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Abstract. Cancer is the most common cause of human death 
worldwide. Conventional anticancer therapies, including 
chemotherapy and radiation, are associated with severe side 
effects and toxicities as well as low specificity. Peptides are 
rapidly being developed as potential anticancer agents that 
specifically target cancer cells and are less toxic to normal 
tissues, thus making them a better alternative for the preven-
tion and management of cancer. Recent research has focused 
on anticancer peptides from natural animal sources, such 
as terrestrial mammals, marine animals, amphibians, and 
animal venoms. However, the mode of action by which bioac-
tive peptides inhibit the proliferation of cancer cells remains 
unclear. In this review, we present the animal sources from 
which bioactive peptides with anticancer activity are derived 
and discuss multiple proposed mechanisms by which these 
peptides exert cytotoxic effects against cancer cells.

Contents

1.	 Introduction
2.	 Animal sources of bioactive peptides with anticancer activity

3.	 Mechanisms of action of bioactive peptides underlying 
	 their anticancer effects
4.	 Summary and perspective

1. Introduction

Although the rates of death due to cancer have been continu-
ously declining for the past 2 decades in developed nations, 
cancer remains a major public health threat in many parts of 
the world (1). The incidence of cancer in the developing world 
is currently increasing. Specifically, 55% of new cases arise 
in developing nations, a figure that could reach 60% by 2020 
and 70% by 2050. Worldwide, cancer also causes a substantial 
burden of economic cost and human suffering; the cost associ-
ated with cancer cases worldwide was approximately US$1.16 
trillion in 2010, the equivalent of >2% of the total global gross 
domestic product. Nevertheless, this high figure is a lower 
bound and does not include the substantial longer-term costs 
to families and caregivers (2).

The current gold standard of care for cancer is a combination 
of surgery, radiation therapy, and chemotherapy (3-5). However, 
traditional methods are associated with drawbacks, such as a lack 
of screening tests for early diagnosis and a lack of tumor-specific 
drug delivery systems. Moreover, most classical anticancer drugs 
cannot differentiate between cancerous and normal cells, thus 
leading to systemic toxicity and adverse side effects. Selective 
and more efficient new drugs are urgently needed to address 
this problem. In this context, bioactive peptides are increasingly 
being considered as good drug candidates for cancer thera-
peutic applications. A growing body of peptides from natural 
animal sources has been demonstrated to possess physiological 
functions, such as immunomodulatory (6), antimicrobial (7), 
antihypertensive (8), antithrombotic (9), anticancer (10), anti-
oxidative (11), and cholesterol-lowering activities (12). However, 
this review focuses on bioactive peptides from animal sources 
that may specifically target cancer cells and could consequently 
serve as anticancer agents that are less toxic to normal tissues. 
In addition, as shown in Fig. 1, bioactive peptides usually consist 
of 2-50 amino acid residues (~102-103 Da). Thus, they easily 
traverse or disrupt the cell membrane and result in apoptosis 
or necrosis. Therefore, the study and modification of bioactive 
peptides with anticancer activity will offer new opportunities 
for cancer prevention and treatment.
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The objectives of this study are to 1) review the current 
understanding of anticancer bioactive peptides derived from 
different animal sources and 2) summarize the mechanisms of 
action by which bioactive peptides affect cancer cells. In addi-
tion, this review highlights the potential applications of natural 
animal source-derived peptides as pharmaceutical candidates 
in the auxiliary therapy of cancer.

2. Animal sources of bioactive peptides with anticancer 
activity

Terrestrial mammals and by-products. Although bioactive 
peptides with anticancer activity from terrestrial mammals 
are not well documented, one report has described four bovine 
meat-derived peptides that inhibit angiotensin-converting 
enzyme (ACE) and also exhibit anti-proliferative activity (13). 
Specifically, this study has demonstrated the cytotoxic effect 
of four peptides: GFHI, DFHING, FHG, and GLSDGEWQ. 
GFHI has been found to exhibit the most potent cytotoxic 
effect on the human breast cancer cell line (MCF-7) and to 
decrease the viability of a stomach adenocarcinoma cell line 
(AGS) in a dose-dependent manner, whereas GLSDGEWQ 
significantly inhibits the proliferation of AGS cells.

The group of Su identified the novel anticancer bioactive 
peptide-3 (ACPB-3) (14,15), which was isolated from goat 
spleens or livers. This peptide has been found to exhibit 
anticancer activity against a human gastric cancer cell line 
(BGC-823) and gastric cancer stem cells (GCSCs) in vitro 
and in vivo. Moreover, it significantly inhibits the growth 
of BGC-823 and CD44+ cells in a dose-dependent manner, 
suppressing the proliferation of spheroid cell colonies and 
inhibiting their clone-forming capacity. In vivo, ACBP-3 alone 
or in combination with cisplatin suppresses xenograft tumor 
growth, and this peptide enhances the chemotherapy toler-
ance of mice by reducing the toxicity of the treatment during 
long-term experiments (15,16). The Su group also investigated 
the anticancer activity of ACBPs in a human colorectal tumor 
cell line (HCT116) in vitro and in vivo  (17). Specifically, 
treatment with ACBPs significantly inhibits HCT116 cell 
growth, enhances UV-induced apoptosis, increases the 
expression levels of PARP and p53, and decreases the expres-
sion of Mcl-1. Moreover, ACBPs markedly inhibit human 
colorectal tumor growth in a xenograft nude mouse model 
and induce changes in the expression levels of PARP, P53, 
and Mcl-1, consistently with the changes observed in vitro, 
without producing apparent changes in body weight. These 
studies indicate that ACBPs inhibit human colorectal tumor 
cell growth and induce apoptosis by modulating the PARP-
p53-Mcl-1 signaling pathway.

Milk and dairy products contain numerous components 
that exhibit a wide variety of physiological and functional 
activities. Moreover, bioactive peptides have been considered 
to be the important bioactive components of milk and dairy 
products, and they have been identified within the amino 
acid sequences of milk proteins. The intrinsic bioactivities of 
peptides encrypted in major milk proteins are latent until they 
are released and activated in three ways: 1) digestive enzyme-
mediated hydrolysis, 2) hydrolysis by proteins from proteolytic 
microorganisms, and 3) digestion by proteolytic enzymes 
derived from microorganisms or plants (18).

A number of studies have reported the anticancer effects 
of milk protein-derived peptides on various cancer cells. 
Roy et al (19) found that bovine skim milk digested with cell-
free extract from the yeast Saccharomyces cerevisiae inhibits 
the proliferation of a human leukemia cell line (HL-60). Meisel 
and FitzGerald reported the anticancer activity of casein frac-
tion-derived caseinophosphopeptides (CPPs) (20), which inhibit 
cancer cell growth and stimulate the activity of immunocompe-
tent cells and neonatal intestinal cells. Moreover, the bacterial 
hydrolysis of casein by commercial yogurt starter cultures yields 
bioactive peptides that influence colon cell kinetics in vitro (21), 
and a yogurt fraction obtained by membrane dialysis has been 
found to have an anti-proliferative effect on Coca-2 and IEC-6 
mammalian intestinal cells (22).

