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Abstract. Transforming growth factor‑β1 (TGF‑β1) has been 
demonstrated to promote epithelial‑mesenchymal transition 
(EMT), invasion and proliferation in tumors via the activa-
tion of Rac1 and β‑catenin signaling pathways. The present 
study investigated the effects of diallyl disulfide (DADS) on 
TGF‑β1‑induced EMT, invasion and growth of gastric cancer 
cells. TGF‑β1 treatment augmented EMT and invasion, 
concomitantly with increased expression of TGF‑β1, Rac1 
and β‑catenin in gastric cancer cells. DADS downregulated 
the expression levels of TGF‑β1, Rac1 and β‑catenin. DADS, 

TGF‑β1 receptor inhibitor as well as Rac1 inhibitor antagonized 
the upregulation of the TGF‑β1‑induced expression of these 
genes, abolishing the enhanced effects of TGF‑β1 on EMT and 
invasion. Blocking the TGF‑β1 receptor through inhibition 
resulted in the decreased expression of Rac1 and β‑catenin. 
Rac1 inhibitor reduced the TGF‑β1‑induced β‑catenin expres-
sion. In addition, DADS and the aforementioned inhibitors 
attenuated the TGF‑β1‑induced tumor growth and the expres-
sion changes of E‑cadherin, vimentin, Ki‑67 and CD34 in nude 
mice. These data indicated that the blockage of TGF‑β1/Rac1 
signaling by DADS may be responsible for the suppression of 
EMT, invasion and tumor growth in gastric cancer.

Introduction

Gastric cancer is the fourth most common cancer and 
the second leading cause of cancer‑related deaths world-
wide (1). An estimated 951,600 new gastric cancer cases and 
723,100 gastric cancer‑related deaths occurred worldwide in 
2012 (2). The patients are usually diagnosed at an advanced 
stage with metastases and more than half of radically resected 
gastric cancer patients relapse, either locally or with distant 
metastases. Therefore, the 5‑year survival is less than 10% and 
the prognosis of patients remains poor (1).

Diallyl disulfide (DADS), one of the sulfur compounds 
derived from garlic, exhibits anticancer activity by modulating 
signaling molecules in various pathways, indicating that 
DADS could be used as a potential therapeutic agent for the 
treatment or prevention of cancer (3).

Transforming growth factor‑β (TGF‑β) plays a pivotal 
role in cancer progression and metastasis by inducing 
epithelial‑mesenchymal transition (EMT), in which cancer 
cells acquire the capability of motility and invasion  (4). 
TGF‑β induces EMT not only through the Smad‑mediated 
gene expression regulation, but also by activating non‑Smad 
signaling, such as PI3K/Akt, ERK, JNK, p38, Src tyrosine 
kinase and Rho GTPases pathways (4,5).
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TGF‑β1, one of the members of the transforming growth 
factor family, induces EMT via the downregulation of the 
expression of E‑cadherin and the upregulation of the expres-
sion of vimentin in gastric cancer cells (6). Crosstalk between 
the TGF‑β1/Smad and other pathways is critical during 
the development of TGF‑β1‑induced EMT. Wnt/β‑catenin 
pathway has been demonstrated to mediate EMT. Apart from 
Wnt‑dependent β‑catenin transactivation, TGF‑β1 regulates 
β‑catenin nuclear translocation through a Smad‑dependent 
manner (7). In addition, TGF‑β1‑induced EMT is mediated by 
ERK‑dependent β‑catenin upregulation and nuclear transloca-
tion in renal tubular epithelial cells (7). The β‑catenin inhibitor 
can reverse TGF‑β1‑induced EMT in human airway epithelial 
cells  (8). In addition, DADS inhibits the activation of the 
β‑catenin pathway and EMT in breast cancer cells (9).

Activation of Rac1 GTPase/Pak1 pathway is involved in 
TGF‑β1‑induced EMT in prostate cancer cells (10). We have 
demonstrated that DADS restrained EMT, migration and invasion 
through the downregulation of Rac1‑Pak1/Rock1‑LIMK1 (11) 
and uPAR‑ERK‑Fra‑1 (12) pathways in gastric cancer cells and 
inhibited the Wnt‑1/β‑catenin pathway through the upregula-
tion of miR‑200b and miR‑22 in gastric cancer cells (13).

