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Abstract. Store-operated calcium entry (SOCE) is critical for 
regulating the proliferation and metastasis of various cancer 
types. The present study aimed to investigate the role of SOCE 
on nicotine-promoted proliferation of non-small cell lung 
cancer (NSCLC) A549 cells. Cell proliferation was evaluated 
by BrdU incorporation assay. The SOCE and basal [Ca2+]i in 
NSCLC A549 cells were determined using Fura‑2 fluores-
cence microscopy. The mRNA and protein expression levels 
were determined by real-time quantitative PCR and western 
blotting, respectively. The results demonstrated that, in A549 
cells, the detectable store-operated calcium channel (SOCC) 
components were TRPC proteins 1, 3, 4 and 6 and Orail, 
among which TRPC1, TRPC6 and Orai1 are expressed at 
relatively high levels with TRPC3 and TRPC4 at relatively low 
levels. Nicotine upregulated the mRNA and protein expres-
sion of TRPC1, TRPC6 and Orai1, increased basal [Ca2+]i 
and enhanced SOCE. Promotion of cell proliferation but not 
migration was observed in the nicotine-treated cells, which 
was inhibited by SOCE inhibitor SKF-96365. Furthermore, 
nicotine upregulated HIF-1α expression in the A549 and 
NCI-H292 cells. Silencing of HIF-1α abrogated the increases 
in TRPCs and Orail and reversed the increases in basal 
[Ca2+]i and SOCE. Meanwhile, suppression of proliferation 
was observed in cells following HIF-1α silencing. In conclu-
sion, the results indicate that nicotine promotes lung cancer 
cell proliferation likely by upregulating HIF-1α and SOCC 

components and therefore enhancing SOCE and increasing 
basal [Ca2+]i.

Introduction

Lung cancer is the most commonly diagnosed cancer and the 
most common cause of cancer-related death worldwide (1). 
Approximately 85% of lung cancer cases are attributed 
to smoking, not including those occurring in nonsmokers 
exposed to second-hand smoke (2). As a major component in 
cigarette smoke, nicotine contributes to tumor progression by 
activating angiogenesis, promoting cell proliferation and inva-
sion, and inhibiting apoptosis, although it does not provoke 
tumorigenesis (3,4). Calcium-mediated signal transduction is 
suggested to be one of the underlying mechanisms involved 
in the tumor-promoting effects induced by nicotine/nicotinic 
receptors (5,6). In tumor progression, the diversity of calcium 
channels, mostly non-voltage gated calcium channels, on the 
plasma membrane is relevant to the differential behaviors in 
proliferation and migration of cancer cells (7). Store-operated 
Ca2+ entry (SOCE), activated by intracellular Ca2+ store deple-
tion, is the primary mechanism for Ca2+ influx in non‑exitable 
cells (8). It has been found that SOCE remodeling is associated 
with tumor progression in various human cancers (9,10).

The Orai channels and Ca2+-permeable transient receptor 
potential canonical (TRPC) channels are Ca2+-permeable 
channels involved in SOCE upon the binding of the stromal 
interaction molecule (STIM) proteins as Ca2+ sensors (11). 
There are three mammalian Orai homologues (Orai1-3) 
showing differences in response to the process of Ca2+ depo-
tentiation (12) and six TRPC isoforms (TRPC1-6) serving as 
non-selective Ca2+-permeable cation channels, through which 
the Ca2+ current in SOCE is generated by the formations of 
Orai1-STIM1 or TRPCs-STIM1 components (13,14).

Hypoxia is a common feature of solid tumor masses 
and is essential for the formation of the cellular and physi-
ologic characteristics of cancer (15). The association between 
hypoxia and intracellular [Ca2+]i regulation has been identified 
in hepatoma cells, in which HIF-1α, a key regulator for the 
adaption of cancer cells to a low-oxygen microenvironment, 
enhanced STIM1 transcription and contributed to SOCE 
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and tumorigenesis (16,17). Furthermore, both inhibition of 
TRPC6-mediated calcium signaling and attenuation of HIF-1α 
signaling elevated the sensitivity of tumor cells to drugs (18).

