gene expression. The 
tumor status was defined by the four groups of samples, HG, 
LG, NG and C. The age and gender of patients are represented 
in Tables I-III, respectively. Samples were run on arrays in 
4 experimental batches as follows: Batch 1, 6 HG and 6 LG 
samples; Batch 2, 4 HG, 4 LG and 4C samples; Batch 3, 8C and 
4 NG samples; Batch 4, 8C and 6 NG samples. The explanatory 
power of each factor was assessed in a stepwise manner by 
examining the increase in the variation explained when a new 
covariate or set of covariates was added to the existing model. 
This resulted in the investigation of the following four models: 
i) model 1, gene expression as a function of tumor status; ii) 
model 2, gene expression as a function of tumor status and age; 
iii) model 3, gene expression as a function of tumor status, age 
and gender; and iv) model 4, gene expression as a function of 
tumor status, age, gender and array batch.

In total there were 50 microarray samples each with 29,092 
gene expression values from 44,000 probe sets. In prepara-
tion of input data for multiple regression analysis, a table of 
50 microarray samples (50 rows) x 29,092 gene expression 
values (29,092 columns) was generated. The metadata for each 
sample that included tumor status, age, gender and array batch 
were combined as columns in the prepared table. The input 
data were then read into the ‘R’ software. For each gene, a 
linear model was fitted using the Im function to its respective 
gene expression values vs. variable(s) of interest as per the four 
models. For each model, there were 29,092 r2 (coefficient of 
determination) values that were generated. Each r2 value was 
then modified to generate an adjusted r2 value to account for 
the number of variables and the sample size. A median, mean 
and range for r2 was then calculated for each model as shown 
in Fig. 1 and Table IV.

Unsupervised hierarchical clustering. Unsupervised hierar-
chical clustering using the Euclidean distance method and 
Ward's linkage was performed on each of the 4 different pairs 
of conditions and all 4 conditions. One of the limitations 
in unsupervised hierarchical clustering is that this form of 
analysis could be influenced by noise and outliers particularly 
when sample sizes are small.

Principal component analysis (PCA). Principal component 
analysis was performed on the complete data set. The first 
step in PCA was to subtract the mean from each of the data 

dimensions. Then, the covariance matrix and the eigenvectors 
and eigenvalues of the covariance matrix were calculated. 
Data compression and reduced dimensionality was performed 
when converting the data into components and to form feature 
vectors in 3 dimensions along the x-, y- and z-axis.

Identification of significant differences in gene expression 
between the 4 different conditions. The moderated t-test, 
a modification of the Student's t-test, was used to identify 
significant differences in gene expression between the 4 
sets of conditions (HG vs. C, LG vs. C, HG vs. LG and NG 
vs. C). While the Student's t-test calculates variance from 
the data that is available for each gene, the moderated t-test 
uses information from all of the genes to calculate variance. 
This is particularly useful when a small number of samples is 
available in each group (as in this case) making the variance 
estimates unstable.

When testing was performed across these different condi-
tions, each gene was considered independently from the other 
as a moderated t-test was performed on each gene separately. 
Given that in this microarray experiment, the expression levels 
of 44,000 probes was measured simultaneously across each 
condition, multiple testing correction (MTC) was required. 
With this in mind, the Benjamini and Hochberg (B-H) false 
discovery rate was used to control for the large number of tests 
performed. This procedure is one of the less stringent methods 
of MTC but it provides a good balance between identification 
of many genes that are statistically significant and protection 
against false positives (type I error).

Pathway analysis. For each group, genes were selected 
based on at least a 2-fold difference in expression and a B-H 
corrected p<0.01. Pathway analysis was performed using the 
ingenuity pathway analysis (IPA) programme (Johns Hopkins 
University, Baltimore, MD, USA).

IPA is based on the Ingenuity Knowledge Base. In IPA, 
canonical pathways are well characterized pathways that have 
been curated and hand-drawn by PhD level scientists and the 
information comes from specific journal articles, review arti-
cles, text books and HumanCyc, an encyclopaedia of human 
genes and metabolism (http://humancyc.org). Gene selection 
for the canonical pathways is based on this analysis.

cDNA synthesis. RNA from each sample was converted to 
cDNA using the high capacity RNA-to-cDNA kit (Applied 
Biosystems). Optimal blend priming was performed with a 
mixture of random octamers and oligo dT primers.