We proposed that DADS has inhibitory effects on 
TGF‑β1‑induced EMT and invasion, which may be associated 
with the downregulation of Rac1 and β‑catenin in gastric 
cancer cells.

In the present study, we verified that TGF‑β1 upregulated 
Rac1 and β‑catenin in gastric cancer cells and that Rac1 regu-
lated the expression of β‑catenin. DADS treatment inhibited 
the expression of TGF‑β1, resulting in the downregulation of 
Rac1 and β‑catenin. The underlying mechanisms of DADS 
suppressive effects on TGF‑β1‑induced EMT, invasion and 
growth of gastric cancer were investigated.

Materials and methods

Cell culture and cell line establishment. Human gastric 
cancer MGC803 cell line was obtained from the Cancer 
Research Institute, Xiangya Medical College, Central South 
University in China. Cells were cultured in RPMI‑1640 
medium (Gibco; Life Technologies, Vienna, Austria) 
containing 10% fetal bovine serum (FBS; Gibco; Thermo 
Fisher Scientific, Inc., Vienna, Austria) with the addition of 
100 U/ml penicillin, 100 U/ml streptomycin and maintained 
at 37˚C in a humidified atmosphere of containing 5% CO2. 
To establish TGF‑β1‑overexpressing cell lines, the plasmid 
pCMV6 containing the full‑length cDNA of human TGF‑β1 
(pCMV6‑TGF‑β1) was constructed by OriGene Technologies 
(Rockville, MD, USA). MGC803 cells were transfected 
with TGF‑β1‑expressing plasmid and the control vector 
(pCMV6‑Neo) using Lipofectamine  2000 (Invitrogen; 
Thermo Fisher Scientific, Inc., Carlsbad, CA, USA) according 
to the manufacturer's protocol. The stable transfectants were 
established after G418 (Invitrogen; Thermo Fisher Scientific, 
Inc.) selection. The expression levels of TGF‑β1 in stable cell 
lines were evaluated by western blot analysis.

Reagents and antibodies. Diallyl disulfide (DADS), 
purchased from Fluka Co. (Milwaukee, WI, USA), was 
dissolved in Tween‑80 and stored at ‑20˚C after a 100‑fold 

dilution with saline. Human recombinant TGF‑β1 protein 
was purchased from R&D Systems (Minneapolis, MN, USA). 
The primary antibodies against TGF‑β1 (cat. no. ab92486), 
Rac1 (cat.  no.  ab33186), β‑catenin (cat.  no.  ab16051), 
Ki‑67 (cat.  no.  ab66155), CD34 (cat.  no.  ab81289) and 
FITC‑conjugated anti‑mouse (cat. no. ab6785) or anti‑rabbit 
(cat.  no.  ab6717) secondary antibodies were provided by 
Abcam (Cambridge, MA, UK). The primary antibodies against 
E‑cadherin (cat. no. 24E10) and vimentin (cat. no. D21H3) 
were obtained from Cell Signaling Technology (Danvers, 
MA, USA). The mouse monoclonal against β‑actin antibody 
(cat. no. sc‑8432) and horseradish peroxidase (HRP)‑conjugated 
secondary antibodies (cat. no. sc‑2004 and cat. no. sc‑2005) 
were purchased from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). TGF‑β1 receptor inhibitor SB431542 and Rac1 
inhibitor NSC23766 were obtained from Cayman Chemical 
(Ann Arbor, MI, USA). A total of 5 ng/ml TGF‑β1, 30 mg/l 
DADS, 10 µmol/l SB431542 and 50 µmol/l NSC23766 were 
used for experiments in vitro.