In human non-small cell lung cancer cells, it has been found 
that nicotine induced HIF-1α overexpression (19). Excessive 
HIF-1α expression was associated with the growth of lung 
cancer A549 cells in vitro and in vivo (20). Nevertheless, the 
association between nicotine-induced HIF-1α change and 
SOCE in lung tumor cell growth remains unclear. In this 
present study, we evaluated the effects of nicotine on changes 
in the expression of store-operated calcium channel (SOCC) 
components and SOCE in A549 cells. We demonstrated 
overexpression of HIF-1α-mediated SOCC components 
enhancement of SOCE in the presence of nicotine.

Materials and methods

Reagents. (-)-Nicotine ditartrate was purchased from 
Calbiochem (San Diego, CA, USA; cat. no. 481975). Nifedipine, 
cyclopiazonic acid (CPA) and SKF-96365 were obtained from 
Sigma-Aldrich Inc. (St. Louis, MO, USA). Fluorescent dye 
fura‑2 AM was from Invitrogen (Thermo Fisher Scientific, 
Waltham, MA, USA).

Cell culture and treatment. The non-small cell lung cancer 
cell line A549 was obtained from the American Type Culture 
Collection (ATCC; Rockville, MD, USA) and grown in 
Dulbecco's modified Eagle's medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 
100 µg/ml streptomycin at 37˚C in a humidified atmosphere 
containing 5% CO2. For nicotine treatment, the cells were 
seeded into 6-well plates at a density of 1x105 cells per well, 
grown until 70% confluence and exchanged with serum‑free 
medium for a 12-h culture to reach growth arrest. Then, the 
cells were treated with nicotine in medium containing 0.1% 
FBS for the indicated time before being collected for further 
analyses.

RNA extraction and quantitative real‑time PCR. Total 
RNA in cultured cells was extracted with TRIzol reagent 
(Invitrogen; Thermo Fisher Scientific) according to the manu-
facturer's instructions. Reverse transcription into cDNA was 
performed from 1 µg total RNA and quantitative real-time 
PCR was carried out by using Scofast™ EvaGreen superMix 
(Bio-Rad Laboratories, Hercules, CA, USA) and primers listed 
in Table I. The relative concentration of each transcript was 
calculated using the Pfaffl method (21) and normalized to 18S 
as an internal control for each sample.

RNA interference. For the transient silencing of HIF-1α gene 
expression, small interfering RNA (siRNA) targeting to HIF-1α 
(siHIF-1α, 5'-CCA CCA CUG AUG AAU UAA ATT-3') and 
negative control small interfering RNA (siNT, 5'-UUC UCC 
GAA CGU GUC ACG UTT-3') were transfected into A549 cells 
using HiPerFect Transfection Reagent (Qiagen, Duesseldorf, 
Germany) at a final concentration of 5 nM for 24 h. Then the 
cells were subjected to nicotine treatment for 24 or 48 h.

Western blotting. Cells were homogenized in RIPA buffer 
(20 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% 

sodium deoxycholate, 2 mM EGTA, 2 mM EDTA, 0.1% 
SDS) containing protease inhibitor cocktail (Sigma-Aldrich 
Inc.). Equal amount of total proteins for each sample was 
separated on SDS-PAGE gel, blotted with primary anti-
bodies against human TRPC1 (1:1,000; rabbit polyclonal; 
cat. no. ACC-010; Alomone Labs, Jerusalem, Israel), TRPC6 
(1:1,000; rabbit polyclonal; cat. no. ACC-017; Alomone Labs), 
Orai1 (1:1,000; rabbit polyclonal; cat. no. 4281; ProSci, Inc., 
San Diego, CA, USA), HIF-1α (1:1,000; mouse monoclone; 
cat. no. ab113642; Abcam, Cambridge, UK) or β-actin 
(1:1,000; mouse monoclone; cat. no. ab8226; Abcam) and 
then with the corresponding HRP-conjugated secondary 
antibodies (Kirkegaard & Perry Laboratories, Gaithersburg, 
MD, USA). Final ly,  the signals were visual ized 
with enhanced chemiluminescence reagents (ECL; Bio-Rad 
Laboratories).