Total RNA (200  ng) was mixed with 10.0  µl of 2x 
reverse transcriptase (RT) buffer, 1.0 µl 20X enzyme mix 

Figure 1. Box plot of adjusted r2 values for the 4 models. The range for the 
error bars for models 1-4 are as follows: model 1, -0.06508 (min) to 0.91450 
(max); model 2, -0.088070 (min) to 0.915400 (max); model 3, -0.11050 (min) 
to 0.91510 (max) and model 4, -0.1779 (min) to 0.9123 (max).

Table IV. Median and mean adjusted r2 values for models 1-4.

Model	 Median	 Mean

1	 0.11830	 0.17220
2	 0.110700	 0.163200
3	 0.11180	 0.16360
4	 0.1540	 0.1882
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and nuclease-free water to a total volume of 20.0 µl. The 
tube containing the reaction mix was then incubated in 
the Professional basic thermocycler (Biometra, Gottingen, 
Germany) at 37˚C for 60 min after which the reaction was 
terminated by heating to 95˚C for 5 min. The reactions were 
then used for droplet digital PCR (ddPCR) or stored long-
term at -80˚C.

Droplet digital polymerase chain reaction (ddPCR). Selected 
genes (Table V) from each of the 4 group pairs as previ-
ously mentioned, were verified using ddPCR. Reactions for 
each sample were done either singly or in duplicate. Beta-
glucuronidase (GUSB) was used as the reference gene as it 
showed the least variation with gene expression amongst the 
other housekeeping genes used, namely TATA binding protein 
(TBP) and human acidic ribosomal protein (HuPO). All 
reagents and equipment used for ddPCR were from Bio-Rad 
Laboratories (Hercules, ca, USA). cDNA (10 ng) was mixed 
with 10 µl of 2x ddPCR Supermix for probes (No dUTP), 
1 µl 20x target primers/probe mix (FAM) or 20x reference 
primers/probe (HEX) and nuclease-free water to a total reac-
tion volume of 20 µl. The entire reaction mix of 20 µl was 
then loaded into a sample well of a DG8 Cartridge for the 
QX200/QX100 droplet generator. This was then followed by 
adding 70 µl of droplet generation oil for probes into the oil 
wells of the cartridge, according to the QX200/QX100 Droplet 
Generator Instruction Manual. The cartridge was then inserted 
into the Automated Droplet Generator. After droplet genera-
tion, the droplets were transferred to a 96-well plate and then 
sealed with foil using the PX1 PCR plate sealer.

Thermal cycling was then performed on the droplets using 
the C1000 Touch Thermal Cycler with 96-deep well reaction 
module according to the following protocol: enzyme activation 
at 95˚C for 10 min (1 cycle), denaturation at 94˚C for 30 sec 
followed by annealing/extension at 55˚C for 1 min (40 cycles), 
enzyme deactivation at 98˚C for 10 min (1 cycle) followed by 

hold at 4˚C. The ramp rate was set at 2˚C/sec, the heated lid to 
105˚C and the sample volume at 40 µl. After thermal cycling, 
the sealed plate was placed in a QX200/QX100 droplet reader 
and the absolute gene expression level per well for the probes 
and reference genes were quantitated using QuantaSoft soft-
ware.

For analysis of the gene expression data, we assumed a 
normal distribution. Each gene was evaluated for its expres-
sion in a minimum of 3 to a maximum of 6 samples under each 
pair of conditions. The gene expression values for each sample 
were normalized to the housekeeping gene. The values for the 
absolute level of gene expression as obtained by ddPCR were 
then subjected to the t-test for the genes selected under the 4 
sets of conditions, with a resulting fold change and p-value. 
Statistical outliers were removed using the box and whisker 
plot.

In summary, ddPCR is a method for performing digital 
PCR that utilizes a water-oil emulsion droplet system using 
a combination of microfluidics and proprietary surfactant 
chemistries. Droplets are formed in a water-oil emulsion 
that partitions the nucleic acid samples into 20,000 nanoliter 
sized droplets, with background and target DNA randomly 
distributed among the droplets. Sample partitioning is key to 
ddPCR. PCR amplification is then carried out on each droplet 
thus enabling the measurement of thousands of independent 
amplification events within a single sample. Nucleic acids 
are quantified by counting the regions that contain the PCR 
end product. Thus, ddPCR is not dependent on the number of 
amplification cycles to determine the initial sample amount, 
hence eliminating the reliance on uncertain exponential data 
to quantify target nucleic acids. This allows clonal amplifica-
tion of nucleic acids with direct and absolute quantification. 
Therefore, the main benefits of ddPCR technology are simpli-
fied and absolute quantification of nuclei acids with superior 
partitioning, unparalleled precision, increased signal-to-noise 
ratio and removal of PCR bias.