Reverse transcription‑polymerase chain reaction (RT‑PCR). 
Total RNA was extracted from the cells using TRIzol reagent 
(Gibco‑BRL; Thermo Fisher Scientific, Inc., Grand Island, USA). 
Reverse transcription was carried out using the RT‑PCR system 
(Promega, Madison, WI, USA). PCR analysis was performed 
using the GeneAmp PCR kit (Promega). Primer sequences 
were as follows: TGF‑β1 forward, TCT​CCA​GGC​ATT​TCC​
ACT​ATT​C and reverse, CTC​AGG​CAT​TCG​TCA​ACA​TCT​A; 
Rac1 forward, TGC​CTG​CTG​TTG​TAA​ATG​TCT​C and reverse, 
AAA​GTT​CAG​TGC​TCG​GTG​TTC​T; β‑catenin forward, GGA​
AGG​GAC​AGT​ATC​GTT​TGT​T and reverse, GCC​TCA​GCA​
TCT​ACC​AGC​ATA​G; E‑cadherin forward, CTC​CCA​ATA​CAT​
CTC​CCT​TCA​C and reverse, CGC​CTC​CTT​CTT​CAT​CAT​AGT​
AA; vimentin forward, GCG​AGG​AGA​GCA​GGA​TTT​CT and 
reverse, TCT​TGT​AGG​AGT​GTC​GGT​TGT​T; β‑actin forward, 
CTG​GGA​CGA​CAT​GGA​GAA​AA and reverse, AAG​GAA​
GGA​TGG​AAG​AGT​GC. The PCR products were analyzed on 
2% agarose gel containing ethidium bromide. Densitometric 
quantitation of products was determined using the Labwork 
analysis software (Labworks LLC, Lehi, UT, USA). The rela-
tive abundance was expressed as the ratio of the object gene to 
β‑actin.

Western blot analysis. For total protein extraction, cells were 
lysed directly on ice for 30 min in lysis buffer [10 mmol/l 
Tris‑HCl (pH 7.6), 100 mmol/l NaCl, 1 mmol/l EDTA (pH 8.0), 
100 µg/ml PMSF and 1 µg/ml aprotinin]. The cell lysates were 
centrifugated at 12,000 rpm for 10 min and the supernatants 
were collected. Then protein contents were determined using a 
BCA protein assay kit (Pierce, Rockford, IL, USA).

Protein extracts were loaded on a 10% SDS‑polyacrylamide 
gel for electrophoresis and transferred onto polyvinylidene 
fluoride (PVDF) membrane. The blots were blocked in 5% 
skim milk in Tris‑buffered saline (TBS) containing 0.1% 
Tween‑20 for 2 h at room temperature, and then incubated 
with primary antibodies (1:200‑500) at 4˚C overnight. The 
membranes were washed in TBS‑T and then incubated with 
HRP‑conjugated secondary antibodies (1:1,000‑1:2,000). 
After washed with TBS‑T, the membranes were developed 
by an enhanced chemiluminescence plus (ECL Plus) kit 
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(Amersham Biosciences, Buckinghamshire, UK) and bands 
were visualized on X‑ray film (Kodak, Rochester, NY, USA). 
Membranes were re‑incubated with anti‑β‑actin antibody 
to verify equal protein‑sample loading. The target protein 
amounts were normalized towards β‑actin quantity using 
densitometry, then relative fold changes in protein levels were 
calculated as ratios between treated vs. control group values.

Cell migration and invasion assays. Invasion assays were 
performed using Transwell® plates (Corning, Inc., Corning, 
NY, USA) as previously described (12). Briefly, MGC803 cells 
were seeded onto Matrigel‑coated filters (8‑µm pore size), 
then were treated with TGF‑β1 (5 ng/ml) or DADS (30 mg/l) 
alone, or incubated with TGF‑β1 + SB431542 (10 µmol/l) or 
TGF‑β1 + NSC23766 (50 µmol/l) for 24 h or left untreated. 
The cells that had invaded the lower surface of the filter were 
fixed and stained with hematoxylin. Invasiveness was deter-
mined by counting cells in four microscopic fields per well, 
and the extent of invasion was expressed as an average number 
of cells per microscopic field. Invasion rates were expressed 
as the ratio of the treated group value to the control group 

value. Transwell migration assays were conducted using the 
same procedure as for the invasion assay, except using the 
Matrigel‑uncoated filters.

