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Abstract. The lipid metabolic enzymes are considered 
candidate therapeutic targets for breast cancer. Long-chain 
acyl-coenzyme A (CoA) synthase (ACSL) is one of lipid 
metabolic enzymes and converts free-fatty acid to fatty 
acid-CoA. Five ACSL isoforms including ACSL1, ACSL3, 
ACSL4, ACSL5 and ACSL6 are identified in human. High 
ACSL4 expression has been observed in aggressive breast 
cancer phenotype. However, the role of other isoforms is still 
little-known. We therefore, analyzed the expression of ACSL 
isoforms in each subtype of breast cancer within METABRIC 
dataset and cancer cell line encyclopedia dataset. The expres-
sion levels of ACSL1, ACSL4 and ACSL5 in estrogen receptor 
(ER)-negative group were higher than that in ER-positive 
group. Similar expression pattern was detected among breast 
cancer cell lines MCF-7 (ER-positive) and MDA-MB-231 
(ER-negative). Treatment of ACSL inhibitor triacsin C which 
inhibited enzyme activity of ACSL 1, 3, 4 and 5 suppressed 
cell growth of MCF-7 and MDA-MB-231. Our results further 
showed that high ACSL5 expression was associated with good 
prognosis in patients with both ER-positive and ER-negative 
breast cancer through KM plotter analysis. These results 

suggest that ACSL1, ACSL4 and ACSL5 expression is regu-
lated by ER signaling pathways and ACSL5 is a potential novel 
biomarker for predicting prognosis of breast cancer patients.

Introduction

Dysregulation of metabolic pathways, including regulation 
of glucose transporter, tricarboxylic acid cycle (TCA cycle), 
pentose phosphate pathway and mitochondria respiratory 
chain are observed in many types of cancers (1). In addition, 
amino acid glycine, serine and glutamine metabolic pathways 
play important roles in cancers (2,3). Recent evidence indi-
cates that significant different lipid metabolites and expression 
of lipid metabolic enzymes are detected in cancer. These lipid 
metabolites are associated with cell proliferation, cellular 
membrane synthesis and signaling molecules (4-6). Some of 
the dysregulated metabolic enzymes, such as the glucose trans-
porter 1 (GLUT1), hexokinase 2, lactate dehydrogenase A, 
glutaminase and fatty acid synthase have been demonstrated 
to be novel therapeutic targets of cancers (7). The metabolo-
mics in serum or plasma will be novel diagnostic approach 
in clinic (8). Therefore, investigating the correlation between 
metabolites, metabolic enzymes and cancer is a critical issue.

The latest statistics reveal that breast cancer is still one of 
the most common cancer types and leading cause of cancer 
death  (9). The molecular subtypes of breast cancer could 
be divided into four types: luminal A, luminal B, triple-
negative/basal-like and HER2 type. Luminal type tends to 
express estrogen receptor (ER), HER2 type is HER2 (human 
epidermal growth factor receptor 2) positive and progesterone 
receptor (PR), ER and HER2 expression is negative in triple- 
negative/basal-like type (10,11). Various studies have shown 
that the expression of metabolic enzymes is associated with 
ER, PR and HER2. Triple-negative breast cancer cells express 
the highest level of GLUT1 compared to other types of breast 
cancer cells  (12). Immunohistochemistry assay shows that 
HER2 positive and triple-negative breast cancer cells express 
relatively high level of glutamate-metabolic enzymes (13). The 
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evidence suggests that the expression of ER, PR and HER2 is 
associated with various metabolic enzymes in breast cancer.

Most breast cells acquire fatty acids from circulation 
system. However, breast cancer cells synthesize fatty acids 
for structured lipid synthesis (7). Fatty acid synthase (FAS) 
is an important enzyme in lipid synthesis pathway. High FAS 
expression is usually observed in HER2-positive breast cancer 
and the HER2-FAS-related signaling pathway might promote 
proliferation, metastasis and chemotherapy resistance (14-16). 
Blockage of FAS induces apoptosis in breast cancer cells (17). 
Combination of trastuzumab (monoclonal antibody against 
HER2) and FAS inhibitor results in re-sensitization with trastu-
zumab in the trastuzumab-resistant breast cancer cells (18). 
Synergistic therapeutic effect is observed after combination of 
FAS inhibitors and other chemotherapies (19,20). Therefore, 
blockage of lipid metabolic enzymes might be a novel strategy 
for breast cancer treatment.

