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Abstract. P‑element‑induced wimpy testis (PIWI)‑interacting 
RNAs (piRNAs) are epigenetic‑related short ncRNAs that 
participate in chromatin regulation, transposon silencing, and 
modification of specific gene sites. These epigenetic factors 
or alterations are also involved in the growth of a variety 
of human cancers, including lung, breast, and colon cancer. 
Accumulating evidence has revealed that tumor metastasis 
and invasion involve genetic and epigenetic factors. Cancer 
metastasis is characterized by epigenetic alterations including 
DNA methylation and histone modification. Changes in DNA 
methylation, H3K9me3 heterochromatin and transposable 
elements have been detected in several cancers. piRNAs may 
function in gene silencing and gene modification upstream 
or downstream of oncogenes in cancer cell lines or cancer 
tissues. In addition to piRNAs, PIWI proteins can be used as 
biomarkers for prognosis, diagnosis and clinical evaluation 
and may be factors in cancer metastasis. Here, we elucidated 
the possible mechanisms by which piRNAs regulate cancer 
metastasis, including but not restricted to influencing DNA 
and histone methylation and transposable elements.
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1. Introduction

P‑element‑induced wimpy testis (PIWI)‑interacting RNAs 
(piRNAs) belong to a new class of ncRNAs that have been asso-
ciated with many cancers (1). piRNAs are involved in the gene 
regulation process in which certain nucleotides bind coding 
regions in gene promoters (2). piRNAs function in the epigen-
etic regulation of DNA methylation (3), transposable silencing 
and chromatin modification (4). PIWI is a type of Argonaute 
protein that binds to piRNAs and carries out unique functions 
in somatic and germ cells, and stably expressed piRNAs have 
also been detected in human blood (5). piRNAs may be used 
as biomarkers for cancer diagnosis (6). Four PIWI proteins 
have been discovered in humans: PIWI1, PIWI2, PIWI3, and 
PIWI4 (7‑10). Furthermore, PIWI expression levels are associ-
ated with different types of cancers and clinical stages (11‑13). 
Additionally, piRNAs have been linked to proliferation, 
apoptosis (14), genomic instability (15), invasion, and metas-
tasis (16) in cancer cells. The levels of PIWI and piRNAs were 
revealed to be significantly altered between tumor tissues and 
non‑tumor tissues. The clinical pathological features of tumors 
are associated with PIWI and piRNA expression. Therefore, 
additional studies are needed to understand the role of piRNAs 
in cancer and their epigenetic mechanisms and to shed light on 
the potential of piRNAs for the diagnosis and prediction of 
clinical cancer stages.

Cancer formation involves genetic, epigenetic, and patho-
logical mechanisms (17). Cancer is a complicated disease with 
distinct genetic, epigenetic and pathological features  (18). 
Despite recent advancements in precision medicine, the 
assessment of pathological and clinical features remains the 
primary and most accurate method for diagnosing carcinoma. 
Preventing tumor metastasis is still a formidable problem in 
the world. Carcinogenesis involves genetic machineries that 
are present beginning in early childhood but are altered over 
time. Abnormal and inappropriate epigenetic alterations can 
regulate carcinoma development (19). Activation of oncogenes 
and inactivation of tumor suppressors or other cell factors and 
pathways cannot fully account for metastatic cancers. Under 
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certain circumstances, epigenetic mechanisms related to 
piRNAs may be responsible for the downstream inactivation 
of genes in tumors (20). Epigenetic modifications alter gene 
expression rather than changing the DNA sequence (21). These 
alterations are based on DNA methylation and histone protein 
modification, and non‑coding RNAs (ncRNAs) frequently 
participate in this process.

2. Epigenetic functions of PIWI and piRNAs

piRNAs play crucial roles in protecting genomic stability 
by inhibiting transposon activity and maintaining minimum 
levels of transposons in germ line, mammalian cells and other 
cell types (22). piRNAs reside in clusters within heterochro-
matin‑euchromatin boundaries and exhibit repeat‑rich regions 
with ancient fragmented transposon copies. Amplification 
of piRNAs occurs through the ‘ping‑pang’ cycle (23). This 
cycle is initiated by the emergence of a primary piRNA from 
piRNA clusters. Primary piRNAs are antisense sequences 
to expressed transposons and have the ability to cleave their 
targets, while secondary piRNAs form the AGO3 complex. 
The AGO3‑bound piRNAs interact with transposon targets, 
which include antisense transposon sequences. This interac-
tion then produces antisense piRNAs, and the ‘ping‑pang’ 
cycle continues.