Gastric tumor growth in nude mice. Transfected and untrans-
fected MGC803 cells were injected into the subcutis of the right 
axillary of male athymic BALB/c nude mice (4 weeks old). 
The mice were purchased from the Experimental Center of 
the Chinese Academy of Science in Shanghai. The mice were 
housed in an environment controlled for temperature (22±2˚C), 
light (12  h light/dark cycle) and humidity (60±10%). The 
animals were maintained under specific pathogen‑free condi-
tions in accordance with the NIH Guide for the Care and Use 
of Laboratory Animals. The animals were randomly divided 
into six groups, and each group consisted of five mice. The 
mice were treated with normal saline, DADS (100 mg/kg) (11), 
SB431542 (10 mg/kg) (14) and NSC23766 (5 mg/kg) (15) via 
intraperitoneal injection every 2 days until the termination of the 
experiment. Tumor volume (cm3) was examined every 6 days 
and calculated using a standard formula (width2 x length x 0.5). 
Average tumor volumes are presented (n=5 for each group) 

Figure 1. Analysis of the effects of DADS on the expression of TGF‑β1, Rac1, β‑catenin, E‑cadherin and vimentin in MGC803 cells. (A and C) Cells were treated 
with 30 mg/l of DADS for the indicated time‑points. RT‑PCR was performed to detect the mRNA levels of (A) TGF‑β1, Rac1, β‑catenin, (C) E‑cadherin and 
vimentin. β‑actin was used as an internal control for normalization. (B and D) Western blot analysis was performed to detect the protein levels of (B) TGF‑β1, 
Rac1, β‑catenin, (D) E‑cadherin and vimentin. β‑actin was used as an internal control. The relative fold changes in mRNA or protein levels compared to the 
controls were calculated. Data represent the means ± SD from three independent experiments. *P<0.05 or **P<0.01 vs. control.
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starting from the twelfth day and continuing until mice were 
sacrificed at 48  days by cervical dislocation under anes-
thesia. The xenografts were removed and the tumor size and 
weight were assessed at 48 days. Tumor tissues were then 
fixed in formalin and embedded in paraffin. Tissue sections 
(5 µm‑thick) were prepared for subsequent immunohistochem-
istry analysis. All experiments were performed according to 
the guidelines for animal use of the Ethics Committee of the 
University of South China.

Immunohistochemistry. Briefly, after slides were dewaxed 
in xylene and hydrated in graded alcohol solutions, antigen 
retrieval was performed by heat treatment in 10 mM sodium 
citrate buffer (pH 8.0). Slides were incubated in 3% H2O2 
solution to quench endogenous peroxidase activity and then 

incubated with normal goat serum for 20 min. Slides were incu-
bated with primary antibodies (dilution 1:100) at 4˚C overnight. 
Positive signals were developed with peroxidase‑conjugated 
secondary antibodies and 0.5% diaminobenzidine/H2O2 
followed by counterstaining with Mayer's hematoxylin, dehy-
dration, clearing and mounting. The slides that were treated 
with normal goat serum were evaluated as negative controls.

Statistical analysis. All results are presented as the mean ± SD 
for three independent experiments. Student's t‑tests and 
one‑way ANOVA were used to analyze the differences in 
expression among groups. P<0.05 were considered to indi-
cate a statistically significant result. Statistical analyses were 
conducted using the SPSS 13.0 software (SPSS, Inc., Chicago, 
IL, USA).

Figure 2. DADS inhibits the expression of Rac1 and β‑catenin through downregulation of TGF‑β1 in MGC803 cells. Cells are untreated or treated with DADS 
(30 mg/l), TGF‑β1 (5 ng/ml), TGF‑β1 (5 ng/ml) + SB431542 (10 µmol/l), TGF‑β1 (5 ng/ml) + DADS (30 mg/l) and TGF‑β1 (5 ng/ml) + NSC23766 (50 µmol/l) 
for 24 h. (A) RT‑PCR was performed to detect the mRNA levels of TGF‑β1, Rac1 and β‑catenin. β‑actin was used as an internal control for normalization. 
(B) Western blot analysis was performed to detect the protein levels of TGF‑β1, Rac1 and β‑catenin. β‑actin was used as an internal control. The relative fold 
changes in mRNA or protein levels compared to the controls were calculated. Data represent the means ± SD from three independent experiments. *P<0.05 or 
**P<0.01 vs. control, #P<0.05 or ##P<0.01 vs. the TGF‑β1 group.
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Results