In mammalian cells, the conversion between free-fatty acid 
and fatty acid-CoA are catalyzed by a fatty acyl-CoA synthase 
(ACS) which is classified by catalyzing substrates. A free-fatty 
acid containing 14-20 carbons is the substrate of long-chain 
acyl-CoA synthetases (ACSL) (21). The five isoforms of ACSL 
include ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6. All 
enzymes have individual functions in substrate preference 
and tissue specificity (22). Based on the sequence homology, 
the five ACSL isoforms are divided into two groups: one is 
composed of ACSL1, ACSL5, ACSL6 and the other ACSL3 
and ACSL4  (23). ACSL family convert long-chain fatty 
acid to fatty-acid-CoA which is essential component for 
β-oxidation which was suggested to promote oncogenesis in 
breast cancer (24,25). A study indicates that the ER expression 
level is negatively associated with ACSL4 expression through 
10 published mRNA array datasets in breast cancer cell 
lines (26). In addition, ACSL4 is considered a biomarker for 
breast cancer and is associated with aggressive breast cancer 
type  (27). However, the association between other ACSL 
isoforms and molecular subtypes of breast cancers is poorly 
known. In the present study, we aimed to investigate this issue 
in each breast cancer subtype from gene expression datasets 
and in breast cancer cell lines.

Materials and methods

Bioinformatics analysis: mRNA expression levels. The 
clinical data of breast cancer samples and mRNA expression 
levels of ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6 was 
downloaded as z-scores from the cBioPortal (http://www.
cbioportal.org, Breast cancer, Metabric, Nature 2012 & Nat 
Commun 2016, 2509 samples, Version 1.3.3)  (28,29). The 
expression levels of ACSL isoforms were analyzed through 
Oncomine Research Edition which includes Kao cohort (30), 
Hatzis cohort  (31), Minn cohort  (32), Miyake cohort  (33), 
van de Vijver cohort (34), and Wang cohort (35) (Thermo 
Fisher Scientific; http://www.oncomine.org, v4.5) and the 
cancer cell line encyclopedia (CCLE) database (https://
portals.broadinstitute.org/ccle/home) (36). The heatmap was 
draw by GENE-E software.

Assessment of the patient survival rate. The survival analysis 
in breast cancer patients with different expression levels of 

ACSL isoforms were performed through the KM-Plotter 
database (37). The prognostic value of each gene was analyzed 
by splitting patient samples into two groups by median, after 
the subtype of breast cancer was restricted to different ER 
status. The relapse-free survival rate was analyzed (2016.10.13 
update, the breast cancer database includes 5,143 samples).

Cell culture. Normal breast epithelial cell line H184B5F5/M10 
were obtained from the Bioresource Collection and Research 
Center (Hsinchu, Taiwan). Human breast cancer cell lines 
MCF-7 and MDA-MB-231 were kindly provided by Professor 
Ming-Derg Lai in National Cheng-Kung University (38). Cells 
were maintained in recommended media (H184B5F5/M10 
was in alpha-Minimum Essential Medium (MEM). MCF-7 
and MDA-MB‑231 cells were in defined MEM (Lonza, 
Walkersville, MD, USA). Both media were supplemented with 
10% fetal bovine serum (FBS) and penicillin/streptomycin 
(100 U/0.1 mg/ml) (Life Technologies, Inc., Grand Island, NY, 
USA).