PIWI proteins have been reported to be selectively 
expressed in precancerous stem cells, tumor cell lines and 
cells of various malignancies (24). PIWI and Aubergine (Aub) 
proteins accumulate in the pole plasm and transfer maternal 
piRNAs into germ line cells (25). It was previously believed 
that PIWI proteins could maintain genomic integrity in animal 
germ cells by silencing transposons. Without these proteins, 
piRNAs cannot inactivate transposons within a single 
generation. In mammals, the PIWI proteins MILI, MIWI2 
and intracisternal A‑particle (IAP) act as retrotransposons and 
function as transposon‑inhibiting factors via transposon gene 
silencing (TGS) (26). MILI is active in the cytosol, and MIWI2 
is active in the nucleus (27). MILI, also known as PIWIL2, and 
MIWI2, also known as PIWIL4, suppress transposons in the 
cytoplasm and nucleus. MIWI is a slicer similar to Argonaute 
family members, which include PIWI proteins. The function 
of the slicer MIWI depends on its binding motif, which has 
a conserved Argonaute domain sequence (27). A high degree 
of MIWI complementarity is required for piRNA targeting. 
MIWI‑associated piRNAs endonucleolytically cleave their 
target RNAs. Therefore, silencing of transposons depends on 
the piRNAs involved. Using next‑generation sequencing, we 
can analyze histone modifications and methylation across entire 
genomes. Moreover, we can identify ncRNAs that participate 
in these regulatory processes. This technology provides a link 
between epigenetic modifications and transcription (28).

3. Epigenetic functions of specific transposable elements

Transcriptional silencing, heterochromatin formation, trans-
gene silencing, HP1α alterations, histone modifications and 
transposon suppression are all associated with PIWI, piRNAs, 
the piRNA pathway and specific transposable elements (29).

As mediators of eukaryotic evolution, transposable elements 
are classified as either retrotransposons or DNA transposons. 

Notably, retrotransposons can cause genomic variations (30), 
alter chromatin structures and change the expression of nearby 
genes by integrating into genomic locations. Retrotransposons 
include long terminal repeat (LTR) and non‑LTR retrotrans-
posons. LTRs are similar to retroviruses in their structure, and 
non‑LTRs are similar to mRNAs (31).

LTRs can encode structural proteins to form virus‑like 
particles (VLPs), which can regulate gene transcription. RNA 
derived from LTRs can be reverse‑transcribed into cDNA and 
can thereby integrate into the genome (32). RNA polymerase 
II located at the 5'end of LTRs can transcribe LTRs. These 
RNA molecules are then packaged into viral particles and use 
the reverse transcription machinery to generate full‑length 
DNA. The first priming event occurs between the 5'end and 
the 3'end of LTR, and the second priming event occurs near 
the 3'end of LTR leading to production of a double‑stranded 
cDNA molecule through an additional strand transfer. Thus, 
the cDNA is integrated into the host genome. The main differ-
ence between retrotransposons and infectious retroviruses is 
the presence of the envelope (env) gene in the latter, which 
enables viruses to infect other cells. In contrast, exon open 
reading frames (ORFs) are found in retrotransposons and 
retroviral genomes (33).

Non‑LTRs are classified as either autonomous non‑LTRs, 
such as LINEs, or non‑autonomous LTRs, such as short 
interspersed nuclear elements (SINEs) (34). Retrotransposition‑
competent LINE1 includes a 5'‑untranslated region (UTR) 
that is rich in CpG‑islands; ORF1, which binds to RNA and 
ORF2, which encodes proteins such as endonuclease, reverse 
transcriptase and cysteine‑histidine‑rich domains. Similar 
to mammalian RNAs, LINE1 RNA has a poly (A) tail at the 
3'‑UTR. RNA polymerase II transcribes ORF1 and ORF2 in 
the cytoplasm (35).

Mutations are generated during the process of evolu-
tionary change. Proofreading polymerases repair damaged 
DNA sequences and eliminate potential mutations. However, 
some piRNAs can also mediate the activity of transposable 
elements  (36). HP1, a chromatin‑organizing protein, can 
affect transposon activity by regulating piRNA expression or 
by directly mediating the expression of transposons. We can 
therefore conclude that some chromatin‑organizing proteins, 
such as HP1, act upstream or downstream of piRNAs to 
regulate transposons. Mutations in Aub, PIWI, and Su(var)205 
are known to increase the activity of transposable elements in 
germline cells (37,38) (Fig. 1).