Lactoferrin is an 80-kDa iron-binding glycoprotein that 
belongs to the transferrin family and has a variety of biolog-
ical functions, including antibacterial, antiviral, anticancer, 
anti-inflammatory, and immunomodulatory activities (23). 
Moreover, lactoferricin is a cationic peptide generated by 
the acid-pepsin hydrolysis of lactoferrin and exhibits a range 
of biological activities, including cytotoxic activity against 
various microorganisms (24,25) and cancer cells  (26-28). 
The major anticancer mechanisms of lactoferrin and lacto-
ferricin include cell cycle arrest, apoptosis, anti-angiogenesis 
effects, anti-metastasis effects, immune modulation and 
necrosis (28). Thus, the aforementioned studies suggest that 
milk proteins are not only a nutritious part of a normal daily 
diet but also have potential for the prevention and/or manage-
ment of cancer.

Marine animals. Bioactive peptide compounds from marine 
animals have been reported to have a broad range of bioactive 
properties (29-31). An increasing number of recent studies 
have focused on bioactive peptides with potential anticancer 
activity isolated from various marine animals, such as 
sponges, tunicates, ascidians, mollusks, fish, and other marine 
organisms (32-35).

Fish. Fish is a popular seafood item worldwide and have been 
identified as a source of bioactive peptides with potential anti-
cancer activities. Selected fish-derived bioactive peptides with 
potential anticancer activity are listed in Table I.

The potential anti-proliferative activity of hydrolysate 
of a by-product from dark tuna muscle has been examined 
in MCF-7 cells  (36). Specifically, peptide fractions with 
molecular weights ranging from 400-1400 Da exhibit the 
strongest anti-proliferative activity. Two anti-proliferative 
peptides, LPHVLTPEAGAT from papain hydrolysate and 
PTAEGVYMVT from Protease XXIII, have been identified in 
those fractions. Guha and others (33) have reported a 100-kDa 
Thomsen-Friedenreich disaccharide (TFD)-containing 
glycopeptide, named TFD-100, purified from the Pacific cod. 
TFD-100 binds to galactin-3 (β-galactoside-binding lectin) 
and inhibits the adhesion of androgen-independent prostate 
cancer cells (PC3) to endothelial cells, angiogenesis, and 
gal3‑induced T-cell apoptosis.

Lee and colleagues (37,38) have reported that peptides 
isolated from anchovy sauce induce apoptosis in a human 
lymphoma cell line (U937) by increasing the activities of 
caspase-3 and caspase-8 activity, and the authors have purified 
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a 440.9-Da hydrophobic peptide. Moreover, the anti-prolif-
erative activities of protein hydrolysates from different fish 
species, including blue whiting, cod, plaice and salmon, have 
been investigated in vitro in two human breast cancer cell lines 
(MCF-7/6 and MDA-MB-231) (39). Hepcidin consists of three 
hepcidin-like antimicrobial peptides (named TH1-5, TH2-2, 
and TH2-3) and has been isolated from tilapia. Of these 
peptides, TH1-5 and TH2-3 exhibit anticancer activity against 
epithelial carcinoma cells (HeLa) and human fibrosarcoma 
cells (HT-1080), respectively (40,41).

In addition, several studies have shown that peptides from 
different fish sources exert clear anticancer activity against 
various carcinoma cell lines, such as human hepatocel-
lular liver carcinoma cells (HepG2), U937 cells, HeLa cells 
and murine fibrosarcoma cells (MN-11) (42-44). These data 

suggest the potential of fish as a valuable source of anticancer 
peptides for incorporation into functional foods.

Shrimp. Wilson-Sanchez et al (45) have demonstrated the anti-
mutagenic and anti-proliferative activities of lipidic extracts 
from white shrimp. Specifically, the lipid fraction of white 
shrimp contains compounds that have been found to reduce the 
mutagenicity of aflatoxin B1 and the proliferation of a B-cell 
lymphoma cell line. Moreover, shrimp anti-lipopolysaccharide 
factor (SALF), an antimicrobial peptide from black tiger 
shrimp (46,47), enhances the anticancer activity of cisplatin 
in vitro and inhibits HeLa cell growth in nude mice. These 
peptides also exhibit significant anticancer activity in human 
colon and liver cancer cell lines, even when they are isolated 
from shrimp waste (48).

Figure 1. Left to right shows the sizes and molecular weight (MW) increasing from chemical molecular to biology cell. The anticancer peptides mentioned in 
this review mainly focus on circle area.

Table I. Fish sources of selected bioactive peptides with potential anticancer activity.

Fish	 Peptide name	 Anticancer activity	 References

Anchovy		  Induce apoptosis in a U937 cells	 (37,38)
Blue whiting		  Antiproliferative activity on MCF-7/6 and MDA-MB-231	 (39)

Cod	 TFD100	 Inhibited adhesion of PC3 to endothelial cells, angiogenesis, 	 (33)
		  and gal3-induced T-cell apoptosis

Cod		  Antiproliferative activity on MCF-7/6 and MDA-MB-231	 (39)

Grouper 	 Epinecidin-1	 Inhibited the proliferation of U937 cells	 (42)

Plaice		  Antiproliferative activity on MCF-7/6 and MDA-MB-231	 (39)

Red sea bream 	 Chrysophsin-1	A ntitumor activities and modulates the inflammatory response	 (43)
		  in RAW264.7 cells

Red sea flatfish	 Pardaxin	A ntitumor activity toward MN-11 cells in vitro and in vivo	 (44)

Salmon		  Antiproliferative activity on MCF-7/6 and MDA-MB-231	 (39)

Tilapia	 TH1-5, TH2-2, 	 TH1-5 and TH2-3 exhibited anticancer activity against HeLa	 (40,41)
	 and TH2-3	 cells and HT-1080 cells, respectively

Tuna		  Antiproliferative on MCF-7 cells	 (36)
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Ascidians. Bioactive peptides with anticancer activity have 
also been identified in tunicates and ascidians. Didemnins are 
a family of cytotoxic peptides isolated from tunicates (49), and 
acyclic depsipeptide, Didemnin B, has been widely studied 
because of its high anticancer potential (50,51). Didemnin B 
inhibits proliferation by inhibiting the synthesis of RNA, DNA 
and protein (51,52). Aplidine, a cyclic depsipeptide isolated 
from the Mediterranean tunicate Aplidium albicans, has anti-
angiogenic activity both in vitro and in vivo (53), and aplidine 
was first identified on the basis of its enhanced cytotoxicity 
against different tumor cell lines, such as breast, melanoma, 
lung and ovarian cancer cell lines, and its lower myelotoxicity 
relative to Didemnin B (53-57). Tamandarins A and B are also 
cytotoxic depsipeptides from a marine ascidian of the family 
Didemnidae, and the effects of these peptides have been evalu-
ated in various human cancer cell lines (58,59). Mollamide 
and Trunkamide A obtained from ascidians both are cytotoxic 
to different human tumor cell lines (58).