Quantitative PCR. Total RNA of MCF-7, MDA-MB-231 and 
H184B5F5/M10 was extracted using TRIzol (Invitrogen, 
Carlsbad, CA, USA). Complementary DNA was produced 
from 500 ng total RNA was using a PrimeScript RT reagent 
kit (Clontech Laboratories, Inc., Kusatsu, Japan). The levels of 
ACSL isoforms were determined on a Real-Time PCR system 
(StepOne Plus Real-Time PCT System; Applied Biosystems, 
Foster City, CA, USA) using Fast SYBR-Green Master Mix 
(Applied Biosystems). The primers of ACSL isoforms were 
obtained from a previous report  (39) and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) were 5'-GAGTCAA 
CGGATTTGGTCGT-3' and 5'-TTGATTTTGGAGGGATCT 
CG-3'. Relative mRNA expression levels of ACSL isoforms 
were normalized to the expression level of GAPDH and calcu-
lated by 2-ΔΔCt method.

Western blot analysis. Cells were lysed in RIPA lysis buffer 
(Millipore, Billerica, MA, USA) and protein concentration 
was quantitated by BCA protein assay kit (Millipore). Each 
protein was detected by using primary antibody (anti-ACSL 
antibody, #4047; Cell signalling Technology, Danvers, Ma, 
USA), anti-ACSL4 (ab155282; Abcam, Cambridge, UK), anti-
ACSL5 (ab57210; Abcam) and GAPDH (MAB374; Millipore). 
The results were analyzed on an imaging capture system 
(Alpha Innovation).

Evaluation of proliferation rate. For cell proliferation 
measurement, WST-1 (Clontech Laboratories) was used and 
then 2x103 MCF-7, MDA-MB-231 and H184B5F5/M10 cells 
were seeded in 96-well plates with different concentration of 
ACSL inhibitors including triacsin C (Abcam), rosiglitazone 
(Sigma-Aldrich) and 2-fluoropalmitic acid (Cayman Chemical, 
Ann Arbor, MI, USA) in 0.8% dimethyl sulfoxide (DMSO). 
The proliferation rate was determined at wavelength 450 nm 
on a microplate spectrophotometer (PowerWave X340; BioTek 
Instruments, Inc., Winooski, VT, USA) after 48 h of treat-
ments.

Statistical analysis. All graphs were generated by GraphPad 
Prism 7 (GraphPad Software, Inc., San Diego, CA, USA). 
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Student's t-test or one-way ANOVA was used for analysis of 
difference between two groups and three groups, respectively. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Low expression levels of ACSL1 and ACSL5 is observed in 
luminal A subtype in the METABRIC dataset. We analyzed the 
expression levels of five ACSL isoforms among five subtypes 
of breast cancer in METABRIC dataset (Fig. 1). No significant 
difference was detected in the expression levels of ACSL3 and 
ACSL6 among each subtype of breast cancer. Compared to 
luminal A subtype, higher mRNA levels of ACSL1, ACSL4 and 
ACSL5 were shown in basal-like and normal-like subtypes. In 
addition, relatively high mRNA level of ACSL1 was observed 
in HER2 subtype. Since high ER/PR expression and low ER/
PR expression is, respectively, a characteristic of luminal A 
subtype and basal-like subtype, the results may imply that high 
expression levels of ACSL1, ACSL4 and ACSL5 are associated 
with low ER/PR expression. In addition, ACSL1 expression is 
associated with HER2 expression.

The expression levels of ACSL1 and ACSL5 is associated with 
ER and PR expression in breast cancer cell lines. A previous 
report indicates that ACSL4 expression is negatively associ-
ated with sex steroid hormone receptor in breast cancer (26). 
To further investigate the relationship between ACSL1, ACSL5 
and ER/PR and HER2 status, we analyzed it in human breast 
cancer cell lines. In Fig. 2A, the mRNA expression of ACSL1, 
ACSL4 and ACSL5 was analyzed through different probes in 
several breast cancer cell lines within the Cancer Cell Line 
Encyclopedia (CCLE) database. The status of ER and HER2 
is based on a previous report (40). The result revealed that 
the lowest expression of ACSL1, ACSL4 and ACSL5 was in 
MCF-7 cells (luminal A) compared to other cell lines. However, 
the expression pattern of ACSL1, ACSL4 and ACSL5 is not 
associated with the HER2 and basal-like subtypes. It suggests 
that all three ACSL isoforms are associated with ER/PR. We 
further determine the mRNA and protein expression levels 
of ACSL isoforms in MCF-7, MDA-MB-231, and H184B5F5/