4. Epigenetic functions of specific piRNA pathway proteins

Uncontrolled transposons threaten genomic integrity, and 
these alterations can be transferred to the next generation. 
piRNAs bind with their partner PIWI to recognize and 
silence transposable elements in germ cells. Both cytoplasmic 
and nuclear PIWI proteins target the genome to mediate 
transcriptional silencing. In mice, transposon inhibition by 
piRNAs occurs via DNA methylation at CpG islands in the 
sequences of transposable elements. During this process, 
the piRNA pathway mediates and maintains high levels of 
the repressive H3K9me3 mark in LINE regions in germ cells. 
Furthermore, piRNAs recognize full‑length elements of the 
actively transposing LINE family (39).
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Scientists recently identified two piRNA pathway proteins 
that are related to transposon silencing (40). The first, CG9754, 
is a downstream piRNA pathway factor that participates in 
the nuclear PIWI‑piRNA complex involved in transcriptional 
silencing and heterochromatin formation. CG9754 is the 
first protein to target RNA or DNA, in heterochromatin and 
transcriptional silencing (41‑43). PIWI is only able to silence 
downstream proteins if it is bound to piRNAs that are engaged 
with target genes (44‑46). Recruitment of CG9754 directly to 
DNA or indirectly to RNA results in potent transcriptional 
silencing. Thus, CG9754 is sufficient to induce transcriptional 
silencing by binding to RNA. In ovarian somatic cells (OSCs), 
CG9754 is a downstream protein of PIWI  (47‑49). When 
vectors were used to delete CG9754, a decrease in the level 
of H3K9me3 was observed, and the insertion of transposable 
elements into transcriptional genomic regions was repressed. 
CG9754 mediates heterochromatin formation and integrates 
other cell factors, such as HP1α, which induces transcriptional 
silencing. SetDB1 is downstream of HP1α and CG9754, an 
important HMT effector (50‑52). EXD1 is the second impor-
tant piRNA pathway protein. MILI slicing acts as a switch that 
initiates piRNA processing. Slicing activates different types of 
primary piRNAs in MILI and MIWI. EXD1 is a component 
of the PET (PIWI‑EXD1‑TDRD12) complex, which mediates 
transcriptional gene silencing (53).

5. piRNAs and PIWI with cancer

piRNAs exhibit a long lifetime in cells, even though they are 
only 24 to 30 nt long (54), indicating that they are not easily 
degraded and may exist in cell nuclei and cytoplasm for a longer 
time than other RNAs (55). piRNAs play an important role in 
cancer development (56). Real‑time PCR and next‑generation 
sequencing analyses have made the relationship between 

piRNAs and carcinogenesis increasingly clear (11). Compared 
with non‑cancerous tissues, the expression of piR‑651, piR‑823, 
piR‑4987, piR‑20365, piR‑20485 and piR‑20583 was revealed 
to be altered in cancer cell lines (12,13).

piRNAs can serve as biomarkers for the prognosis, 
diagnosis and clinical evaluation of cancer (8). The expres-
sion level of piR‑823 in gastric cancer tissues was revealed 
to be lower than that in non‑cancerous gastric tissues (57). A 
transfection‑mediated increase in the piR‑823 level inhibited 
the growth of gastric cancer cells. These results were also 
observed in nude mice. Thus, piR‑823 may be a potential 
marker for cancer diagnosis (58).

The expression levels of PIWIL2, PIWIL4, and piR‑823 
were associated with the tumor‑node‑metastasis (TNM) stage 
of renal cell carcinoma (10). Additionally, increased piR‑4987 
expression regulated lymph node metastasis in breast cancer.

Here, we present an example to clarify the biomarker 
characteristics of piRNAs. Through small RNA sequencing 
and real‑time PCR analysis of frozen benign kidney tissues 
and renal cell carcinoma tissues, 26,991  piRNAs were 
revealed to be expressed in kidney tissues (59). In the tumor 
samples, 19 types of piRNAs were found to be deregulated, 
including 2 types that were upregulated and 17 types that were 
downregulated. Furthermore, differentiation was much more 
obvious in the metastatic renal cell carcinoma samples (16). 
By comparing the localized tumor samples to the metastatic 
samples, 46 piRNAs were found to be aberrantly expressed, 
44 of which were upregulated, while only 2 were downregu-
lated. The increased piR‑32051, piR‑39894, and piR‑43607 are 
similar in length, highly homologous and derived from the 
same piRNA cluster on chromosome 17. Increased expres-
sion of these piRNAs is found in late‑stage tumors, which 
means they are highly associated with renal cell carcinoma 
metastasis (60).