Table V. The significant genes after Bonferroni correction.

		F  old change	F old change		  Bonferroni correction: 	 Result
Condition	 Gene	 from GeneSpring	 from ddPCR	 p-value	 new 0.05 threshold, 10 tests	 (p-value)

NG vs. C	 MMP9	 +2.35	 +6.49	 0.0068	 0.005	F alse

LG vs. C	 MAP3K8	 +2.46	 +1.61	 0.00003	 0.005	 True
	 TP53	 -2.81	 +2.00	 0.00007	 0.005	 True
	 SOS1	 -2.62	 -1.69	 0.00362	 0.005	 True

HG vs. C	F OS	 +2.28	 +3.55	 0.00853	 0.005	F alse
	 IL6	 +4.06	 +3.05	 0.00001	 0.005	 True
	 TNF	 -2.90	 +1.60	 0.00620	 0.005	F alse

HG vs. LG	E GFR	 +2.44	 -1.25	 0.43	 0.005	F alse
	 VEGFA	 +2.13	 +1.36	 0.24	 0.005	F alse
	 MAPK12	 -4.09	 +1.19	 0.27	 0.005	F alse

NG, non-glioma; C, control; LG, low grade glioma; HG, high grade glioma; MMP9, matrix metallopeptidase 9; MAP3K8, mitogen-activated 
protein kinase 8; TP53, tumor protein p53; SOS1, son of sevenless homolog 1; FOS, FBJ murine osteosarcoma viral oncogene homolog; IL6, 
interleukin 6; TNF, tumor necrosis factor; EGFR, epidermal growth factor receptor; VEGFA, vascular endothelial growth factor A; MAPK12, 
mitogen-activated protein kinase 12.
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Results

Modeling the effects of tumor status, age, gender and experi-
mental array batch effects on gene expression. Using a linear 
mixed regression analysis, the effect of tumor pathology, age, 
gender and experimental batch on gene expression was investi-
gated. For models 1, 2, 3 and 4, the median and mean adjusted 
r2 values did not vary significantly (Table IV and Fig. 1). The 
change in median values for models 2 and 3 were 0.0077 and 
0.0065%, respectively as compared to model 1, suggesting that 
age and gender had a minimal impact on gene expression glob-
ally. For model 4, the change in the median adjusted r2 value 
when compared to tumor status alone was 3.57%, indicating 
that array batch had some impact on gene expression glob-
ally, but that this was still small. The mean adjusted r2 values 
showed a similar trend. Based on these findings, all subsequent 
analysis focused on the impact of tumor pathology alone on 
gene expression.

Microarray analysis of samples. (a) Unsupervised hierarchical 
clustering was performed on each of the 4 different pairs of 
conditions (HG vs. C, LG vs. C, HG vs. LG and NG vs. C) and 
all 4 conditions together, with the total gene input list, using 

the Euclidean distance method and Ward's linkage. The gene 
input list consisted of genes which were found to be differen-
tially expressed with a corrected p<0.01 and a fold change of 
at least 2. The results are depicted in Fig. 2 showing 3 clusters 
of samples: one cluster for the high grade tumors, a second 
cluster for the low grade tumors and a third cluster for the 
non-glioma and control samples. The non-glioma and controls 
clustered together and were distinct from the glioma samples, 
with the low grade glioma being furthest from the control and 
non-glioma samples. Therefore, not only were we able to show 
a distinction between the glioma and control samples but were 
also able to distinguish between high and low grade gliomas.

(b) Principal component analysis (PCA) of samples. The PCA 
plot (Fig. 3) of the first 3 axes, showed results that were very 
similar to that of the microarray analysis, demonstrating clear 
separation into the 3 clusters of samples as mentioned in (a). Of 
specific note, is that the 2 sample types which were closest to 
each other were the control and non-glioma sets.