M10 which is a normal breast epithelial cell line. In Fig. 2B 
and  C, relatively high expression of ACSL isoforms was 
observed in MDA-MB-231 cells. It might suggest that ACSL1, 
ACSL4 and ACSL5 expression is associated with ER/PR 
expression in breast cancer. Notably, similar expression level 
of ACSL1 and ACSL4 was detected between H184B5F5/
M10 and MDA-MB‑231 (Fig. 3C). The mRNA expression of 
ACSL5 in H184B5F5/M10 was higher than MCF-7 (Fig. 3B).

Investigating ACSL1 and ACSL5 expression in patients 
with different ER status within public microarray datasets. 
To further determine whether ACSL1 and ACSL5 expres-
sion is associated with ER expression, we analyzed it within 
six microarray datasets including Kao cohort  (30), Hatzis 
cohort  (31), Minn cohort  (32), Miyake cohort  (33), van 
de Vijver cohort  (34) and Wang cohort  (35). In Fig. 3A-F, 
ACSL1 levels in ER-negative group was higher than that in 
ER-positive group. In addition, higher levels of ACSL4 and 
ACSL5 was respectively observed in Fig. 3A-E and 3B-F. 
The evidence suggests the ER status is an important factor to 
regulate ACSL1, ACSL4 and ACSL5 expression.

Investigation of ACSL1, ACSL4 and ACSL5 as therapeutic 
targets of breast cancer. Previous reports indicate that 
inhibition of FAS is a strategy to treat breast cancer (17-19). 

Figure 1. Expression levels of ACSL isoforms in five molecular subtypes of 
breast cancer on METABRIC dataset. Boxplot shows the Z-Score of ACSL1, 
ACSL3, ACSL4, ACSL5 and ACSL6 expression. *p<0.001 indicates dif-
ference in mRNA levels of each ACSL isoform among five subtypes when 
compared with subtype Lum A. Lum A and Lum B, luminal A and luminal B.

Figure 2. Expression levels of ACSL1, ACSL4 and ACSL5 in human breast 
cancer cell lines. (A) Heatmap displaying mRNA expression of ACSL 
isoforms in breast cancer cell lines with different subtypes through CCLE 
database. (B) mRNA expression and (C) protein expression of ACSL1, 
ACSL4 and ACSL5 in H184B5F5/M10, MCF-7 and MDA-MB-231. The 
error bars represent SD. The statistical difference between each group was 
examined with one-way ANOVA test (*P<0.05, **P<0.01, ***P<0.001).
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We therefore investigated whether ACSL inhibitors resulted 
in growth inhibition in the ER-positive cell line MCF-7, 
ER-negative cell line MDA-MB-231 and the normal breast 
epithelial cell line H184B5F5/M10. Three ACSL inhibitors 
were chosen. Triacsin C is an analog of a polyunsaturated 
fatty acid and competitively inhibits enzyme ACSL 1, 3, 4 
and 5 (41,42). 2-fluoropalmitic acid is an analog of palmitic 
acid and a competitive inhibitor of ACSL (43). Rosiglitazone 
is an agonist of peroxisome proliferator-activated receptor 
gamma (PPAR-γ) and selectively suppresses ACSL4 activity 
over other ACSL isoforms (44). Our results revealed that 
2-fluoropalmitic acid and rosiglitazone did not affect cell 
growth (Fig.  4). In contrast, the growth of all three cell 
lines, including H184B5F5/M10, was inhibited by triacsin C 
treatment. It might imply blockage of ACSL activity at an 
appropriate concentration that may be a strategy to inhibit 
breast cell growth.