Figure 1. piRNAs bind to PIWI proteins to induce epigenetic regulation and transposon control.
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Significantly increased piR‑651 levels have been observed 
in non‑small cell lung carcinoma (NSCLC). In A549 cells, 
an NSCLC cell line, piR‑651 increased cell viability and 
metastasis. The expression of piR‑651 in A549 cells decreased 
the proportion of cells arrested in the G0/G1 phase, thereby 
promoting proliferation. Oncogenes and tumor suppressor 
genes can be detected, and piR‑651 was revealed to promote 
cancer growth via cyclin D1 and CDK4. These results have 
also been verified in lung cancer tissues from patients (61).

piR‑1245 has been revealed to be overexpressed in 
colorectal cancer, lung, breast, stomach, bladder, kidney and 
prostate cancer, indicating its significant role in carcinogenesis. 
Poor differentiation, advanced T stage, lymph node and distant 
metastasis were revealed to be closely related to higher expres-
sion of piR‑1245 in colorectal cancer (CRC). piR‑1245 also 
played a crucial role in clinical pathology and revealed poor 
overall survival (OS) in colorectal cancer patients. piR‑1245 
directly targeted ATF3, BTG1, DUSP1, FAS, NFKBIA, UPP1, 
SESN2, TP53INP1 and MDX1 to regulate tumor progression. 
Thus, it may be a prognostic biomarker in CRC (62).

Similar to miRNAs, which are stable in tissues, piRNAs 
are relatively stable and can be used to obtain reliable results 
in quantitative piRNA expression studies (63). piRNAs can be 
detected in patient plasma (64), suggesting their potential use as 
biomarkers to predict TNM stage and disease prognosis (65). 
Furthermore, piRNAs can serve as a switch allowing tumors to 
proliferate and metastasize (66). Additionally, piRNAs can be 
indicative of patient outcomes and can be helpful in selecting 
effective surgical methods, radiotherapy and chemotherapy to 
prolong patient survival time (67).

PIWI proteins have been found in human cancers, such 
as breast, lung, gastric, hepatocellular, colon, renal cell 
carcinoma, endometrial and ovarian cancer. PIWI acts via a 
distinct pathway to regulate carcinogenesis. PIWIL can affect 
transcription, causing an increase in Bcl‑XL, Stat3 and cyclin 
D1 expression (68).

Cancer stem cells (CSCs), contain epigenetic alterations 
and signaling pathways characteristic of stem cells including 
self‑renewal capacity, rapid proliferation and multiline age 
differentiation. PIWIs may be cancer testis antigens (CATs) 
and act as oncogenes or constitute markers for CSCs (69). 
Metastatic cancer cells appear to undergo epithelial‑mesen-
chymal transition (EMT) and CSC‑like phenotype  (70). 
PIWIL2 expression was associated with altered expression of 
EMT markers.

As a member of the PIWI gene family, MILI binds to 
piRNAs and plays multiple roles in gene silencing (71) and 
chromatin remodeling  (72). Transposon methylation has 
been observed in tumor cell lines and many types of human 
cancer (73‑75). MILI was revealed to control the activity of 
LINE1 by methylating its CpG island (76). The hypomethyl-
ation of LINE1 increased the risk of cancer development and 
may be an indicator of cancer grade and lymph node metas-
tasis (77,78). Wang et al found that MILI affected melanoma 
cell metastasis and cancer‑related gene expression by regulating 
LINE1 methylation (79). MILI is expressed in the melanoma 
cell line B16 but not in the highly metastatic mouse melanoma 
model B16BL6. Notably, knockdown of MILI in B16 cells 
activated MAGEA expression and increased cell migration, 
whereas MILI overexpression in the B16BL6 model inhibited 

MAGEA expression and decreased cell migration, yielding 
the opposite results  (65,80). Depletion of MILI/MIWI2 in 
mice led to reduced DNA methylation of LTR‑retrotransposon 
promoter regions (81). Thus, LINE1 methylation by MILI was 
revealed to controls the expression of cancer‑related genes 
and cell migration, and MILI plays a key role in melanoma 
metastasis and tumor progression.

6. Epigenetic mechanisms of cancer metastasis related to 
piRNAs

The function of piRNAs in tumors is related to transposable 
elements and changes in chromatin structures that are caused 
by epigenetic alterations, such as DNA hypomethylation (60). 
For example, in HeLa cells, piRNAs play an important 
role in inhibiting transposons by interacting with the HILI 
protein (82). The relationship between piRNAs and epigenetics 
is elaborated above, and the epigenetic changes account for a 
large proportion in tumors. Perhaps piRNAs and transposable 
elements, upstream or downstream of epigenetic alterations 
in tumors, affect the metastasis ability of tumors. Next, we 
will illustrate the epigenetic mechanisms of cancer metastasis 
related to piRNAs.