Volcano plots. Multiple testing correction using the Benjamini-
Hochberg (B-H) analysis with a corrected p<0.01, and a 2-fold 
change cut-off, for each of the four conditions were as follows: 
HG vs. C: total number of genes, 1055, with 479 upregulated 
and 576 downregulated; LG vs. C: total number of genes, 
2708, with 713 upregulated and 1995 downregulated; HG vs. 
LG: total number of genes, 1629, with 1287 upregulated and 
342 downregulated; and NG vs. C: total number of genes, 82, 

Figure 2. Unsupervised hierarchical clustering of all 4 groups by use of the 
Euclidean similarity measure and Ward's linkage to visualize the expression 
level of genes between the groups. The heat map shows the gene expression 
for the different groups in columns, with a dendogram representing their 
similarity. The clustering was performed on a filtered gene list of normalized 
signal intensity values (averaged over replicates) for all the 4 groups.

Figure 3. Principal component analysis (PCA) plot for the 4 different con-
ditions. The axes corresponds to principal component 1 (PC1, x-axis), PC2 
(y-axis) and PC3 (z-axis). The ellipses (2 standard deviation coverage; see 
colour key for the different conditions) shows a distinct directionality in the 
different groups based on similarities in gene expression. 
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with 56 upregulated and 26 downregulated. The results were 
represented on volcano plots (Fig. 4).

The results showed that there were relatively few genes 
which were differentially expressed between control and 
non-glioma samples. In comparing the glioma samples to 
the controls, the predominant effect was the downregulation 
of genes in the glioma samples. When comparing the high 
and low grade samples, there was in general an upregulation 
occurring in the high grade samples.

Venn diagram of differentially expressed genes. The Venn 
Diagram represented the genes with at least a 2-fold difference 
in expression and a p<0.01, that were unique to each condition 
and also those that overlapped between the various conditions 
(Fig. 5A). There were 104 genes common to both the HG vs. C 
and the HG vs. LG pairs. These included genes belonging to 
the zinc finger transcription factor, ZNF 649 and ZNF 205, 
homeobox genes such as HOXB2 and SOX8, a transcription 
factor involved in embryonic development and determination 
of cell fate. For the HG vs. LG pair, there were a total of 1629 
genes, of which 644 were unique to this pair and included 
EGFR, TGFβ1 and VEGFA. There were 573 genes common to 
both the HG vs. C and LG vs. C pairs. These common genes 
included IL12RB1, FOS, TP53 and TNF. One important gene 
common to the HG vs. C, LG vs. C and HG vs. LG pairs was 
IL6.

For the NG vs. C pair, there were 46 unique genes, 19 that 
overlapped with the HG vs. C pair, 7 that overlapped with the 
LG vs. C pair and another 7 that were common to the HG 
vs. LG and LG vs. C pairs. There were no genes common to 
all 4 conditions (Fig. 5A).

Canonical pathways. The significance of association between 
differentially expressed genes and the canonical pathways 
(as annotated by the HumanCyc Pathway database) were 
assumed to follow a normal distribution and assessed using 
the B-H multiple testing correction to calculate a p-value. 
Only those pathways with a corrected p<0.05 were selected. 
This determined the probability that the association between 
the genes and the pathways, relative to all functionally 
characterized human genes, were not explained by chance 
alone (data not shown). The IPA also determines whether the 
pathways are activated or inhibited by assigning a z score. 

Figure 5. (A) Venn diagram of differentially expressed genes for the different 
condition pairs. The Venn diagram summarizes the number of distinct and 
overlapping differentially expressed genes found in the four condition pairs: 
HG vs. C (gene list 1), LG vs. C (gene list 2), NG vs. C (gene list 3) and 
HG vs. LG (gene list 4). (B) Venn diagram of canonical pathways. The Venn 
diagram summarizes the number of distinct and overlapping pathways found 
in the 4 condition pairs: HG vs. C (pathway list 1), LG vs. C (pathway list 2), 
NG vs. C (pathway list 3) and HG vs. LG (pathway list 4).