A novel polypeptide (CS5931) with anticancer activity has 
been identified by the group of Lin (60,61), who have demon-
strated that CS5931 extracted from Ciona savignyi induces 
apoptosis via a mitochondria-mediated pathway in human 
colorectal carcinoma cells (HCT-8) in a dose- and time-
dependent manner. CS5931 is strongly anti-angiogenic in vitro 
and in vivo, and this effect may be mediated by vascular endo-
thelial growth factor (VEGF) and matrix metalloproteinases 
(MMPs). These studies indicate that CS5931 has the potential 
to be developed as a novel angiogenesis inhibitor for the treat-
ment of cancer.

Sponges. Marine sponges are an abundant source of bioac-
tive peptides with anticancer potential. In recent years, most 
researchers have focused on bioactive cyclic peptides and 
depsipeptides with highly unique structures that contain 
a wide variety of unusual amino acids and other building 
blocks (62-64).

Seven cytotoxic cyclic peptides (Callyaerins A-F and H) 
isolated from the Indonesian sponge (Callyspongia aerizusa) 
are cytotoxic to murine lymphoma cells (L5178Y), HeLa cells, 
and pheochromocytoma tumor cells (PC12) (63). Furthermore, 
reniochalistatins A-E, five cyclic peptides (including four 
heptapeptides and one octapeptide) from the marine sponge 
Reniochalina stalagmitis, and the cyclic octapeptide renio-
chalistatin E are cytotoxic to different tumor cell lines (65). 
Rolloamides  A and B are cytotoxic cyclic heptapeptides 
isolated from the Caribbean sponge (Eurypon  laughlini), 
androlloamide A has been found to significantly suppress the 
growth of a panel of histologically diverse cancer cells (66). A 
new peptide, gombamide A, isolated from the Korean sponge 
Clathria gombawuiensis is weakly cytotoxic to human lung 
carcinoma (A549) and myelogenous leukemia (K562) cell 
lines and moderately inhibits Na+/K+-ATPase.

Jaspamide is a cyclic depsipeptide isolated from sponges of 
the genus Jaspis and Hemiastrella (32) and induces apoptosis 
in HL-60 (67,68) and Jurkat T cells (69). Two jaspamide deriva-
tives, jaspamide 2 and 3, have been isolated from an Indonesian 
sponge (Jaspis splendens), and low concentrations of these 
peptides inhibit the growth of L5178Y cells in  vitro  (70). 
Nine cyclodepsipeptides from the sponge Homophymia sp., 
homophymines B-E and A1-E1, have exhibited very potent 

cytotoxic activity with IC50 values in the nM range against 
a panel of human cancer cell lines  (71). Recently, two 
cyclic depsipeptides isolated from a Madagascan sponge 
(Homophymia lamellosa), pipecolidepsins A and B (64), have 
been found to exhibit cytotoxic activity against human lung, 
colon, and breast cancer cells (64,72).

Geodiamolide H, a depsipeptide isolated from a Brazilian 
sponge (Geodia corticostylifera), inhibits the migration and 
invasion of breast cancer cells by modifying the actin cyto-
skeleton (73).

Three lipodepsipeptides (Lipodiscamides A-C) isolated 
from the marine sponge Discodermia kiiensis are moder-
ately cytotoxic to murine leukemia cells (P-388) and HeLa 
cells (74). Moreover, taumycin A, another lipodepsipeptide 
from a Madagascan sponge (Fascaplysinopsis sp.), has been 
found to inhibit the growth of a human leukemic cell line (75).

Callyptide A, a newly identified cytotoxic peptide from 
the Red Sea marine sponge (Callyspongia), has been found 
to inhibit the growth of different cancer cell lines, including 
MDA-MB-231 cells, A549 cells and human colorectal adeno-
carcinoma cells (HT-29), with GI50 values of 29, 18.5 and 
30  µM, respectively  (31). Smenamides  A and B are two 
isomerichybrid peptide/polyketide compounds isolated from 
a Caribbean sponge (Smenospongia aurea) that contain a 
dolapyrrolidinone unit and show potent cytotoxic activity at 
nanomolar levels against lung cancer Calu-1 cells (76).

Mollusks. Several studies have reported that mollusks, such as 
shellfish, sea slugs, and sea hares, are rich sources of bioactive 
peptides that exhibit anticancer activity. Wang  et  al  have 
isolated oligopeptide-enriched hydrolysates from oysters by 
using protease (77) and have shown that these hydrolysates 
markedly and dose-dependently inhibits sarcoma-S180 tumor 
cell growth in BALB/c mice. Furthermore, Cheong et al (78) 
and Kim et al (79) have reported two novel anticancer peptides 
isolated from oysters and mussels, respectively. The sequences 
of these two anticancer peptides differ, but both exhibit clearly 
superior cytotoxic activity and effectively induce cell death in 
prostate, breast and lung cancer cells.

Keyhole limpet hemocyanin (KLH) is a high-molecular-
weight copper-containing protein found in the hemolymph of 
the marine mollusk Megathura crenulata (80). This extracel-
lular respiratory protein has many bioactive properties (81-83), 
including immunostimulatory, antitumor, and antimicrobial 
activity. Riggs et al and McFadden et al (84,85) have shown 
that KLH from the giant keyhole limpet significantly inhibits 
the growth of different cancer cells in vitro, including estrogen-
dependent breast cancer cells (MCF-7), estrogen-independent 
breast cancer cells (ZR75-1), pancreatic cancer cells (PANC-1), 
prostate cancer cells (DU145), and Barrett's esophageal adeno-
carcinoma cells (SEG-1 and BIC-1). Moreover, a cytokine 
analysis has revealed that KLH directly affects the produc-
tion of cellular inflammatory and pro-apoptotic mediators. 
Furthermore, KLH increases early and late apoptotic activity 
in MCF-7 cells, whereas it reduces late apoptotic activity in 
the ZR75-1 cells. In contrast, KLH does not affect the early or 
late apoptotic activity of PANC-1 cells. These results suggest 
that KLH directly inhibits the growth of human breast and 
pancreatic cancer in vitro by modulating apoptotic and non-
apoptotic mechanisms (86).
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Dolastatins are a family of cytotoxic peptides isolated 
from the mollusk Dolabella  auricularia. In this family, 
the linear pentapeptide Dolastatin 10 and the depsipeptide 
Dolastatin  15 have been reported to exhibit promising 
anti-proliferative activity (87,88). In recent years, synthetic 
dolastatin 10 analogs have been widely used in anticarcinogen 
drug development (89-91). These studies have provided strong 
evidence showing that Dolastatin 10 analogs effectively inhibit 
cell growth by dampening microtubule dynamics, inducing 
apoptotic cell death, and inhibiting tumor growth.