Cancer is a genetic and epigenetic disease (83). Cancer 
cells have the ability to invade tissues, enter systemic circu-
lation, and extravasate into surrounding interstitial tissues, 
resulting in distant capillary retention (84). The metastasis 
phenotype is associated with epigenetic alterations that are 
involved in the cancer metastasis process. Metastasis involves 
cellular invasion, migration and angiogenesis of the primary 
carcinoma. Detection of genetic or epigenetic abnormalities 
can be used to identify epigenetic alterations in lesions that 
are morphologically normal (85). Understanding the epigen-
etic mechanisms of tumor metastasis related to piRNAs 
can assist in the identification of new tumor markers and 
treatments (86).

Epigenetic evaluations involve examination of DNA 
methylation profiles, certain RNA expression profiles (87) and 
histone modification profiles (88). Epigenetic alterations do not 
involve changes in DNA sequence (89). DNA methylation and 
histone modification are the major types of epigenetic altera-
tion (90). In normal tissues, DNA methylation can prevent X 
chromosome activation and gene mutations (91), and histone 
modifications can dynamically regulate gene activity.

Here, mechanisms related to epigenetic alterations are 
briefly summarized. First, DNA methylation not only affects 
the expression of individual genes but also affects DNA 
domains by interacting with nucleosomes, thus altering DNA 
packaging. DNA methylation is inevitable and occurs on the 
cytosine of CpG dinucleotides. In mammalian cells, meth-
ylation is conferred by four main DNA methyltransferases 
(DNMTs): DNMT1 (92), DNMT3A (93), DNMT3B (94,95) 
and DNMT3L  (96). DNMT1 adds methyl groups to 
hemi‑methylated CpG sites, DNMT3A and DNMT3B meth-
ylate novel CpG sites, and DNMT3L interacts with DNMT3A 
and 3B to facilitate methylation of retrotransposons. DNA 
demethylation and remethylation comprise a balanced process 
that is disrupted in cancer cells (97). Tumor progression and 
metastasis occur due to changes in DNA methylation. Studies 
investigating DNA methylation in promoter regions have been 
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fruitful, leading to the discovery of adenomatous polyposis 
coli (APC), retinoic acid receptor β‑2 and H‑cadherin (98), 
which are also associated with tumor progression  (99). In 
primary testicular tumors, scientists detected a gain of 5'end 
promoter CpG island methylation of the PIWIL1, PIWIL2, 
PIWIL4 and TDRD1 genes in association with transcrip-
tional silencing. The DNMT3L/PIWIL2/TDRD1 complex is 
responsible for the loss of DNA methylation at LINE1 and IA 
transposons (100). The extent of DNA methylation in tumor 
tissues is lower than that in normal tissues, and the degree 
of DNA hypomethylation increases with the progression of 
malignancy. DNA hypomethylation is conducive to mitotic 
recombination, leading to chromosomal deletions and trans-
locations, which promote chromosomal rearrangements (101). 
DNA methylation in malignant cells can reactivate genomic 
DNA repeat elements, such as long interspersed element 1 
(LINE1) (77) and Alu (102). These demethylated transposons 
can be transcribed or transposed to other genomic regions 
and disrupt the genome (103). Transposable elements, which 
are abundant in the human genome, are highly mutagenic due 
to their ability to target protein‑coding genes for insertion, 
resulting in chromosome breakage and promoting illegitimate 
genome rearrangement.

Another mechanism related to cancer is histone 
modification. There are two types of nuclear chromatin, 
namely, heterochromatin and euchromatin (104). In normal 
tissues, heterochromatin is stable during various cell 
cycle phases and silences during transcription (105), and the 
genes in euchromatin are actively transcribed. As part of an 
interplay with DNA methylation, facultative heterochromatin, 
which is associated with allelic exclusion, genomic imprinting, 
X  chromosome stabilization (106), immunoglobulin (Igh/Igk) 
and T‑cell receptor‑α and ‑β  (107) gene loci, is vital for 
normal cell lineage development and cell differentiation 
via somatic methylation and inactivation of germline‑specific 
genes (108).

Histone 3 methylation and heterochromatin. Initiation, 
propagation and maintenance of heterochromatin are 
largely controlled by trimethylation of lysine 9 on histone 
H3 (H3K9me3) and other synergistic epigenetic modifica-
tions  (109). Chromosomal regions that are abundant in 
repetitive DNA help H3K9me3 stabilize constitutive hetero-
chromatin, facultative heterochromatin and intermediate or 
transient heterochromatin, the 3 heterochromatin subtypes. 
By preventing abnormal chromosome segregation, recombina-
tion and DNA replication, H3K9me3 regulates constitutive 
heterochromatin to stabilize genomic integrity (110).