DADS downregulates TGF‑β1, Rac1, β‑catenin and vimentin 
and upregulates E‑cadherin in MGC803 cells. We first treated 
cells with 30 mg/l DADS for different time‑points and we 
examined the effects of DADS on the expression of TGF‑β1, 
Rac1 and β‑catenin. The mRNA and protein levels of TGF‑β1 
were reduced after cells were treated with DADS for 12, 24 and 
48 h in a time‑dependent manner (Fig. 1A and B). In contrast, 
Rac1 and β‑catenin were decreased in the mRNA and protein 
levels after incubation for 24 h (Fig. 1A and B). These data 
indicated that DADS can reduce the expression of TGF‑β1, 
Rac1 and β‑catenin. In addition, we observed that a decrease 
in TGF‑β1 occurred after 12 h of incubation, which was earlier 
than the decreases in Rac1 and β‑catenin (24 h). We proposed 

that downregulation of TGF‑β1 by DADS may result in the 
expression changes of its downstream effectors, Rac1 and 
β‑catenin. The expression of E‑cadherin in the mRNA and 
protein level was increased by DADS after 12 h of treatment. 
In contrast, the mRNA and protein levels of vimentin were 
reduced (Fig. 1C and D).

DADS antagonizes TGF‑β1‑induced upregulation of TGF‑β1, 
Rac1 and β‑catenin. Subsequently, we explored the effects 
of TGF‑β1 on the expression of TGF‑β1, Rac1 and β‑catenin 
in MGC803 cells. The expression levels were determined 
after the cells were incubated with TGF‑β1 (5 ng/ml) for 
24 h. The mRNA and protein expression levels of TGF‑β1, 
Rac1 and β‑catenin were elevated in cells exposed to 
TGF‑β1 (Fig. 2). The results indicated that TGF‑β1 can induce 

Figure 3. DADS suppresses TGF‑β1‑induced EMT and invasion by blocking TGF‑β1 and Rac1. Cells are untreated or treated with DADS (30 mg/l), TGF‑β1 
(5 ng/ml), TGF‑β1 (5 ng/ml) + SB431542 (10 µmol/l), TGF‑β1 (5 ng/ml) + DADS (30 mg/l), and TGF‑β1 (5 ng/ml) + NSC23766 (50 µmol/l) for 24 h. 
(A) Representative images were captured by phase‑contrast microscopy to evaluate changes in cell morphology. (B) RT‑PCR was performed to detect the 
mRNA levels of E‑cadherin and vimentin. β‑actin was used as an internal control for normalization. (C) Western blot analysis was performed to detect the 
protein levels of E‑cadherin and vimentin. β‑actin was used as an internal control. The relative fold changes in mRNA or protein levels compared to the 
controls were calculated. Data represent the means ± SD from three independent experiments. *P<0.05 or **P<0.01 vs. control, #P<0.05 or ##P<0.01 vs. the 
TGF‑β1 group.
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upregulation of TGF‑β1, Rac1 and β‑catenin. Compared 
with the TGF‑β1‑treated group, TGF‑β1, Rac1 and β‑catenin 
protein levels were decreased in the TGF‑β1 + SB431542 
group (Fig. 2B). Similarly, these protein levels were decreased 
after cells were treated with TGF‑β1 in the presence of a Rac1 
inhibitor, NSC23766. DADS (30 mg/l) treatment produced 
similar effects to those of SB431542 and NSC23766 (Fig. 2).

DADS suppresses TGF‑β1‑induced EMT and invasion 
by blocking TGF‑β1 and Rac1. We observed that TGF‑β1 
treatment induced a morphological change (spindle‑like 
morphology) and a decrease in cell‑cell junctions, compared 
with the control group (Fig. 3A). In line with these morpho-
logical changes, an increase of vimentin and a decrease 
of E‑cadherin in the mRNA and protein levels were 
demonstrated in the TGF‑β1‑treated group (Fig. 3B and C). 
Conversely, SB431542 and NSC23766 reversed these changes 
of morphology and EMT markers, which occurred in 
TGF‑β1‑treated cells (Fig. 3B and C). DADS exerted similar 
effects as SB431542 and NSC23766, decreasing vimentin 
and increasing E‑cadherin, concomitantly with significant 
inhibition of morphological changes similar to mesenchymal 
cells (Fig. 3).