Aurilide is a small cyclodepsipeptide isolated from 
Dolabella auricularia that induces apoptosis in human 
cancer cells at low concentrations (92). Specifically, aurilide 
selectively binds to prohibitin 1 (PHB1) in the mitochondria, 
activating the proteolytic processing of dynamin-like GTPase 
optic atrophy 1 (OPA1) and resulting in mitochondria-induced 
apoptosis. The mechanism of aurilide cytotoxicity suggests 
that PHB1 is an apoptosis-regulating protein amenable to 
modulation by small molecules. Thus, aurilide may serve as 
a small-molecule tool for studies of mitochondria-induced 
apoptosis (93,94).

Kahalalides are a family of peptides isolated from 
Elysia rufescens. Among them, Kahalalide F is regarded as an 
important anticancer candidate for tumor therapeutics, owing 
to its high cytotoxicity (95-97). However, the mechanism of 
action of Kahalalide F is not well understood, and Kahalalide F 
has been observed to disturb lysosomal function and to poten-
tially result in intracellular acidification and cell death. Thus, 
this peptide may effectively combat cancer cells exhibiting 
high lysosomal activity, such as prostate and cervical cancer 
cells (98). Moreover, Janmaat and others have demonstrated 
that ErbB3 and the downstream phosphatidylinositol 3-kinase 
(PI3K)-Akt signaling pathway are important determinants of 
the cytotoxic activity of Kahalalide F in vitro (99).

Finally, Keenamide A is a cytotoxic cyclic hexapeptide 
isolated from the notaspidean mollusk Pleurobranchus forskalii 
that significantly inhibits the proliferation of P-388, A-549, and 
HT-29 cells (100).

Amphibians
Frog and toad skin secretions. Skin secretions from amphib-
ians (e.g., frogs and toads) contain a wide range of compounds 
with biological activity and have garnered attention because 
of their potential for drug development (101). In addition, the 
Chinese have traditionally administered secretions from frog 
skin and toad parotid glands for medicinal purposes since 
ancient times (102). Hundreds of such peptides have been iden-
tified since the discovery of the first antimicrobial peptide from 
this source (103), and some naturally occurring amphibian skin 
peptides and analogs are selectively cytotoxic to tumor cells 
and are promising anticancer agents (101). The primary struc-
tures of selected bioactive peptides with anticancer properties 
isolated from frog skin secretions are listed in Table II.

Alyteserin-2a, obtained from the midwife toad 
(Alytes obstetricans), exhibits relatively weak antimicrobial 
and cytotoxic activities (104). However, analogs of alyteserin-2a 
are potently cytotoxic to A549 cells, human hepatocarcinoma 
cells (HepG2), MDA-MB-231 cells, and HT-29 cells (105).

Conlon et al (106) have reported two bioactive peptides, 
ascaphin-8 and peptide XT-7, isolated from the skin secretions 

of Ascaphus  truei and Silurana tropicalis. These peptides 
are highly cytotoxic to HepG2 cells. Moreover, the analogs 
of these peptides are more cytotoxic to HepG2 cells than the 
natural bioactive peptides.

Several aurein peptides exhibiting anticancer activity have 
been reported by Rozek et al (107), who extracted Aureins 1, 
2 and 3.1 from the green and golden bell frog (Litoria aureus) 
and the southern bell frog (Litoria raniformis).

van Zoggel et al  (108) have reported that two bioactive 
peptides of the dermaseptin family (dermaseptin B2 and B3) 
isolated from skin secretions of the South American tree frog 
(Phyllomedusa bicolor) exhibit antitumor and angiostatic 
properties. Specifically, the authors demonstrated that these 
two peptides inhibit both the proliferation of a human pros-
tatic adenocarcinoma cell line (PC-3) by >90% in vitro and 
the differentiation of bovine aortic endothelial cells. Most 
recently, Shi et al (109) have identified two novel members of 
the dermaseptin antimicrobial peptide family, dermaseptin-
PD-1 and dermaseptin-PD-2, in the skins/skin secretions of the 
phyllomedusine leaf frog (Pachymedusa dacnicolor). These 
two peptides have been found to modulate the growth of PC-3 
cells, a human non-small cell lung cancer cell line (H157), 
and a human neuronal glioblastoma cell line (U251MG) with 
low hemolytic activity. Moreover, both dermaseptins are less 
cytotoxic to normal human cell lines (109). Dermaseptin L1 and 
phylloseptin L1, isolated from the skin secretions of the lemur 
leaf frog (Agalychnis lemur), are both cytotoxic to HepG2 
cells (110). Dermaseptin L1 is cytolytic to HepG2 cells but not 
human erythrocytes, whereas phylloseptin L1 is approximately 
equipotent against both HepG2 cells and erythrocytes. In addi-
tion, the novel phylloseptin-PBa, isolated from the skin secretion 
of the purple-sided leaf frog (Phyllomedusa baltea), has been 
found to inhibit the proliferation of several human cancer cell 
lines: lung cancer cells (H460), PC-3 cells and a neurospon-
gioma cell line (U251MG). However, it is less active in a normal 
human micro-vessel endothelial cell line (HMEC-1) (111).

Magainin-2, isolated from Xenopus laevis, and its analog 
magainin G, exhibits tumoricidal activity against human 
small cell lung cancer cell lines (112) and bladder cancer cell 
lines (113). Another modified magainin-2 peptide, MSI-238, 
is markedly more potent than the parent peptide, displaying 
a significant cytotoxic effect on A549 cells in  vitro and 
P-388 cells, ascites (S180), and a spontaneous ovarian tumor 
in vivo (114). In addition, several studies have reported other 
magainin-2 analogs that are cytotoxic to U937 (115) and HeLa 
cells (116). Li et al (117) have isolated a small antibacterial 
peptide, Xenopus laevis antibacterial peptide-P1 (XLAsp-P1), 
from the skin of Xenopus laevis by using reverse-phase high-
performance liquid chromatography, and this peptide strongly 
and dose-dependently inhibits breast cancer cells.

Moreover, pentadactylin from Leptodactylus labyrinthicus 
reduces the viability of murine melanoma (B16F10) cells in a 
dose-dependent manner without significantly affecting normal 
human fibroblast cells  (118). Specifically, pentadactylin 
alters cell morphology, disrupts the membrane, fragments 
DNA, arrests cells in the S phase of the cell cycle, and alters 
mitochondrial membrane potential, thus suggesting that this 
peptide affects B16F10 cells via an apoptosis pathway.