Histone H3 determines the formation of different chro-
matin structures. Methylation of the N‑terminal lysine of 
histone H3 is vital for well‑documented histone modifications. 
H3K9me3, H3K36me3, and possibly H3K79me3 facilitate the 
opening of the chromatin configuration to form euchromatin, 
which is also associated with serine 10 phosphorylation and 
lysine 9 acetylation of histone H3 for active transcription 
of genes. H3K9me3 and H3K27me3 mainly function in the 
initiation, propagation and maintenance of highly compact 
heterochromatin to silence gene expression (111).

Histone proteins expose DNA euchromatin to facilitate the 
binding of transcription factors. Methylation and acetylation 

are the two major mechanisms by which histone function is 
regulated (112). Methyltransferases and demethylases modify 
the lysines of histone H3 to form mono‑, di‑, or tri‑methylated 
lysines, which contribute to chromatin structure and gene 
transcription  (113). Histone methyltransferases (HMTs) 
regulate histone proteins by transferring methyl groups 
from S‑adenosylmethionine to lysine or arginine residues 
in histones. Histone acetylation is regulated by histone 
acetyl‑transferases (HATs) and deacetylases (HDACs) (114). 
Not surprisingly, there are other histone modifications. The 
balance of these modifications and their effects on histone 
structure ultimately coordinate DNA exposure. Histone meth-
ylation is a key event in gene transcription, and it is plausible 
to speculate that this type of modification can regulate DNA 
replication, recombination, and damage repair (115).

H3K9me3 and transcriptional repressors. H3K9me3 recruits 
transcriptional repressors such as repressor element 1 silencing 
transcription factor (REST) and CoREST, which contain 
histone deacetylases (HDACs) (116,117), H3K4me3 demeth-
ylases LSD1 (118) and Rbp4 (119), to actively transcribe gene 
loci, leading to gene blocking and suppression of gene tran-
scription (120). Recruitment of DNMTs as well as additional 
histone methylases is responsible for localized chromatin 
condensation when the tethering of HP1α (heterochromatin 
protein) and HP1ß to H3K9me2 or H3K9me3 triggers gene 
silencing (121). Thus, H3K9me3 acts as a natural brake to 
prevent unnecessary over‑transcription of actively expressed 
genes. Attenuation of H3K9me3 by either over‑transcription 
of demethylases or deficiency of H3K9 methyltransferases will 
therefore lead to sustained expression of the genes involved in 
either cell cycle transition or proliferation (122).

H3K9me3 and methyltransferases in cancer. Changes in 
chromatin structure that are caused by epigenetic alterations 
can contribute to cancer development. In experimental studies 
using mice lacking SUV39, a methyltransferase that acts on 
H3K9, enhanced genomic instability and incidence of B‑cell 
lymphoma were observed (123,124). In addition, polymor-
phisms of SUV39 can increase lung cancer risk due to piRNA 
instability and decreased levels of H3K9me3. H3K9 methyl-
transferases include G9a for mono‑ and di‑methylation and 
SUV39h1/h2 for di‑ and tri‑methylation of H3K9. Similarly, 
low levels of RIZI  (125), another methyltransferase of 
H3K9, are frequently observed in lung cancer, breast cancer, 
hepatocellular carcinoma, colon cancer, neuroblastoma, and 
melanoma  (126). Methyltransferases, such as SUV39 and 
RZZI act as tumor suppressors, while some demethylases may 
have oncogenic activity. The low expression of these meth-
yltransferases in tumor cells may be the result of increased 
cell proliferation, apoptosis resistance and poor differentia-
tion (127). Global regulation of H3K9me3 has been observed 
in several human cancers, including colorectal, ovarian, and 
lung cancer, all of which are characterized by deficiency or 
elevated activity of H3K9 methyltransferases or changes in the 
expression of H3K9 demethylases (128,129).

Other epigenetic alterations in cancer. Epigenetic changes 
associated with piRNA expression, affect genes associated 
with malignant phenotypes (VE‑cadherin, VEGF‑C, PAX8, 
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Keratin 7, CD13, laminin, urokinase, α3‑integrin subunit and 
c‑met) (8).