Proliferation analysis. Cell proliferation was evaluated by 
using a colorimetric BrdU cell proliferation assay kit (Roche, 
South San Francisco, CA, USA) according to the manufac-
turer's instructions. Cell proliferation was quantified by BrdU 
incorporation and expressed as a multiple of the value of the 
control cells.

Scrape‑wound migration assay. A scrape-wound migration 
assay was used to assess the effects of nicotine on cell mobility. 
A wound was produced in a confluent monolayer of A549 cells 
by scraping the cells with a pipette tip. Then, the cells were 
replenished with DMEM containing 0.1% FBS with nicotine 
(1 µM) and/or SKF-96365 (1 µM) to drive cell migration. 
Bright‑field images of the wound area were captured at 0 and 

Table I. Primers used for quantitative RT-PCR.

TRPC1 Forward: 5' TTGTGGAGGTGGAATTCAGG 3'
 Reverse: 5' CGTTTGTCA AGAGGCTCGTC 3'
TRPC2 Forward: 5' TCATGGTCATTGTGCTGCTC 3'
 Reverse: 5' ACTCCACGTCAGCATCATCC 3'
TRPC3 Forward: 5' CAGCCAACACGTTATCAGCA 3'
 Reverse: 5' CCTCAGTTGCTTGGCTCTTG 3'
TRPC4 Forward: 5' CGAAAGGGTTAACCTGCAAA 3'
 Reverse: 5' CAGGGACTGCAGTGTCTCAA 3'
TRPC5 Forward: 5' GTGCTGCTGAACATGCTGAT 3'
 Reverse: 5' GCTTCGTCCTTGCAAACTTC 3'
TRPC6 Forward: 5' CAGACAATGGCGGTCAAGTT 3'
 Reverse: 5' TGGTCCACGCATTATCTTCC 3'
TRPC7 Forward: 5' GTTAAAACCCTGCCAAACGA 3'
 Reverse: 5' TCCCAGATTTCCTTGCATTC 3'
HIF-1α Forward: 5' TGCTTGGTGCTGATTTGTGAACC 3'
 Reverse: 5' CTGTCCTGTGGTGACTTGTCC 3'
Orai1 Forward: 5' ACGTGCACAATCTCAACTCG 3'
 Reverse: 5' AGCACCACCTCAGCTAGGAA 3'
18S Forward: 5' GCAATTATTCCCCATGAACG 3'
 Reverse: 5' GGCCTCACTAAACCATCCAA 3'



ONCOLOGY REPORTS  40:  2097-2104,  2018 2099

24 h post-wounding with a Leica (DMI3000B) microscope 
(Leica Microsystems, Frankfurt, Germany) and the total number 
of pixels in the empty spaces inside the wound were counted 
using Adobe Photoshop CS5. At least three photographs 
were taken per group at each time-point. The migration 
capacity was calculated as the empty space at 0 h minus the 
empty space at 24 h and was represented as a percentage relative 
to the control.

Measurement of intracellular [Ca2+]i and SOCE by fura‑2 
fluorescence. Intracellular [Ca2+]i and SOCE were measured 
according to methods described previously (22). A549 cells 
seeded on coverslips were incubated with 5 µM fura-2 AM 
for 1 h in the dark at room temperature. Then, the coverslips 
were perfused with physiological salt solution (PSS, 130 mM 
NaCl, 5 mM KCl, 1.2 mM MgCl2, 10 mM HEPES and 10 mM 
glucose) for 10 min to remove the extracellular fura-2 AM. 
Basal [Ca2+]i was determined at 12-sec intervals from the 
ratio of fura‑2 fluorescence emitted at 510 nm after excita-
tion at 340 nm to that after excitation at 380 nm (F340/F380) 
measured using a xenon lamp (Lambda DG4; Sutter Instrument 
Company, Novato, CA, USA) in 20 to 30 cells.