Attoub and colleagues have extracted the frog-derived 
peptide Hymenochirin-1B, which is highly cytotoxic to 
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A549 cells, MDA-MB-231 cells, HT-29 cells, and HepG2 
cells (119). Moreover, the (D9K) analog is most potent against 
all four cell lines (up to 6-fold increase in cytotoxicity), but its 
hemolytic activity is also increased. In contrast, the (D9k) and 
(E6k, D9k) analogs retain relatively high cytotoxicity against 
tumor cells but are less hemolytic than the parent peptide (119). 
Moreover, the same group has identified another frog-derived 
peptide, Esculentin-2Cha, which is highly cytotoxic to A549 
cells (120). In this study, the authors found that two analogs 

both remain cytotoxic to A549 cells but have completely 
contrary effects on hemolytic activity.

Crocodile and turtle. Crocodilians are minimally affected 
by infections or death from microorganisms, and cancer 
has not been observed in crocodiles to date, thus suggesting 
that these animals have a strong innate immune system that 
protects against undesirable cells. These characteristics 
make crocodilians a good choice for the study of anticancer 

Table II. Primary structures of selected bioactive peptides with anticancer properties from frog skin secretions.

Species	 Family	 Peptide name	 Primary structure	 Activity	 References

Midwife toad	 Alytidae	 Alyteserin-2	 ILGKLLSTAAGLLSNL	 Cytotoxicity on A549 cells	 (105)
(Alytes obstetricans)

Tailed frog	 Ascaphidae	 Ascaphin-8	 GFKDLLKGAAKALV	 Cytotoxicity on HepG2 cells	 (106)
(Ascaphus truei)			   KTVLF

Green and golden bell frog	 Hylidae	 Aurein 1.2	 GLFDIIKKIAESF	 Anticancer activity	 (107)
(Litoria aureus)

Green and golden bell frog	 Hylidae	 Aurein 3.1	 GLFDIVKKIAGHIAGSI	 Anticancer activity	 (107)
(Litoria aureus)	

Giant monkey frog	H ylidae	 Dermaseptin B2	G LWSKIKEVGKEAAKAA	I nhibited the proliferation of	 (108)
(Phyllomedusa bicolor)			   AKAAGKAALGAVSEAV	 PC-3 cells

Giant monkey frog	H ylidae	 Dermaseptin B3	A LWKNMLKGIGKLAG	I nhibited the proliferation of	 (108)
(Phyllomedusa bicolor)			   QAALGAVKTLVGAE	 PC-3 cells

Phyllomedusine leaf frog	H ylidae	 Dermaseptin-PD-1	G MWSKIKETAMAAAK	I nhibited growth of PC-3 cells, 	 (109)
(Pachymedusa dacnicolor)			EAA   KAAGKTISDMIKQ	H 157 cells, U251MG cells

Phyllomedusine leaf frog	H ylidae	 Dermaseptin-PD-2	G MWSKIKNAGKAAAKA	I nhibited growth of PC-3 cells, 	 (109)
(Pachymedusa dacnicolor)			   AAKAAGKAALDAVSEAI	 H157 cells, U251MG cells

Lemur leaf frog	H ylidae	 Dermaseptin L1	G LWSKIKEAAKAAGKAA	 Cytotoxic activity against	 (110)
(Agalychnis lemur)			   LNAVTGLVNQGDQPS	H epG2 cells

Lemur leaf frog	 Hylidae	 Phylloseptin L1	 LLGMIPLAISAISALSKL	 Cytotoxic activity against	 (110)
(Agalychnis lemur)				    HepG2 cells

Peruvian purple-sided leaf frog	 Hylidae	 Phylloseptin-PBa	 MAFLKKSLFLVLF(F/L)GL	 Anti-proliferative activity	 (111)
(Phyllomedusa baltea)			V   SLSIC	 against H460 cells, PC3 cells
				    and tU251MG cells

Pepper frog	 Leptodactylidae	 Pentadactylin	 GLLDTLKGAAKNVVGSL	 Cytotoxic activity on B16F10	 (118)
(Leptodactylus labyrinthicus)			A   SKVMEKL	 cells without high specificity

Congo dwarf clawed frog	 Pipidae	 Hymenochirin-1B	 KLSPETKDNLKKVLK	 Cytotoxic activity against A549	 (119)
(Hymenochirus boettgeri)			   GAIKGAIVAKMV	 cells, MDA-MB-231 cells, 
				    HT-29 cells, and HepG2 cells

South African clawed frog	 Pipidae	 Magainin-2	 GIGKFLHSAKKFGKAFV	 Tumoricidal activity against	 (112,113)
(Xenopus laevis)			   GEIMNS	 human small cell lung cancer cell
				    lines and bladder cancer cell lines

South African clawed frog	 Pipidae	 XLAsp-P1	 DEDDD	 Inhibition activity against	 (117)
(Xenopus laevis)				    breast cancer cell

Tropical clawed frog	 Pipidae	 Peptide XT-7	 GLLGPLLKIAAKVGSNLL	 Cytotoxicity on HepG2 cells	 (106)
(Silurana tropicalis)

Chiricahua leopard frog	 Ranidae	 Esculentin-2CHa	 GFSSIFRGVAKFASKGLGK	 Cytotoxic activity against	 (120)
(Lithobates chiricahuensis)			   DLAKLGVDLVACKISKQC	A 549 cells
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agents. Previous studies have indicated that alligator serum, 
including leukocyte extract, has a broad spectrum of activity 
against bacteria, viruses and amoeba via the complement 
system (121‑124). Pata et al have reported four novel antibac-
terial peptides isolated from the white blood cell extract of 
the Siamese crocodile, Leucrocin I-IV, which exhibit strong 
antibacterial activity against Staphylococcus epidermidis, 
Salmonella typhi and Vibrio cholera (125). On the basis of 
this work, Yaraksa et al designed and synthesized the novel 
antibacterial peptides L-and D-NY15 by using the peptide 
Leucrocin I as a sequence template, and these peptides exhibit 
potent antibacterial activity without any toxicity to mamma-
lian cells at their bacteriolytic concentrations (126).

Additionally, Patathananone and colleagues  (127) have 
investigated the anticancer activity of crocodile leukocyte 
extracts. Specifically, they have shown that the percentage 
of viable HeLa cells significantly decreases in a dose- and 
time-dependent manner after treatment with white blood 
cell extracts. They have further demonstrated that the anti-
cancer compounds from crocodile leukocyte extracts induces 
apoptosis in HeLa cells via both caspase-dependent and 
caspase-independent pathways (127).

Recently, Theansungnoen et al (128) have indicated that 
the cationic antimicrobial peptides KT2, RT2 and RP9 from 
Crocodylus siamensis leukocyte extract exhibit anticancer 
activities against human cervical cancer cells but do not affect 
non-cancer cells.