Subsequently, we further demonstrated that TGF‑β1 treat-
ment increased the rates of cell migration and invasion, while 
DADS neutralized these effects of TGF‑β1, as did SB431542 
and NSC23766  (Fig.  4). These data indicated that Rac1 

mediated EMT induced by TGF‑β1, whereas downregulation 
of TGF‑β1/Rac1 signaling by DADS resulted in inhibition of 
EMT, migration and invasion.

DADS, TGF‑β1 receptor inhibitor SB431542 and Rac1 
inhibitor NSC23766 suppress TGF‑β1‑induced tumor growth 
in vivo. We have previously reported that DADS inhibits tumor 
growth by downregulating LIMK1, a downstream effector of 
Rac1 (11). We constructed a TGF‑β1‑overexpressing MGC803 
cell line that exhibited increased TGF‑β1 expression compared 
to the empty vector group and the control group (Fig. 5A). 
The transfected and untransfected cells were subcutaneously 
injected into nude mice. We examined the effect of TGF‑β1 
on tumor growth in nude mice, and determined whether the 
suppression of TGF‑β1/Rac1 by DADS led to inhibition of 
gastric cancer MGC803 cell proliferation in vivo. The mice 
were subjected to different treatments and the tumor volume 
was examined every 6 days. Compared to the control group, 
the TGF‑β1 group demonstrated an increase in tumor volume, 
whereas a decreased tumor volume was observed in the DADS 
group (Fig. 5B). The TGF‑β1 + DADS, TGF‑β1 + SB431542 and 
TGF‑β1 + NSC23766 groups exhibited reduced tumor volumes, 
compared to the TGF‑β1 group (Fig. 5B). After 48 days, the 
xenografts were removed from the mice. Similar changes were 
observed in tumor volume and weight (Fig. 5C and D). These 
data indicated that DADS antagonized TGF‑β1‑induced tumor 
growth via the downregulation of TGF‑β1/Rac1 signaling.

Figure 4. DADS suppresses TGF‑β1‑induced cell migration and invasion by blocking TGF‑β1 and Rac1. (A and B) Cells were untreated or treated with DADS 
(30 mg/l), TGF‑β1 (5 ng/ml), TGF‑β1 (5 ng/ml) + SB431542 (10 µmol/l), TGF‑β1 (5 ng/ml) + DADS (30 mg/l) and TGF‑β1 (5 ng/ml) + NSC23766 (50 µmol/l) 
for 24 h. (A) Migration and (B) invasion rates were determined by the ratio of the mean number of cells between treated and untreated cells. Data represent the 
means ± SD from three independent experiments. *P<0.05 or **P<0.01 vs. control, #P<0.05 vs. the TGF‑β1 group.
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Effects of DADS on TGF‑β1‑induced E‑cadherin, vimentin, 
Ki‑67 and CD34 expression in vivo. We detected the protein 
expression levels of E‑cadherin, vimentin, Ki‑67 and CD34 

in transplanted tumor tissues using immunohistochemistry. 
DADS reduced vimentin, Ki‑67 and CD34 protein levels, and 
increased the expression of E‑cadherin (Fig. 6). These results 

Figure 5. DADS, TGF‑β1 receptor inhibitor SB431542 and Rac1 inhibitor NSC23766 suppress TGF‑β1‑induced tumor growth in vivo. (A) Cells were trans-
fected with TGF‑β1‑expressing or empty vectors and western blot analysis was performed to determine the TGF‑β1 protein expression level. β‑actin was 
used as a loading control. The relative fold changes compared to the control group were calculated. Data represent the means ± SD from three independent 
experiments. *P<0.05 vs. the control group. (B) Untransfected, TGF‑β1‑expressing MGC803 cells were injected into the subcutis of nude mice. The mice of 
the untransfected group were treated with normal saline or DADS (100 mg/kg) and the mice of the transfected group were treated with normal saline, DADS 
(100 mg/kg), SB431542 (10 mg/kg) or NSC23766 (5 mg/kg) via intraperitoneal injection every 2 days. Tumor volume was assessed every 6 days. Average 
tumor volumes are represented (n=5 per group) starting from the twelfth day and continuing until sacrifice at 48 days. (C) The xenografts were collected at 
48 days. Tumor sizes are shown for each group of MGC803 model mice. (D) The mean ± SD tumor weight for each group (n=5 per group) was calculated at 
the termination of the experiment. *P<0.05 or **P<0.01 vs. the control group, #P<0.05 vs. the TGF‑β1 group.