Investigation of ACSL1, ACSL4 and ACSL5 could serve as 
markers for predicting the survival of patients with breast 
cancer. Since high expression levels of ACSL1, ACSL4 and 
ACSL5 was observed in ER-negative breast cancer patients, 
we further investigated whether expression levels of ACSL1, 
ACSL4 and ACSL5 were associated with survival of patients 
with different ER status in breast cancer. Our results show 
that the expression of ACSL1 and ACSL4 was not signifi-
cantly associated with survival rate. In contrast, ACSL5 was 
significantly associated with good survival in all the patients 
(Fig. 5). It suggests ACSL5 is a potential novel biomarker for 
predicting prognosis of breast cancer patients.

Discussion

Recently, a study which use a systematic analysis through 
public microarray datasets indicated that different types of 

Figure 3. Expression levels of ACSL1, ACSL4 and ACSL5 in patients with different ER status through six microarray datasets including (A) Minn breast, 
(B) Hatzis breast, (C) Wang breast, (D) Kao breast, (E) van de Vinver breast and (F) Miyake breast. The ER status and expression of three ACSL genes of each 
dataset were adapted from Oncomine database. The number in parentheses indicate the number of patients. The statistical difference between ER-positive and 
ER-negative group was examined with the Student's t-test (*P<0.05, ***P<0.001; ns, no significant difference).

Figure 4. Effect of ACSL inhibitors on cell growth. cells (2x103) were plated and then incubated with the ACSL inhibitors triacsin C, rosiglitazone (Rosi), 
and 2-fluoropalmitic acid (2-FPA) for 48 h. The cell growth of (A) H184B5F5/M10, (B) MCF-7 and (C) MDA-MB-231 was evaluated by WST-1 assay. The 
statistical difference between parental and each group was examined with one-way ANOVA test (*P<0.05, **P<0.01, ***P<0.001).
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ACSL isoforms reveal distinct function in different types 
of cancers, including breast cancer (45). The present study 
shows that high ACSL1 expression is correlated with poor 
overall survival rate and high expression levels of ACSL4 and 
ACSL5 are correlated to good overall survival rate in breast 
cancer (45). However, the function of ACSL isoforms were 
not investigated in different subtypes of breast cancer and the 
survival analysis was performed in a relatively small cohort. 

In this study, we found that the ACSL1, ACSL4 and ACSL5 
expression was negatively associated with ER expression in 
breast cancer patients in large cohorts. Similar expression 
pattern was detected in breast cancer cell lines. Treatment 
of ACSL inhibitor triacsin C inhibited cell proliferation in 
H184B5F5/M10, MCF-7 and MDA-MB-231 cells. In addition, 
only ACSL5 could be a potential marker for good survival of 
breast cancer patients.

Figure 5. Evaluation of survival curve comparing the patients with high (red) and low (black) ACSL expression from KM plotter database. The survival curve 
of ER-positive patients with (A) ACSL1, (B) ACSL4 and (C) ACSL5 expression and ER negative patients with (D) ACSL1, (E) ACSL4 and (F) ACSL5 are 
shown. The hazard ratio (HR) and log-rank P-value are in each figure.

Figure 6. Summary of ACSL isoforms in breast cancer.
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The role of ACSL4 has been investigated in several 
studies. A report indicates that overexpression of ACSL4 in 
MCF-7 which expresses low endogenous ACSL4 enhances 
the ability of cell growth, invasion, anchorage-independent 
growth in vitro and tumor growth in nude mice (27). However, 
another study demonstrated that silencing ACSL4 expression 
in MDA-MB-231 did not affect growth rate, but MDA-MB-
231 cells sensitize triacsin C treatment (26). In addition, low 
dose (<100 mM) of ACSL4 inhibitor rosiglitazone did not 
significantly decrease cell viability in MDA-MB-231 and in 
MDA-MB-231 xenograft model (46,47). The growth inhibitory 
effect of high-dose rosiglitazone might be through PPAR-γ but 
not ACSL4 pathway (44,47). Similar results were observed in 
the present study. The evidence suggests that ACSL4 is not 
a critical enzyme to increase cell growth and viability in 
ER-negative breast cancer. On the other hand, a recent study 
demonstrates that ACSL4-silencing breast cancer cells resist 
ferroptosis and the w6 fatty acid acids are enriched in cellular 
membrane under ferroptosis stimulation (48). The mammalian 
target of rapamycin (mTOR) signaling pathway is regulated by 
ACSL4 in breast cancer cells (46). ACSL4 involves in deimi-
nase isoform 2-mediated oncogenic pathway in an ER-positive 
MCF-7 breast cancer cell line (49). The physiological role and 
regulatory mechanism of ACSL4 needs to be investigated in 
the future.