He et al (129) have reported antitumor peptides derived 
from the enzymatic hydrolysates of the Chinese three-striped 
box turtle (Cuora trifasciata). Two fractions, T1 and T2, inhibit 
HepG2 and MCF-7 cancer cells, and three peptides have been 
identified in these fractions: RGVKGPR (T1-1), KLGPKGPR 
(T1-2), and SSPGPPVH (T2-1). T2-1 was found to be a novel 
peptide that had not been listed in any database and exhibits 
the most potent inhibition toward MCF-7 cancer cells.

Animal venoms. Animal venoms and toxins consist of a 
complex cocktail of proteins and peptides and are enriched 
in approximately 100-1,000 biologically active peptides. 
Thus, they have been used as a therapeutic resource in folk 
and traditional medicine for centuries, and they remain largely 
unexplored resource for the discovery of novel bioactive 
peptides.

Scorpion venom. Among venomous animals, scorpions, 
the oldest arthropods on Earth, possess a venom apparatus 
connected to the telson, which is used to inject the venom. 
Scorpions can be phylogenetically divided into 18 distinct 
families consisting of >1,500 species  (130), and scorpion 
venom has been used in traditional medicine for many centu-
ries (131). However, possibly <1% of all venoms from known 
scorpion species have been studied in detail (132).

Scorpion venom is a source of peptidyl neurotoxins, which 
are used as tools to study different ion channels, such as the 
Na+, K+, Ca+, and Cl- ion channels. Chlorotoxin (CTX) is a small 
neurotoxin of 36 amino acids that was isolated in 1993 from the 
venom of the Israeli scorpion Leiurus quinquestriatus (133). 
Initially, CTX was used as a pharmacological tool to characterize 
chloride channels. However, CTX cannot kill cancer cells on 
its own, despite its ability to inhibit tumor invasion. CTX 

can target cancer cells, including glioma, melanoma, small 
cell lung carcinoma, neuroblastoma and medulloblastoma 
cells. These properties make CTX a very attractive peptide 
for targeted cancer therapy or imaging (134). Moreover, 
CTX has been demonstrated to deeply diffuse into tumors, 
unlike other targeting agents, such as antibodies (135,136). 
Therefore, CTX should limit changes in cell shape in the 
setting of glioma, thereby hampering the ability of the tumor 
to invade tissue. This mechanism corroborates the reported 
anti-invasive effects of CTX on glioma cells and the inhibition 
of metastasis  (137-140). Recently, Guo et al identified two 
linear α-helical peptides in the venom of the Brazilian yellow 
scorpion, TsAP-1 and TsAP-2 (Tityus serrulatus antimicrobial 
peptide) and demonstrated their anti-proliferative effects on 
human cancer cells, namely a human squamous carcinoma 
cell line (NCI-H157) and a human lung adenocarcinoma 
cell line (NCI-H838). Moreover, TsAP-2 is three times more 
active than TsAP-1 against an androgen-independent prostate 
adenocarcinoma cell line (PC-3), MCF-7 cells, and a human 
glioblastoma cell line (U251) (141). Ali et al have isolated a 
new chlorotoxin-like peptide (Bs-Tx7) from the venom of 
the common yellow scorpion (Buthus sindicus). This peptide 
inhibits thechlorotoxin (ClTx) and CFTR channels (GaTx1) 
by 66% and 82%, respectively, and an amino acid sequence 
analysis of Bs-Tx7 has identified a scissile peptide bond (i.e., 
Gly-Ile) for human MMP2, whose activity is increased in 
malignant tumors. This finding suggests that Bs-Tx7 inhibits 
tumor proliferation by decreasing MMP2 activity (142).

Spider venom. Spider venom contains versatile proteins and 
peptides including enzymes (such as proteases, hyaluronidases, 
and phospholipases), neurotoxins (most have disulfide-rich 
peptides affecting ion channels), and cytolytic peptides (143). 
Latarcin 2a (Ltc2a), a short cationic linear α-helical peptide 
isolated from the venom of a spider (Lachesana tarabaevi), 
is cytotoxic against human erythroleukemia K562 cells. 
This cytotoxicity is primarily related to plasma membrane 
destabilization; Ltc2a induces the formation of small (approxi-
mately 2.0 nm) membrane pores on the plasma membrane of 
K562 cells and subsequent blebbing, swelling and eventual cell 
death (144). Spider venom-derived peptide lycosin-1 strongly 
inhibits cancer cell growth in vitro and effectively suppresses 
tumor growth in vivo by interfering with cell signaling path-
ways via the attenuation of the activities of key proteins (145).

Bee and wasp venom. Venom from bees and wasps is now 
being studied to design and develop new therapeutic drugs from 
the proteins and peptides in venom (146). Melittin (MEL), an 
amphiphilic peptide (26 amino acid residues) isolated from the 
honey bee Apis mellifera, is the most studied and well-known 
bee venom-derived peptide  (147). MEL inhibits different 
cancer cells in vitro, including astrocytoma, leukemic, lung 
tumor, ovarian carcinoma, squamous carcinoma, glioma, 
hepatocellular carcinoma, osteosarcoma, prostate cancer and 
renal cancer cells (148-152). Although it is cytotoxic to a broad 
spectrum of tumor cells, this peptide is also toxic to normal 
cells. Thus, MEL must be accurately delivered to a targeted 
area to optimize results (153,154).

Similarly to MEL, mastoparan is a well-studied 14-amino 
acid amphipathic and cationic peptide obtained from Vespula 
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lewisii venom that has shown antitumor activity in vitro (146). 
It also needs to be precisely delivered to avoid side effects, as 
described by Yamada and colleagues (155). Moreover, several 
structural modifications may improve the pharmacodynamic 
parameters of chimeric mitoparan in vivo (146,156).

Snake venom. The therapeutic use of snake venoms is frequently 
studied by scientists. Most venoms are a complex mixture of 
several proteins, peptides, enzymes, toxins and non-protein 
components. Bioactive peptides from snake venoms have 
significantly contributed to the treatment of many medical 
conditions, and some peptides and enzymes from snake venom 
may specifically target cancer cell membranes, affecting the 
migration and proliferation of these cells (157,158).

Crotamine, a polypeptide of 42 amino acids first isolated 
from South American rattle snake venom, was the first 
venom-derived peptide classified as a natural cell-penetrating 
and antimicrobial peptide with pronounced antifungal 
activity  (158). Pereira et al  have investigated the toxicity 
of this peptide toward cancer cells in vitro and in vivo in a 
mouse model of melanoma; they have tested the viability of 
B16-F10 (murine melanoma cells), SK-Mel-28 (human mela-
noma cells), and Mia PaCa-2 (human pancreatic carcinoma 
cells) at crotamine concentrations of 1-5 µg/ml. Noteworthy, a 
final crotamine concentration of 5 µg/ml is lethal to B16-F10, 
MiaPaCa-2, and SK-Mel-28 cells but not to normal cells 
(159,160).