Figure 6. Effects of DADS on TGF‑β1‑induced E‑cadherin, vimentin, Ki‑67 and CD34 expression in vivo. Untransfected, TGF‑β1‑expressing MGC803 cells 
were injected into the subcutis of nude mice. The mice of the untransfected group were treated with normal saline or DADS (100 mg/kg) and the mice of 
the transfected group were treated with normal saline, DADS (100 mg/kg), SB431542 (10 mg/kg) or NSC23766 (5 mg/kg) via intraperitoneal injection every 
2 days. The xenografts were collected at 48 days. Immunohistochemistry was performed to detect the expression of vimentin, E‑cadherin, CD34 and Ki‑67 in 
the tumor tissue specimens obtained from the xenografts. A representative tissue section is shown for each group (magnification, x400).
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were consistent with our previous data (11). The opposite effects 
were observed in the TGF‑β1 group. SB431542 and NSC23766 
attenuated the inhibitory effect of TGF‑β1 on E‑cadherin 
expression and weakened the enhanced effects of TGF‑β1 on 
vimentin, Ki‑67 and CD34 expression. Furthermore, DADS 
exerted the same effects on the expression of these proteins as 
these inhibitors (Fig. 6).

Discussion

TGF‑β1 downregulates the expression of E‑cadherin and 
upregulates the expression of vimentin, inducing EMT in 
gastric cancer cells (6). SB431542 (a TGF‑β1 receptor inhib-
itor) blocks the TGF‑β1 signaling pathway (16,17) and reverses 
TGF‑β1‑induced EMT in esophageal cancer cells, by down-
regulating the expression of N‑cadherin and vimentin and 
upregulating the expression of E‑cadherin (17). In the present 
study, we demonstrated that DADS decreased the expression 
of TGF‑β1 and exerted same effects as SB431542, which abol-
ished the enhanced effects of TGF‑β1 on EMT and invasion in 
gastric cancer cells. Therefore, DADS inhibited EMT through 
the downregulation of TGF‑β1 in gastric cancer cells.

We observed that Rac1 and β‑catenin expression levels 
were increased in TGF‑β1 treated gastric cancer cells which 
indicated that TGF‑β1 may positively regulate the expression 
of Rac1 and β‑catenin. DADS and SB431542 abrogated the 
TGF‑β1 induced upregulation of the expression of Rac1 and 
β‑catenin which indicated that downregulation of TGF‑β1 
by DADS resulted in reduced Rac1 and β‑catenin expres-
sion. Rac1 (10) and β‑catenin (7) pathways are involved in 
TGF‑β1‑induced EMT. DADS inactivates the β‑catenin 
pathway and inhibits EMT in breast cancer cells (9). TGF‑β1 
induces EMT in prostate cancer cells via the activation 
of the Rac1/Pak1 pathway  (10). DADS downregulates the 
Rac1/LIMK1 pathway, inhibiting EMT in gastric cancer 
cells (11). The decreased expression of Rac1 and β‑catenin 
may contribute to the suppression of TGF‑β1‑induced EMT in 
gastric cancer cells.

We revealed that TGF‑β1 promoted the expression of TGF‑β1, 
while DADS and the TGF‑β1 receptor inhibitor antagonized 
this effect. Furthermore, NSC23766, a Rac1 specific inhibitor, 
decreased the expression of TGF‑β1 in TGF‑β1‑treated cells, 
indicating that Rac1 also positively regulated the expression of 
TGF‑β1. NSC23766 inactivates Rac1 and results in abolishing 
colon cancer cell migration and invasion (18). Cigarette smoke 
extract  (CSE)‑induced EMT in pulmonary epithelial cells 
is associated with elevated Rac1 expression and increased 
TGF‑β1 release and Rac1 inhibition by NSC23766 or knock-
down decreases TGF‑β1 release and abolishes CSE‑induced 
EMT (19). TGF‑β1 can induce the upregulated expression of 
Rac1 (20). Thus, a reciprocal positive interplay in expression 
regulation may exist between Rac1 and TGF‑β1, and DADS 
may inhibit this positive feedback regulation mechanism.