Figure 4. Volcano plots to determine differentially expressed genes for the 
individual pairs of conditions: (A) HG vs. C; (B) LG vs. C; (C) HG vs. LG; 
and (D) NG vs. C. The x-axis represents the log2 fold change of genes for 
the different condition pairs, while the y-axis represents the - log10 of the 
corrected p-values for the different pairs of conditions. Each dot represents a 
gene and the red coloured area represents the differentially expressed genes 
that met the selection criteria of a fold change (FC) of at least 2 (FC≥2 or ≤2) 
and a p<0.01.
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The ratio defined the proportion of differentially expressed 
genes from a pathway to the total number of genes that make 
up that particular pathway. For the HG vs. C pair, 4 signifi-
cant pathways were identified (ratios ranging from 0.084 to 
0.136) with no evidence for significant activation or inhibition 
as shown by z scores close to zero (data not shown). The 4 
significant pathways included those involved in innate and 
adaptive immunity. For the LG vs. C pair, the IPA predicted a 
mixed pattern of activity for the 46 significant pathways with 
23 pathways having no activity pattern available, 5 pathways 
having a positive z-score (predicted activation), 16 pathways 
having a negative z-score (predicted inhibition) and 2 path-
ways having a z-score of zero (data not shown). The z-score of 
zero corresponded to the standard mean of the normal distri-
bution curve. Pathways having no activity pattern available 
meant that a z-score could not be calculated. The significant 
pathways with a positive z-score included those involved in 
LXR/RXR activation, RhoG, Ephrin B, IL-8 and cholecysto-
kinin/gastrin-mediated signaling. The z-score of zero included 
pathways involved in NF-κB activation by viruses and glioma 
invasiveness signaling. The significant pathways with a nega-
tive z-score were signaling by the Rho family of GTPases, 
TEC kinase signaling, HGF, eicosanoid, integrin, acute phase 
response, PEDF and thrombin signaling. It also included path-
ways involved in PKC, actin nucleation and immune system 
signaling.

For the HG vs. LG glioma pair, 9 significant pathways 
were predicted with 6 having no activity pattern and 1 each 
with a positive, negative and zero z-score respectively (data 
not shown). The activity pattern referred to the differen-

tial expression of genes that made up the pathway. The 
6 pathways with no activity pattern were those involved 
in FXR/RXR activation, superoxide radical degeneration, 
hepatic fibrosis/hepatic stellate cell activation, role of tissue 
factor in cancer, clathrin-mediated endocytosis and athero-
sclerosis signaling. The pathways that had a positive z-score, 
a z-score of zero and a negative z-score were pathways 
involved in LXR/RXR activation, coagulation system and 
acute phase response signaling respectively. For the NG vs. C 
pair, there was only one significant pathway, hepatic fibrosis/
hepatic stellate cell activation that had no activity pattern 
available (data not shown).

Venn diagram of significant pathways. The Venn diagram for 
the pathways showed pathways that were unique to each pair 
of conditions and also pathways that overlapped between the 
4 different groups (Fig. 5B). For the HG vs. C pair, there was 
1 unique pathway and 3 pathways that overlapped with the 
LG vs. C pair. The LG vs. C pair had 39 unique pathways. 
The pathways that overlapped between the HG vs. C and LG 
vs. C pairs were pathways involved in the innate and adaptive 
immune response. The HG vs. LG pair had a total of 9 signifi-
cant pathways, with 4 unique pathways, 4 overlapping with the 
LG vs. C pair and 1 overlapping with the NG vs. C pair. The 
4 unique pathways were the superoxide radicals degradation, 
clathrin-mediated endocytosis, coagulation system and role 
of tissue factor in cancer pathways. The 4 pathways overlap-
ping with the LG vs. C pair were the acute phase response, 
FXR/RXR activation, LXR/RXR activation and atherosclerosis 
signaling pathways. The 1 pathway overlapping with the NG 

Figure 6.  Heat map of selected differentially expressed genes for the 4 different conditions.
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vs. C pair was the hepatic fibrosis/hepatic stellate cell activa-
tion pathway.

Heat map. A heat map (Fig. 6) with genes commonly involved 
in tumor signaling pathways especially in high and low grade 
brain tumors was generated with the four types of samples, 
namely C, NG, LG and HG glioma, respectively. The results 
showed a unique differential pattern of expression for each of 
the 4 sample types. In addition, genes commonly upregulated 
in high grade tumors such as EGFR and VEGFC, are also 
highly expressed in blood. On the other hand, these genes 
are downregulated in the low grade tumor heat map. Specific 
isoforms of Bcl2 such as Bcl2L11 and Bcl2A1 are upregulated 
in the low grade but not high grade samples. None of the genes 
involved in tumorigenesis are significantly upregulated in the 
non-glioma and control samples.

Genes chosen for validation by ddPCR. Ten genes were 
selected for statistical validation by ddPCR (Table V). These 
genes were selected from the list of differentially expressed 
genes that were significant from the 4 pairs of conditions. 
These genes were selected because they were known to be 
common genes involved in pathways related to tumorigenesis 
including the pathogenesis of brain tumors. Only the NG vs. C 
had no significant genes that were downregulated. The other 
3 conditions had significant genes that were both upregulated 
and downregulated.