Cathelicidin-BF (BF-30) is a cathelicidin-like polypeptide 
consisting of 30 amino acids and a natural antibacterial peptide 
extracted from the venom of the snake Bungarus fasciatus. 
BF-30 inhibits B16F10 cell proliferation in vitro in a dose- 
and time-dependent manner. Moreover, BF-30 significantly 
suppresses melanoma growth in B16F10 tumor-bearing 
mice without inducing losses in body weight  (161). 
Naumann  et  al  have isolated and purified  L-amino acid 
oxidases (LAAOs) from Bothrops  leucurus (Bl-LAAO) 
and have reported the biochemical features of Bl-LAAO 
associated with its effect on platelet function and cytotox-
icity. Bl-LAAO is cytotoxic to the stomach cancer cell line 
MKN-45, the adenocarcinoma cell line HUTU, the colorectal 
cancer cell line RKO and the human fibroblast cell line LL-24. 
Specifically, this enzyme releases sufficient amounts of H2O2 
into the culture medium to induce apoptosis in cells in a dose- 
and time-dependent manner (162).

3. Mechanisms of action of bioactive peptides underlying 
their anticancer effects

Since anticancer peptides non-specifically destroy the plasma 
membrane, they show therapeutic potential for tumors that 
are not responsive to conventional pharmaceutical therapy. 
Although some major mechanisms of action have already been 
outlined, the exact mechanism by which bioactive peptides 
kill cancerous cells remains controversial. In general, the anti-
cancer effect of bioactive peptides may be mediated either by 
membranolytic or by non-membranolytic mechanisms (163)

Membrane-related mechanisms. The plasma membrane 
of cells is a very effective selectively permeable barrier. 
Although this phospholipid bilayer is essential for cell 

survival and function, many studies have indicated that 
natural antimicrobial peptides kill cancer cells by disrupting 
the cellular membrane (128,164,165). Specifically, peptides 
target negatively charged membrane components in the 
membrane, such as phosphatidylserine (PS), sialic acid or 
heparan sulfate. In fact, the exposure of the negatively charged 
lipid PS on the outer leaflet of the cancer cell membrane is 
a key difference between cancerous and non-cancerous cells, 
which are overall neutrally charged, owing to zwitterionic 
phosphatidylcholine and sphingomyelin (166,167).

Papo et al have found that a short host defense-like peptide 
selectively targets cancer cells, primarily by binding to PS 
exposed on the surfaces of cells, thus resulting in cytoplasmic 
membrane depolarization and cell death. Consequently, 
peptide-lipid interaction is a critical step for the effective 
disruption of the cell membrane (168). Latarcins 2a (Ltc2a), 
a peptide extracted from the venom of the spider Lachesana 
tarabaevi, is cytotoxic to human erythroleukemia K562 cells. 
Specifically, the peptide affects the plasma membrane of cells 
and induces membrane blebbing, swelling and eventual cell 
death, as observed with fluorescently labeled Ltc2a. Moreover, 
the peptide binds to the outer membrane leaflet of K562 cells, 
consequently triggering PS externalization. Cytotoxicity is due 
to the formation of membrane pores (approximately 3.7 nm), 
which are more permeable to anionic than cationic molecules, 
and the redistribution of PS toward the outer leaflet of the 
membrane has been detected in the cells. Of note, the peptide 
does not activate apoptosis (144). Pore formation is accompa-
nied by self-assisted Ltc2a internalization and accumulation 
in mitochondria, mitochondrial inactivation and apoptosis-
independent phosphatidylserine externalization (169).

The mechanism underlying the membranolytic activity of 
each peptide depends on the characteristics of the bioactive 
peptide and those of the target membrane, which in turn modu-
late peptide selectivity and toxicity. Bioactive peptide-induced 
membrane disruption can occur via different modes: pore 
formation in the lipid (barrel-stave and toroidal pore models), 
the thinning of the membrane bilayer, membrane dissolution 
(carpet model), or lipid-peptide domain formation (166,170).

The barrel-stave model describes the lateral insertion and 
diffusion of peptides through the lipid bilayer, where they 
arrange into helices and create barrel/stave-like channels 
that span the membrane (171). As shown in Fig. 2, cecropins 
(from moths) (172), pardaxin (from the Red Sea sole) (173), 
magainins (from frogs) (174) and melittin (from the European 
honey bee) (175,176) induce cell lysis via pore formation and 
follow this model.

According to the toroidal model, peptide molecules main-
tain a predominantly parallel orientation to the membrane, 
and a water core forms the center of the pore, with the 
bioactive peptides and lipid head groups forming the wall 
of the pore   (177). As shown in Fig.  2, Magainins (from 
frogs) (174), melittin (from bee venom) (175,176), and prote-
grins (from porcine leukocytes) (178) all follow this mode of 
action.

Another classical mechanism of action is described by 
the carpet model. In this model, peptides do not form pores 
but bind parallel to the membrane surface, forming a ‘carpet’ 
in association with other peptide monomers. The bilayers 
are disrupted and form micelles, destroying the membrane 
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structure in a detergent-like manner at a certain peptide 
concentration showed in Fig. 2 (179,180).

Since peptides and lipids are highly dynamic, Bechinger 
(181) has proposed the ‘Soft Membranes Adapt and Respond, 
also Transiently’ (SMART) model, which describes the interac-
tion between peptides and the membrane from a global dynamic 
viewpoint: peptides and lipids change and mutually adapt their 

conformations, and membrane penetration and morphology are 
described in detail on a local and a global level. As a result, 
peptides and lipids can form a wide variety of supramolecular 
assemblies. In contrast, charged amphipathic sequences tend 
to remain intercalated at the membrane interface, where 
they cause pronounced disruptions of phospholipid fatty 
acyl packing. With increasing local or global concentrations, 

Figure 2. Schematic illustration of cell entry mechanisms of anticancer pepetides.

Figure 3. Mechanisms of action of anticancer peptides via mitochondrial-dependent pathways and death receptor-induced pathways.
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the peptides result in transient membrane opening, rupture 
and ultimately lysis. Therefore, the same peptide sequence 
can result in a variety of these responses, depending on the 
peptide-to-lipid ratio, lipid composition and environmental 
factors (temperature, buffer composition and ionic strength).