Detection of some forms of methylation in tumors can be 
diagnostic of cancer. 5‑Hydroxymethylcytosine (5hmC) in 
cfDNA, which is found in blood originating from different 
tissues, is the basis of noninvasive prenatal diagnostic tests, 
organ transplant rejection diagnostics, and cancer detection. 
5hmC is useful in gene regulation and cancer pathogenesis 
and can be used diagnostically to identify cancer types and 
track tumor stage. Li et al observed a progressive global loss 
of 5hmC in cfDNA in lung cancer, whereas disease‑specific 
changes in the cell‑free hydroxymethylome have been observed 
in hepatocellular carcinoma and pancreatic cancer (130).

In breast and prostate cancers (131), protease urokinase‑type 
plasminogen activator [UPA (132)] was revealed to promote 
invasion and was associated with poor prognosis  (133). 
Hypomethylation of the UPA promoter activates tumor genes 
and thus worsens patient outcomes. Carcinogenesis occurs 
prior to cancer metastases (134), and hypermethylation of tissue 
inhibitor of metalloproteinase‑3 [TIMP3 (135)] was revealed 
to promote vascular growth and activate angiogenesis (136).

DNMT3Ab plays crucial role in directing EMT‑associated 
metastasis in gastric cancer (GC). Increased DNMT3A 
expression was revealed to be closely related to a poor survival 
rate in GC, breast, lung and liver cancer. Furthermore, TNM 
stage and lymph node metastasis of GC cells were more 
closely associated with DNMT3A than with DNMT1 and 
DNMT3B. Increased expression of DNMT3Ab was demon-
strated to promote GC cell migration and invasion as well 
as EMT progression. DNMT3Ab mediated the E‑cadherin 
gene via DNA hypermethylation and histone modifications of 
H3K9me2 and H3K27me3. DNMT3Ab effectively regulated 
the expression of E‑cadherin via DNA hypermethylation 
and histone modifications of H3K9me2 and H3K27me3. 
DNMT3Ab in cooperation with H3K9me2 and H3K27me3 
contributed to the transcriptional regulation of E‑cadherin in 
a Snail‑dependent manner and multiple metastasis‑associated 
genes and oncogenic signaling pathways are regulated 
by DNMT3Ab overexpression. Thus, it was revealed that 
DNMT3Ab acts as a crucial regulator of metastasis‑related 
genes in GC (137) (Table I).

Gliomas with histone H3 lysine27‑to‑methionine muta-
tions primarily occur in the central nervous system of young 
children, which means that there is a link between genetics and 
cellular context in tumorigenesis. Through single‑cell RNA 
sequencing of 3321 cells from six primary H3K27M‑glioma 
and matched models, Filbin et al found that H3K27M‑gliomas 
contained cells that resembled oligodendrocyte precursor 
cells (OPC‑like cells). OPC‑like cells tend to exhibit higher 
proliferation and a greater tumor‑propagating potential and 
some of these cells display PDGFRA signaling (138).

7. Epigenetics of ncRNAs in cancer

EMT and angiogenesis are regulated by miRNAs (139,140). 
miRNAs function in cell differentiation, proliferation, apop-
tosis and serve as tumor suppressors and tumor promoters. 
Additionally, miRNAs can control other genes in certain 
protein pathways. If the expression of certain miRNAs can 
be inhibited, cancer growth or cancer metastasis may be 

suppressed. For example, transfection of breast cancer cells 
with vectors inhibiting miRNA‑155 was revealed to reduce 
the level of CXCR4. The transfected cells exhibited lower 
migration and invasion rates in vitro and resulted in fewer lung 
metastases in vivo than control cells (141).

miRNAs, short interfering RNAs (siRNAs) and piRNAs 
are involved in the regulation of mRNA transcripts, 
chromatin‑mediated gene silencing, and DNA rearrange-
ment. miRNAs accelerate de‑adenylation of the poly(A) tail 
and downregulate the expression of some pathways, thereby 
downregulating the expression of hundreds of target genes. 
siRNAs can also control transposons. RDR2‑dependent 
siRNAs, which are endo‑siRNAs, silence transposons, 
retroelements and DNA methylation (142). siRNAs bind to a 
nascent RNA being transcribed at their target site, resulting 
in RNA‑induced transcriptional silencing (RITS) and forma-
tion of the RNA‑directed RNA polymerase complex (RDRC) 
at the site of intended heterochromatin formation, which in 
turn results in TGS. TGS occurs in the nucleus. During this 
process, siRNAs guide miRNAs to modify chromatin, which 
also influences the cell cycle (143). miR‑127 and miR‑136 are 
released near 2 CpG islands in the Rtl1 transcript and thus 
regulate RISC‑mediated cleavage of the maternal transcript, 
resulting in late‑fetal or neonatal lethality (144).

miRNAs are the best studied ncRNAs (145). miRNAs play 
a critical role in regulating the maintenance and behavior of 
stem cells during self‑renewal and differentiation. miR‑290 
serves as a transcriptional repressor of DNMTs (146). DNMTs 
can epigenetically silence OCT4, a transcription factor in 
ES cells, which can renew and differentiate into other cell 
types (147).