Each gene was evaluated for its expression in a minimum 
of 3 to a maximum of 6 samples under each pair of condi-
tions. The values for the absolute level of gene expression as 
obtained by ddPCR was then subjected to statistical analysis. 
A normal distribution of the values was assumed and the 
t-test applied to each gene with a resulting p-value. Seven of 
the 10 genes had p<0.05 and 3 genes had p>0.05. The genes 
with a p<0.05 were MMP, MAP3K8, TP53, SOS1, FOS, IL6 
and TNF. The genes with a p>0.05 were EGFR, VEGFA and 
MAPK12 (Table I). Multiple testing correction of the p-value 
using the Bonferroni correction with a threshold p-value of 
0.05 and 10 test samples, resulted in only 4 genes that were 
highly significant. The genes were MAP3K8, TP53, SOS1 and 
IL6 (Table V).

Discussion

This study has advanced the idea of using blood-based gene 
expression studies as an indicator of neoplastic changes occur-
ring in brain tissue. This idea was based upon the sentinel 
principle and extrapolated to the study of brain tumors. In this 
study, we have used the sentinel principle not only to identify 
patients with a glioma but also to differentiate between high 
grade, low grade, non-glioma and control subjects.

The unsupervised hierarchical clustering and principal 
component analysis clearly showed that the four groups of 
subjects clustered into 3 statistically significant groups as repre-
sented by the ellipses, which showed a distinct directionality 
in the different groups based on similarities in gene expression 
(Fig. 3). The fact that the non-glioma and control subjects clus-
tered together and were distinct from the high and low grade 
tumor patients, indicated that the changes in gene expression 
in blood in these 2 groups were clearly different from that of 

the glioma patients indicating specificity of expression. This 
lends further credence to the sentinel principle that substances 
are released from the tumor into the bloodstream (10,11) and 
may be distinct for each tumor subtype. Although the blood 
samples in this study were taken from patients after presenta-
tion to the hospital with neurological symptoms, it is highly 
likely that these substances were released during the early 
stages of tumor formation (10) and continued to persist in 
blood even as the tumor enlarged based upon the theory and 
evidence from the sentinel principle (10,11).

The brain, as an immunologically privileged site, is 
protected by the blood-brain barrier which restricts the 
movement of water soluble molecules by tight junctions (38) 
and a low level of transcytosis (39). The breakdown of the 
blood-brain barrier in brain tumors can be visualized by 
either freeze fracture electron microscopy (40) or contrast 
enhanced magnetic resonance imaging (MRI) using gado-
linium (41). The normal blood-brain barrier is impermeable 
to contrast medium but there is a gradual increase in the 
degree of disruption of the blood-brain barrier corresponding 
to the grade of the tumor. WHO grade II tumors show little 
or no contrast medium enhancement, WHO grade III tumors 
enrich more contrast medium than grade II tumors while 
WHO grade  IV tumors (GBM) show the greatest gado-
linium enhancement (35). This observation fits well with our 
postulation that substances from the brain are able to cross 
the blood-brain barrier and enter the circulation due to the 
varying degrees of disruption of the blood-brain barrier 
during glioma formation.

In addition, cells may dislodge from the tumor and enter the 
peripheral circulation as circulating tumor cells (CTCs). These 
CTCs then colonize a distant tissue or organ and begin to form 
a new tumor mass. Although most CTCs do not survive in the 
circulation, a subset of cells known as disseminated tumor 
cells (DTCs) that have cancer stem cell properties are able to 
survive. They then invade a distant tissue or organ site and 
form tumor cell clusters known as micrometastasis (42). Since 
CTCs are found in extremely low levels in the circulation (<5 
cells/10 ml of blood) (43), identification and detection of these 
cells require analytical methods that are highly sensitive and 
specific combined with enrichment procedures. We did not 
perform the isolation of CTCs in this study as the contribution 
of these CTCs is extremely small compared to the contribu-
tion of leucocytes to the gene expression patterns seen in the 
peripheral blood transcriptome through signaling mechanisms 
via the sentinel principle.

In gliomas, CTCs are mainly detected in patients with 
high grade glioma such as GBM. Unlike tumors of epithe-
lial origin which express epithelial cell adhesion molecule 
(EpCAM), glioma cells instead express Nestin, both in, 
in vitro and in vivo studies. This suggests that Nestin could 
be used as a suitable marker for the detection of circulating 
glioma cells. In addition, glioma cells also express high levels 
of human telomerase (hTERT) which co-localizes with Nestin 
in vivo (44).