After basal [Ca2+]i measurement, the cells were perfused 
with [Ca2+]-free PSS containing 0.5 mM EGTA for 5 min 
to chelate residual Ca2+ and then with PSS containing 5 µM 
nifedipine and 10 µM CPA to prevent calcium entry through 
L-type VOCC and to deplete SR Ca2+ stores. To assess SOCE, 
the peak increase in [Ca2+]i (ratio F340/F380) caused by resto-
ration of extracellular Ca2+ (2.5 mM Ca2+ in PSS perfusate 
containing nifedipine and CPA) was determined.

Statistical analysis. All experiments were repeated three 
times. Data were statistically analyzed using the two-tailed 
Student's t-test and are represented as means ± SEM. *P<0.05 
and **P<0.01 indicate a significant and extremely significant 
difference, respectively.

Results

Nicotine upregulates the expression of SOCC components in 
A549 cells. The calcium channel SOCCs in mammalian cells 
are thought to be composed of TRPCs, Orai1 and STIM1 (23). 
In NSCLC A549 cells, among the seven TRPC members, 
TRPC1 and TRPC6 were expressed at relatively high levels 
with relatively low levels of TRPC3 and TRPC4. The expres-
sion levels of the other three TRPCs members, TRPC2, 
TRPC5 and TRPC7, were not detected in our study (Fig. 1A). 
The levels of TRPC6 and Orai1 in A549 cells were upregulated 
following exposure to nicotine at a dose as low as 0.01 µM, 
and were further upregulated by higher levels of nicotine in a 
dose-dependent manner (1-100 µM). The protein TRPC1 was 
not increased by nicotine at a dose lower than 1 µM, although a 
trend of upregulation was observed at the concentration 1 µM. 
Further increased nicotine dosages of 10 or 100 µM did not 
induce further upregulation of the proteins TRPC6 and Orai1 
when compared with the dose at 1 µM (Fig. 1B and C), but 
did induce obvious cytotoxicity-like cell death. In human 
smokers, the average peak plasma nicotine level in smoking is 
around 10-50 mg/ml (~60-310 nM) (24). Therefore, we chose 
to expose cells to 1 µM nicotine in the present study.

Nicotine increases SOCE and basal intracellular [Ca2+]i level. 
To examine the effects of nicotine on calcium influx, we 
measured the SOCE and basal [Ca2+]i in A549 cells. A 48-h 
exposure to nicotine increased basal [Ca2+]i (Fig. 2A and B). 
After washing the cells with Ca2+-free PSS containing 10 µM 
CPA and 5 µM nifedipine, a low pulse of [Ca2+]i increase was 
detected at 10 min which indicated store calcium release and 
the peak [Ca2+]i at 20 min reflected SOCE resulting from 
the restoration of extracellular Ca2+ at 2.5 mM. Basically, 
nicotine exposure enhanced basal [Ca2+]i and SOCE of A549 
cells (Fig. 2A and C).

Blockage of SOCE prevents cell proliferation upon nicotine 
exposure. Nicotine has been reported to promote the prolif-
eration and migration of A549 cells (25). In our study, a 
scrape-wound migration assay was conducted to evaluate 
cell migration capacity. As shown in Fig. 3A and B, nicotine 
(1 µM in 0.1% FBS) did not induce obvious accelerated cell 
migration when compared with those cells without nicotine 
exposure at 24 h. However, TRPC inhibitor SKF-96365 effec-
tively abrogated cell migration, no matter whether nicotine 