The role of ACSL1 and ACSL5 is little-known in breast 
cancer. The ACSL1 and ACSL5 are in the same group 
and ACSL4 is another group based on their sequence 
homology (23). Previous studies have shown that substrate 
preference of ACSL1 is unsaturated fatty acids oleate (18 
carbons) and linoeate (18 carbons) and ACSL5 is palmitic 
acid (16 carbons), palmitoleic acid (16 carbons), oleic acid (18 
carbons) and linoleic acid (18 carbons). Besides, both enzymes 
are detected in nucleus and mitochondria (50,51). Although 
ACSL1 and ACSL5 have similar substrate preference and 
subcellular location, only ACSL5 is associated with survival 
of patients with ER-positive and ER-negative breast cancer. In 
the present study, mRNA and protein expression of ACSL1, 
ACSL4 and ACSL5 in H184B5F5/M10 was higher than that 
in MCF-7 cells (Fig. 2B and C). We therefore, suppose that 
the ACSL5 function could be compensated in high ER expres-
sion breast cancer, such as Luminal A subtype. Knockdown 
of ACSL5 in hepatocytes decrease triglyceride synthesis (52). 
In addition, overexpression of ACSL5 induces neosynthesis 
of ceramide which is a signaling molecule in the apoptosis 
pathway (53). The correlation between ER signaling pathways 
and lipid metabolites should be investigated in breast cancer 
in further studies.

Targeting fatty acid synthesis is a strategy for cancer treat-
ment. Blockage of FAS enzyme activity-mediated de novo 
fatty acid synthesis shows antitumor potential in multiple 
types of cancer (17-20). However, potential side-effects of FAS 
inhibition is still a concern (54). In our results (Fig. 4) and a 
previous study (26), triacsin C is a relatively potent inhibitor 
to induce apoptosis in breast cancer cells in comparison with 
other inhibitors. Triacsin C but not 2-fluoropalmitic acid and 
rosiglitazone inhibits de novo synthesis of triacylglycerol, 
diacylglycerol and cholesterol esters and synthesis of phospho-
lipid (55). These results imply that ACSL metabolic products 
within de novo synthesis pathway are important for prolifera-

tion of breast cancer. Although ACSL isoforms might serve 
as alternative cancer therapeutic targets in process of de novo 
fatty acid synthesis, high-dose triacsin C (7.2 mM) inhibits 
growth in normal breast cells (Fig. 4). Low-dose triacsin C 
might be suitable for breast cancer treatment. However, current 
evidence could not provide a specific ACSL isoform as the 
best target for breast cancer treatment.

Estrogen affects reactive oxygen species production in 
mitochondria in breast cancer (56). In addition, ERα and ERβ 
are found in mitochondria and ERβ interacts with a mitochon-
drial protein HADHB which is required for β-oxidation in 
breast cancer (57). β-oxidation is reported to promote onco-
genesis in breast cancer (24,25). In addition, ACSL1, ACSL4 
and ACSL5 are observed in mitochondria and cytosol and the 
metabolic of ACSL family is essential for β-oxidation. We 
suppose that the interaction of ACSL1, ACSL4, ACSL5 and 
ER in mitochondria might play an important role in develop-
ment of breast cancer.

In summary, our results have shown that the high expression 
of ACSL1, ACSL4 and ACSL5 is associated with ER-negative 
breast cancer. Inhibition of ACSL activity through low-dose 
triacsin C might be a strategy to suppress growth in breast 
cancer cell. Furthermore, our results suggest that high ACSL5 
expression is associated with good prognosis in patients with 
breast cancer (Fig. 6).
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