Mitochondrial membrane disruption and mitochondrial-
dependent apoptosis. In addition to inducing cell death by 
disrupting the plasma membrane, some anticancer peptides 
induce apoptosis via the mitochondrial pathway (182), and 
mitochondrial membrane disruption-induced apoptosis plays 
a crucial role in both carcinogenesis and cancer therapy as 
showed in Fig. 3 (183). Hence, understanding this pathway is 
very important for bioactive peptide applications. The early 
opening of the mitochondrial permeability transition pore 
(mPTP) in the inner mitochondrial membrane (IMM) is a 
key event in primary necrosis. These events interrupt ATP 
synthesis and result in the influx of large amounts of water 
and small solutes to the matrix along their electrochemical 
gradients, which results in severe osmotic swelling of mito-
chondria and ultimately in necrotic cell death. Furthermore, 
mitochondrial outer membrane permeabilization (MOMP), 
allows the release of pro-apoptotic factors, including cyto-
chrome c (Cyt c), which activate caspases, apoptosis-inducing 
factor (AIF), second mitochondria-derived activator of caspase 
(Smac) and endonucleases showed in Fig. 3 (184-186).

Penaeidin-2 (Pen-2) is an important antimicrobial peptide 
derived from the Pacific white shrimp, and recombinant 
pen-2 (rPen-2) has been found to strongly inhibit the growth 
of ACHN and A498 kidney cancer cells in a time- and dose-
dependent manner. This effect is less pronounced in renal 
tubular epithelial HK-2 cells. Two different phenomena, 
apoptosis and lysis, have been observed, thus suggesting that 
rPen-2 caused membrane disruption and apoptosis of tumor 
cells (187). The antimicrobial peptides NRC-03 and NRC-07 
from the Atlantic flounder target and damage mitochondria 
and consequently induce a loss of transmembrane potential in 
breast cancer cells. These peptides also induce the production 
of reactive oxygen species (ROS) and cell death via mitochon-
drial-dependent apoptosis or the inhibition of DNA synthesis 
showed in Fig. 3 (188,189).

Recently, Patathananone et al have reported that leuko-
cyte extract from the crocodile (C. siamensis) is cytotoxic 
to human cervical cancer cells in a protein concentration-
dependent manner. Specifically, the mitochondrial membrane 
potential (DWm) of HeLa cells rapidly decreases, indicating 
the formation of open mitochondrial pores, which increase the 
levels of the pro-apoptotic protein Bax and reduce the levels 
of the anti-apoptotic proteins Bcl-2, Bcl-XL, Bcl-Xs, and 
XIAP. Simultaneously, the open mitochondrial pore leads to 
the release of cytochrome c and the activation of caspase-9 
and caspase-3. Mitochondrial membrane disruption also 
results in the release of the apoptosis-inducing factor endo-
nuclease G (Endo G) via induction of the caspase-independent 
apoptotic pathway by mitochondria. Noteworthy, Endo G has 
not been found to translocate into the nuclei. Overall, these 
results suggest that anticancer agents in leukocyte extract 
induce apoptosis in HeLa cells via both caspase-dependent 
and caspase-independent pathways  (127). Furthermore, 
Theansungnoen and colleagues have shown that the peptides 

KT2 and RT2, derived from crocodile leukocyte extract, act as 
death ligands and could upregulate death receptors including 
TRAIL R2, Fas and TNF RI. Fas-associated death domain is 
activated by peptide-receptor binding, and pro-caspase-8 is 
subsequently cleaved, thus generating caspase-8; high expres-
sion levels of pro-caspase-3 in HeLa cells and activation of 
the caspase‑8 and caspase-3 apoptosis pathway have also been 
observed (Fig. 3) (128).

Aurilide, isolated from the Japanese sea hare, selectively 
binds to prohibitin 1 (PHB1) in mitochondria. PHB1 localizes 
in the inner membrane of mitochondria and may activate the 
proteolytic processing of optic atrophy1 (OPA1) and result in 
mitochondria-induced apoptosis. In detail, aurilide induces 
prolonged mitochondrial fragmentation by enhancing OPA1 
processing, which results in a loss of membrane potential and 
induces apoptosis (93).

The nonamer peptide LTX-315, derived from bovine 
lactoferricin, exhibits oncolytic properties. Eike et al have 
further investigated the oncolytic activity of LTX-315 in 
human melanoma cells (A375) and have shown that LTX-315 
treatment depolarizes the mitochondrial membrane and 
significantly alters mitochondrial morphology at the ultra-
structural level. Simultaneously, death-associated molecular 
patterns (DAMPs), such as cytochrome-c, ATP, and HMGB1, 
are released and consequently damage cellular integrity in 
several ways. Specifically, the release of DAMPs perturb both 
the cell membrane and mitochondria as shown in Fig. 3 (190). 
Burns et al have reported a pH-selective peptide (KL AKLAK)2 
analog that inhibits breast cancer cell growth in a dose- and 
pH-dependent manner. In addition, they have identified pHLIP-
KLAKLAK as a better modifier because of its low cytotoxicity 
at physiological pH levels, chemical stability, high anti-prolif-
eration potency and specific induction of apoptosis at lower pH 
levels via mitochondrial membrane disruption (191).

The group of Su has reported that ACBP extracted from 
goat spleens induces apoptosis and blocks the cell cycle by 
decreasing the gene expression levels of cyclin D1, c-myc, 
and bcl-2 as well as the protein expression of PCNA. It also 
increases p16Ink4, p21Waf1, p27Kip1 and bax expression (14). 
Furthermore, in vitro and in vivo findings suggest that PARP, 
p53, and Mcl-1 mediate ACBP-induced apoptosis. These 
studies suggest that ACBPs inhibit human colorectal tumor 
cell growth and induce apoptosis by modulating the PARP-
p53-Mcl-1 signaling pathway. Further studies are needed to 
elucidate the role of mitochondrial membrane disruption in 
this apoptosis cascade (17).

4. Summary and perspective

The use of anticancer peptides has become more prevalent for the 
clinical treatment of cancer. However, in addition to their many 
advantages these peptides also have drawbacks, such as their 
lack of oral bioavailability and low stability under physiological 
conditions; gastric acids and complex enzymes in the gastro-
intestinal environment make anticancer peptides vulnerable to 
degradation (192,193). Strategies to develop a selective delivery 
system have been described (194,195), and these strategies result 
in highly efficacious treatment. Some cancer-targeting peptides 
have been designed on the basis of the pH difference between 
tumor tissue and normal tissues (196); the peptide selectively 
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kills tumor cells at acidic pH levels but is nontoxic against 
normal cells. Furthermore, owing to their unique optical, elec-
tronic, magnetic, photoresponsive, and structural properties, 
nanotechnology and nanomaterials have provided tremendous 
potential for application of anticancer peptides in tumor-targeted 
therapy, bio-imaging, and diagnosis (197,198). Moreover, a new 
methodology based on dynamic multiple complex views is 
needed to study the mechanism of action of anticancer bioac-
tive peptides (181). Anticancer peptide-related pharmaceutical 
research and development are likely to garner significant atten-
tion and investment over the next several decades, to integrate 
their characteristics and fully exploit their potential to benefit 
thousands of patients who are suffering from cancer.
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