Figure 1. Nicotine induces changes in the expression of SOCC components. 
(A) Basal mRNA levels of store-operated calcium channel (SOCC) compo-
nents, TRPC family members 1-7 and Orai1, were determined by quantitative 
RT-PCR in A549 cells. (B) A549 cells were exposed to nicotine (0-100 µM) 
for 48 h. The protein levels of TRPC1, TRPC6 and Orai1 were determined 
using western blotting. The results are from one representative experiment 
out of three similar experiments. (C) The intensity of each band was quanti-
fied, normalized to internal control β-actin and expressed as the multiple 
of the samples without nicotine exposure. The results are from experiments 
conducted in triplicate and data are presented as mean ± SEM. *P<0.05, cells 
exposed to nicotine vs. cells without nicotine exposure.
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was present. The BrdU incorporation assay showed that nico-
tine enhanced cell proliferation at 48 h. The TRPC inhibitor 
SKF-96365 inhibited both basal and nicotine triggered cell 
proliferation (Fig. 3C).

HIF‑1α is required for upregulation of SOCC components 
induced by nicotine. Since nicotine has been reported to 
increase HIF-1α in NSCLC cells and HIF-1α modulated 
expression of SOCC components in pulmonary artery smooth 

Figure 2. Effects of nicotine on basal [Ca2+]i and SOCE in A549 cells. A549 cells were exposed to saline (vehicle) or nicotine (1 µM) for 48 h. After the 
cells were incubated with 5 µM fura‑2 AM, the ratio of fura‑2 fluorescence emitted at 510 nm after excitation at 340 nm to that after excitation at 380 nm 
(F340/F380) was determined. (A) Time course of [Ca2+]i before and after restoration of extracellular Ca2+ in cells perfused with Ca2+-free physiological salt 
solution (PSS) containing 5 µM nifedipine and 10 µM cyclopiazonic acid (CPA) (n=4 experiments in 119 cells). (B) Average basal intracellular [Ca2+]i and 
(C) store-operated calcium entry (SOCE) (average peak Δ[Ca2+]i shown in A, obtained from cell restored extracellular Ca2+). S, saline; N, nicotine. Data are 
presented as mean ± SEM. *P<0.05, cells treated with saline vs. cells exposed to nicotine.

Figure 3. TRPC inhibitor SKF-96365 attenutates cell mobility and proliferation upon nicotine exposure. (A and B) A549 cells were seeded on a 6-well plate and 
scraped to produce a wound. Then the cells were incubated with 1 µM nicotine in the presence of TRPC inhibitor SKF-96365 (1 µM). Images of the wound area 
were taken at 0 and 24 h post-wounding. The cell migration is expressed as a percentage of the cells without nicotine and SKF-96365 treatments. At least three 
images were taken per group at each time point and the results are from one representative group of images. Results are presented as mean ± SEM. **P<0.01. 
(C) A549 cells were seeded on a 96-well plate and exposed to 1 µM nicotine or 1 µM SKF-96365. The cell proliferation was evaluated by BrdU incorporation 
assay at 48 h and is expressed as a multiple of the value of the control cells. The results are from three experiments and are presented as mean ± SEM. **P<0.01.



ONCOLOGY REPORTS  40:  2097-2104,  2018 2101

muscle cells (26,27), the effects of HIF-1α on nicotine-trig-
gered expression of SOCC components were evaluated in 
A549 cells. As shown in Fig. 4A, nicotine induced an increase 
in the HIF-1α level in A549 cells at 48 h. A small interfering 
RNA against HIF-1α (siHIF-1α) was used to silence HIF-1α 

expression (Fig. 4B). After 48-h nicotine exposure, siHIF-1α 
reduced the basal protein levels of HIF-1α and SOCC compo-
nents TRPC1, TRPC6 and Orai1, and abolished the upregulation 
of these proteins caused by nicotine exposure (Fig. 4C). 
Similar upregulatory effects of HIF-1α on SOCC components 