Athough CTCs may have limited use in studying gene 
expression patterns in the peripheral blood transcriptome, they 
may have clinical utility in distinguishing between a persis-
tent signal on MRI which may be due to either true disease 
progression or pseudoprogression. Thus, the identification of 
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glioma-derived CTCs in the circulation of such patients post-
treatment (after chemoradiation therapy) is prognostic, with 
a reduction in CTCs indicating treatment response and an 
increase in CTCs indicating disease progression (44,45).

Besides CTCs, circulating tumor-associated nucleic acids 
(CNAs) can also be used as possible biomarkers. CNAs are 
particularly promising as biomarkers as this allows the tumor 
to be sampled at the transcriptomal and genomic level from 
blood. Nucleic acids can be found in body fluids including 
blood as a result of tumor apoptosis, necrosis or active 
secretion into the peripheral circulation  (46). Circulating 
tumor-associated DNA (ctDNA) may harbor the same genetic 
aberrations found in the tumor. ctDNA in glioma patients 
have been shown to have similar genetic alterations as found 
in the parent tumor including LOH for 1p and 19q (47), IDH1 
mutation (48) and abnormal methylation of the promoters 
of certain genes including MGMT (49) and p16 (50). Using 
circulating tumor-associated RNA (ctRNA) as a biomarker 
is more challenging, as RNA is easily degraded by RNases 
which are present in the peripheral blood of cancer patients. 
However, microRNAs (miRNAs) have shown more promise 
as biomarkers in glioma patients. These include RNU6-1, 
miR-320 and miR-574 which are associated with GBM (51) 
and miR-29 with differential expression in low grade vs. 
high grade gliomas (52). However, we chose not to include 
these types of investigations in the present study as we were 
focusing on gene expression of the peripheral blood transcrip-
tome via the sentinel principle.

The differentially expressed genes for the four different 
conditions were unique, but also had some commonality. Most 
of the unique and common genes in the HG and LG tumor 
samples were transcription factors, cytokines, proto-onco-
genes, oncogenes, growth factors and tumor suppressor genes. 
These genes are involved in inflammation, tumor signaling 
pathways, glioma formation, tissue necrosis, apoptosis, 
homeostasis, cytoskeletal architecture, maintenance of the 
extracellular matrix and determination of cell fate. Notably, 
there were also a substantial number of genes involved in the 
innate and adaptive immune system suggesting that modulation 
of the immune system plays a critical role in tumor response. 
In addition, genes known to be involved in the pathogenesis of 
GBM were also upregulated in blood. These genes included  
EGFR, VEGF and IL-6. This evidence implied that some of 
the changes occurring in the tumor tissue may be reflected in 
blood, suggesting that these substances may be released into 
the circulation through disruption of the blood-brain barrier or 
through complex signaling mechanisms.

The canonical pathways for the 4 sets of conditions 
mirrored the differential gene expression pattern. These 
included pathways involved in the innate and adaptive immune 
response, interleukin, acute phase response, glioma invasive-
ness, NF-κB activation and TGF-β signaling. The latter 3 
pathways are also involved in the pathogenesis of gliomas. 
Again, we see much commonality between the signaling 
pathways in tissue and blood taken from glioma patients. 
One of the reasons for this could be the fact that peripheral 
blood cells share more than 80% of the transcriptome with 9 
different tissue types including brain (10). More important is 
the fact that blood cells express organ specific genes and also 
genes that are responsive to physiological changes and stimuli 

that were previously thought to be exclusive to certain tissue 
types (10). In the pathogenesis and formation of gliomas, these 
interactions between blood and tissue, together with disruption 
of the blood-brain barrier, could possibly explain some of the 
similarity observed in gene expression between gliomas and 
peripheral blood cells.