There exists crosstalk between Rac1 and Wnt/β‑catenin 
pathways. Rac1 acts as an upstream regulator of β‑catenin. 
Overexpression of Rac1 augments Wnt3a‑stimulated tran-
scription of β‑catenin target genes  (21). Rac1‑mediated 
JNK2 activation by Wnt3a promotes β‑catenin phosphoryla-
tion and nuclear localization in ST2 cells (22). Rac1/PAK1 
is required for the superactivation of β‑catenin in colon 

cancer cells  (23), and Rac1 promotes the formation of 
nuclear β‑catenin‑lymphoid enhancer factor 1  (LEF‑1) 
complexes (24). Even without Wnt stimulation, Rac1 can still 
recruit β‑catenin to its target genes and act as a co‑activator 
in β‑catenin/TCF (T cell factor)‑mediated transcription in 
colon cancer cells (25). Furthermore, the interaction of active 
or inactive Rac1 with β‑catenin is required for the nuclear 
translocation of β‑catenin and Rac1 can promote β‑catenin 
target gene transcription in breast cancer cells (26). TGF‑β1 
induces Rac1 activation in prostate cancer cells (10). Rac1 
inhibitors attenuate Wnt/β‑catenin pathway in breast cancer 
cells, reducing cell migration and invasion (27). We hypoth-
esized that the increased Rac1 expression by TGF‑β1 may 
facilitate the expression and activation of β‑catenin in gastric 
cancer cells, while the reduced expression of Rac1 by DADS 
may reverse this effect of TGF‑β1.

Rac1‑mediated activation of β‑catenin regulates the 
expression of Snail and MMP9, whereas knockdown of Rac1 
decreases the expression and activation of β‑catenin, resulting 
in impairing trophoblast invasion (28), which indicates that 
Rac1 may regulate the expression of β‑catenin in addition to 
activating β‑catenin. TGF‑β1‑induced EMT is mediated by 
ERK‑dependent β‑catenin upregulation and nuclear trans-
location in renal tubular epithelial cells (7). Rac1‑mediated 
ERK activation is involved in TGF‑β1‑induced EMT in 
keratinocytes  (29). We previously verified that DADS can 
downregulate Rac1/LIMK1 (11) and ERK (12) pathways in 
gastric cancer cells. We revealed that DADS, SB431542 and 
NSC23766 prohibited TGF‑β1‑induced upregulation of the 
expression of β‑catenin. These data indicated that DADS 
reduced the expression of β‑catenin through downregulation 
of the TGF‑β1/Rac1 pathway in gastric cancer cells, which 
may, in part, account for the inhibitory effects of DADS on 
TGF‑β1‑induced EMT and invasion.

TGF‑β1‑mediated activation of Rac1/Pak1 pathway is associ-
ated with prostate tumor xenograft growth (10). Downregulation 
of Rac1/Pak1/LIMK1 (11) and Wmt/β‑catenin (13) pathways is 
associated with the growth inhibition of gastric cancer cells 
in vitro and in vivo. In in vivo experiments, we further verified 
that DADS can reverse TGF‑β1‑induced EMT by blocking the 
TGF‑β1/Rac1 pathway, which was supported by the upregula-
tion of vimentin and the downregulation of E‑cadehrin. Ki‑67 
is widely used as a marker to assess cell proliferation (30) and 
the overexpression of Ki‑67 is related to poor prognosis of 
patients with gastric cancer (31). CD34 is a specific angiogenic 
marker and its expression is modulated by Pak1 (32). We have 
demonstrated that the decreased expression of Ki‑67 and CD34 
due to DADS‑induced downregulation of LIMK1 is in accor-
dance with the tumor growth inhibition (11). We illustrated 
that TGF‑β1‑induced tumor growth was attenuated by TGF‑β1 
receptor inhibitor SB431542 and Rac1 inhibitor NSC23766, 
concomitantly with the reduced expression of Ki‑67 and CD34 
in the transplanted gastric tumor.

In conclusion, DADS inhibited EMT, invasion and growth 
of gastric cancer cells by decreasing TGF‑β1 expression, 
concomitantly with reduced Rac1 and β‑catenin expression. 
These data indicated that the downregulation of TGF‑β1/Rac1 
pathway may, in part, account for the molecular mechanisms 
through which DADS exerts anti‑EMT and antitumor growth 
effects in gastric cancer.
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