Figure 4. HIF-1α deficiency impacts expression of store‑operated calcium channel (SOCC) components in A549 cells. (A) A549 cells were treated with 
nicotine (1 µM) for 48 h. The protein levels of HIF-1α were determined using western blotting. The relative expression of HIF-1α to β-actin is expressed as 
the multiple of the control cells after intensity quantification of the bands. S, saline; N, nicotine. (B) A549 cells were transfected with siHIF‑1α to silence 
HIF-1α expression. The mRNA levels of HIF-1α were determined at 24 h after siRNA transfection. (C) Nicotine (1 µM) was used to expose cells at 24 h after 
siHIF-1α transfection. The protein levels of TRPC1, TRPC6 and Orai1 were determined at 48 h after nicotine exposure. The results are from one representative 
experiment out of three similar experiments. The intensity of the band was quantified, normalized to internal control β-actin and is expressed as the multiple 
of the samples treated with only siNT. Data are presented as mean ± SEM. *P<0.05 and **P<0.01.

Figure 5. Basal [Ca2+]i and SOCE are decreased in cells lacking HIF-1α. A549 cells underwent siHIF-1α or siNT transfection and subsequent nicotine (1 µM) 
exposure. After 48 h, the cells were subjected for assessment of the ratio of fura‑2 fluorescence emitted at 510 nm after excitation at 340 nm to that after 
excitation at 380 nm (F340/F380) under incubation with 5 µM fura-2 AM. (A) Time course of [Ca2+]i before and after restoration of extracellular Ca2+ in cells 
perfused with Ca2+-free physiological salt solution (PSS) containing 5 µM nifedipine and 10 µM cyclopiazonic acid (CPA) (n=4 experiments in 115 cells). 
(B) Average basal intracellular [Ca2+]i and (C) store-operated calcium entry (SOCE) (average peak Δ[Ca2+]i shown in A, obtained from cells with restored 
extracellular Ca2+). Data are presented as mean ± SEM. *P<0.05 and **P<0.01.
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were also found in another NSCLC cell line, NCI-H292, in 
which the upregulation of SOCC components upon nicotine 
exposure were attenuted by siHIF-1α (data not shown).

HIF‑1α deficiency abolishes the increases in basal [Ca2+]i and 
SOCE induced by nicotine. Since HIF-1α deficiency reduced 
expression of SOCC components in A549 cells, we therefore 
measured the basal [Ca2+]i and SOCE when HIF-1α expres-
sion was abolished. Downregulation of HIF-1α expression 
with siHIF-1α decreased basal [Ca2+]i in the A549 cells 
and abolished the increase in basal [Ca2+]i induced by nico-
tine (Fig. 5A and B). Furthermore, HIF-1α deficiency not 
only reduced SOCE in the A549 cells, but prevented SOCE 
increase induced by nicotine (Fig. 5A and C).

Loss of HIF‑1α eliminates nicotine‑induced cell proliferation. 
The effects of HIF-1α on cell proliferation were evaluated. As 
shown in Fig. 6, HIF-1α deficiency induced by siHIF‑1α trans-
fection suppressed cell proliferation in cells with or without 
nicotine exposure at 48 h.

Discussion

Lung cancer is a serious life-threatening disease and cigarette 
smoking is the primary risk factor. In the present study, we 
demonstrated that nicotine, the major component in cigarette 
smoke, upregulated the expression of HIF-1α and SOCC 
components, and promoted cell proliferation in A549 cells. 
Enhanced SOCE and elevated intracellular [Ca2+]i were asso-
ciated with the upregulation of HIF-1α. Silencing of HIF-1α 
or blocking SOCE abolished the nicotine-induced cell prolif-
eration. Therefore, HIF-1α mediated the promotive effects 
of nicotine on SOCC component expression, SOCE and cell 
proliferation in lung cancer cells.

Intracellular [Ca2+]i regulated by SOCE is essential for 
modulating cell migration and proliferation in normal and 
cancer cells. Suppression of SOCE by abolishing SOCC 
component expression was found to prevent the prolifera-
tion and invasion of lung cancer cells (28-30). In the present 
study, we determined the expression of SOCC components in 

A549 cells. The expression of TRPC isoforms in A549 cells is 
consistent with the expressional profile of TRPCs in NSCLC 
tissue, in which the mRNA levels of TRPC1, 3, 4 and 6 are 
detectable and the levels of TRPC2, 5 and 7 are below the 
detection limit (31).