The validation of selected genes was done by ddPCR. As 
previously mentioned, these genes were selected because they 
were known to be involved in signaling pathways that played 
an important role in tumorigenesis including the pathogenesis 
and formation of gliomas. In the selection of 10 genes for 
validation, 4 of the 10 genes, namely TP53, TNF, MAPK12 
and EGFR showed fold changes that were reversed to that seen 
in the microarray experiment. TP53, TNF and MAPK12 were 
downregulated in the microarray experiment but upregulated 
by validation and EGFR was upregulated in the microarray 
experiment but minimally downregulated by validation. 
The reason for this could be multifactorial. Firstly and most 
importantly, the probes used for the microarray experiment 
are different from the primers used in ddPCR. As genes 
very commonly have isoforms, it is likely that the primers in 
ddPCR may be amplifying an isoform of the gene resulting in 
alternative transcripts (26). These transcripts may have expres-
sion levels that are different from the parent gene. In addition, 
there may be a negative feedback loop where one transcript 
inhibits the expression of the alternative transcript of the same 
gene or vice versa. This could result in reversal of expression 
as seen during ddPCR validation. Therefore, great impor-
tance should be placed on careful primer design when using 
qRT-PCR and ddPCR. For these validation assays, the primers 
should be designed to be on the same exon as the microarray 
probes. By doing this, variations in gene expression between 
microarrays and validation assays including ddPCR will be 
minimized. Secondly, we selected GUSB as the housekeeping 
gene to normalize our ddPCR data. Although GUSB showed 
the least variation with samples compared to TBP and HuPO, 
it might still have shown some variation in gene expression in 
the tumor samples. This could result in reversal of gene expres-
sion after validation. Thirdly, microarray analysis is generally 
used to screen large numbers of genes and the possibility 
arises that there may be false positives. In addition, micro-
array experiments are often performed with a small number 
of biological replicates, resulting in low statistical power for 
detecting differentially expressed genes and concomitant 
high false positive rates. Studies have shown that microarray 
results were in agreement with qRT-PCR and ddPCR for 
genes with medium and high expression but there was very 
little agreement for genes with lower or variable expression 
(53-55). In this study, the genes generally varied in expression 
from 2-4 fold which is considered a low fold change. As such, 
we would expect some differences between the gene expres-
sion in microarrays compared to ddPCR including reversal 
of expression. Fourthly, human samples have huge technical 
and biological variability and it is likely that the presence of 
substances such as activators or inhibitors within the samples 
could be contributing to the differences observed. This is 
because ddPCR, being far more sensitive and quantitative and 
having a higher dynamic range, is able to detect the expression 
of genes affected by either inhibitors or activators, that may 
not be detected by microarray analysis. Also, the scanning 
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software for microarrays has low sensitivity which can limit 
the precision of detection of the image, thus, contributing to a 
lower fold change of the differentially expressed genes. Fifthly, 
not all samples were used for validation by ddPCR. Only 3-6 
samples were used for each set of conditions and this may have 
affected the level and pattern of gene expression as well. 

The initial p-values obtained showed that 7 of the 10 genes 
chosen for validation had statistically significant p<0.05. The 
genes with initial p>0.05 were EGFR, VEGFA and MAPK12. 
After applying the Bonferroni correction for the p-value, only 
4 of the 10 genes passed this stringent statistical test. The 
4 genes were MAP3K8, IL6, SOS1 and TP53. Although the 
other genes were not considered to be statistically significant, 
they could be clinically significant. In addition, p-values are 
dependent on many factors including sample size, with a larger 
sample size giving rise to a more reliable p-value (56). In our 
case with a limited sample size, the p-value could vary by 
adding or removing even one value. Thus, a larger sample size 
would definitely add more confidence to the p-values that were 
obtained in our experiments.

There are limitations to the use of the sentinel principle and 
that of a blood-based biomarker to detect changes in a disease 
state in another tissue. The main limitation is that the blood 
transcriptome is susceptible to a vast array of changes such as 
that due to tobacco smoke, environmental pollutants and toxins, 
and to diseases such as hypertension, diabetes, cardiovascular 
disease, ischaemic stroke and asthma  (12-15,57,58). Many 
cancer patients, including the patients in the present study, 
have these comorbidities and this could have a confounding 
effect on the differential gene expression pattern observed. 
In addition, the drawing of blood, temperature and storage 
conditions can all have an effect on gene expression levels of 
peripheral blood cells.

This is a preliminary study to assess the possibility of 
using a blood-based biomarker to differentiate between high 
grade, low grade, non-glioma and control samples. The main 
drawback of the present study is the small sample size. In order 
to take this study forward to a blood-based biomarker panel 
for gliomas, we would need a much larger sample size to give 
this study more power and to obtain more reliable p-values for 
the genes selected. In addition, this study would need to be 
validated in an independent data set.

Finally, the data in this study will be freely available. As 
the sample number, n, in this study is small, this will enable 
those who are interested to verify the results of this study, to 
use the data as a starting point. They may wish to replicate this 
study using a similar or larger sample size.
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