Nicotine participates in the progression of lung cancer 
through the non-neuronal cholinergic system mediated by 
the nicotine acetylcholine receptor (32,33). Normal bronchial 
epithelial cells express α3-, α4-, α5- and α7-nAChR subunits 
which modulate Ca2+ metabolism (34). The receptors nAChRs 
are functionally conserved in mediating nicotine responses on 
TRPCs in neurons from worms to mammals (35). However, to 
date it is not known which nAChR subunit mediates the func-
tions of nicotine in regulating expression of SOCC components 
in epithelial cells. The candidates could be α5- and α7-nAChR, 
as it has been suggested that the dysregulations of α5- and 
α7-nAChR in lung cancer tissues are associated with different 
influences of nicotine on the tumorigenesis of different lung 
cancer types (36).

The present study demonstrated that HIF-1α mediated the 
upregulatory effects of nicotine on TRPCs and Orai1. It has 
been confirmed that nicotine upregulates HIF‑1α expression 
through binding α5-nAChR and activating the downstream 
Erk1/2 or PI3K/Akt signaling in NSCLC (26,37). Actually, 
the genes encoding TRPCs could be target genes of HIF-1α in 
modulating the growth of various types of cells, since, except 
for nicotine, HIF-1α is believed to be a common mediator of 
various factors in enhancing the expression of TRPCs, SOCC 
and intracellular [Ca2+] in pulmonary arterial smooth muscle 
cells and cardiomyocytes suffering hypoxia, which result in cell 
proliferation and migration or tissue hypertrophy (27,38,39).

Although the association between Orai1 dysexpression 
and lung cancer progression remains to be evaluated, Orai1 
elevation is related to enhanced tumor cell proliferation 
and invasion (40). Our results not only demonstrated the 
involvement of Orai1 in nicotine-triggered lung cancer cell 
proliferation, but showed that Orai1 may be a target gene of 
HIF-1α. Furthermore, like in other cell types, it is reasonable 
to suppose that the functions of Orai1 on SOCE in lung tumor 
cells might not be limited as a channel forming protein, but as 
a regulator for SOCC complex formation, including regulating 
the recruitment of TRPC1 (41) or the formation of ternary 
complex of TRPC-Orai1-STIM1 (42).

Based on our results, it is comprehensible to suggest that 
HIF-1α upregulation upon nicotine stimulation eventually 
promotes lung tumor cell proliferation by increasing expres-
sion of SOCC components and intracellular [Ca2+]. Actually, 
nicotine-activated signaling mediated by PKC, NF-κB, Srk, 
PI3K/Akt, Raf-1, ERK1/2 and p90RSK are related with 
increases in cell proliferation, migration, invasion or inhibi-
tion of cell apoptosis (43-46). However, we did not observe an 
obvious change in migration within 24 to 48 h upon nicotine 
exposure, although inhibition of SOCE abolished cell migra-
tion (Fig. 3B and data not shown). Probably this was due to 
the lower concentration of nicotine used in this study when 
compared with other studies, which may need a longer time to 
trigger a change in migration capacity (25,47).

In summary, the present study demonstrated that nicotine 
upregulated the expression of SOCC components TRPC6 
and Orai1 by increasing HIF-1α expression in NSCLC cells, 

Figure 6. Cell proliferations upon siHIF-1α transfection and nicotine expo-
sure. Cells transfected with siHIF-1α or siNT were seeded on a 96-well plate 
and exposed to 1 µM nicotine. The cell proliferation was evaluated by BrdU 
incorporation at 48 h and is expressed as the multiple of the cells transfected 
only with siNT. The results are from three experiments and are presented as 
mean ± SEM. *P<0.05 and **P<0.01.
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which eventually led to enhanced SOCE, elevated intracellular 
[Ca2+]i and promotion of cell proliferation. These findings 
suggest that HIF-1α-SOCE signaling plays a pivotal role in 
pro-tumor functions of nicotine in NSCLC.
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