In mice, the miR‑290‑295 miRNA cluster was revealed 
to act as a transcriptional repressor of the DNMTs, Dnmt3a 
and Dnmt3b, resulting in the appearance of long telomeres 
and increased telomere recombination. The expression of 
this cluster remained high in undifferentiated ES cells, but 
decreased after ES cell differentiation. This example indi-
cates a direct or indirect function of miRNAs in regulating 
genes involved in self‑renewal or differentiation by affecting 
methylation.

8. Discussion

piRNA expression detected in both patient lymph nodes and 
serum samples is related to tumor treatment failure. piRNAs 
can act as tumor promoters or cancer suppressors and can 
participate in other carcinoma cell activities. piRNAs and 
PIWI can serve as biomarkers for the prognosis, diagnosis and 
clinical evaluation of cancer, and can be helpful in selecting 
effective surgical methods, radiotherapy and chemotherapy to 
prolong patient survival time. piRNA can serve as a switch, 
allowing tumors to proliferate and metastasize.

In mammals, PIWI proteins function as transposon‑
inhibiting factors through TGS. PIWI acts via a distinct 
pathway to regulate carcinogenesis by affecting transcrip-
tion and the expression of other carcinoma‑related genes 
that reduce apoptosis and increase cell proliferation and 
transformation. Transcriptional silencing, heterochromatin 
formation, transgene silencing, HP1α alteration, histone 
modifications and transposon suppression are all associated 
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with PIWI, piRNAs and the piRNA pathway. Transposable 
elements are classified as either retrotransposons or DNA 
transposons. Retrotransposons can be further divided into 
LTR and non‑LTR groups. Non‑LTRs are divided into the 
autonomous non‑LTRs LINEs and non‑autonomous LTRs 
SINEs. Chromatin‑organizing proteins such as HP1, Aub and 
Su(var)205, act upstream or downstream of piRNAs to regu-
late transposons. Hypomethylation of LINE1 increases the 
risk of cancer development and may be an indicator of cancer 
grade and lymph node metastasis. LINE1 methylation by 
MILI was revealed to control the expression of cancer‑related 
genes and cell migration, and MILI played a key role in 
melanoma metastasis and tumor progression. In the sequences 
of transposable elements, the piRNA pathway mediates and 
maintains high levels of the repressive H3K9me3 mark in 
LINE1 regions in germ cells. There are two identified pathway 
proteins that are related to transposon silencing: CG9754 
and EXD1.

Perhaps piRNAs, PIWI, transposable elements and piRNA 
pathways, upstream or downstream of the epigenetic alterations 
in tumors, affect the metastasis ability of tumors. In addition, 
epigenetic alteration of piRNAs, cancer stem cells, CpG island 
methylation and EMT all participate in cancer metastasis.

Epigenetic alterations associated with cancer metastasis 
involve DNA methylation, histone modification and certain 
RNA expression profiles. First, DNA methylation affects the 
expression of individual genes and DNA domains. The degree 
of DNA hypomethylation increases as tumors progress and 
metastasize. DNA methylation and histone modification can 
activate genomic DNA repeat elements, such as LINE1 and 
Alu, which can be transcribed or transposed to other genomic 
regions and disrupt the genome, resulting in chromosome 
breakage and illegitimate genome rearrangement.

H3K9me3 and other synergistic epigenetic modifications 
control heterochromatin, but in tumors, that balance has been 
disrupted. Therefore, with the ability to stabilize genomic 
integrity by preventing abnormal chromosome segrega-
tion, recombination and DNA replication, H3K9me3 and 
H3K27me3 mainly function in the initiation, propagation and 
maintenance of highly compact heterochromatin to silence 
gene expression. Methylation and acetylation are the two major 
mechanisms that regulate histone function. HMTs regulate 
histone proteins. Histone acetylation is regulated by HATs and 
HDACs. Several HMTs exhibit tumor suppressor functions, 
and some demethylases exhibit oncogenic activity. H3K9me3 
recruits transcriptional repressors such as REST and CoREST. 
The low expression of methyltransferases such as SUV39 
and RZZI in tumor cells may be the result of increased cell 
proliferation and apoptosis resistance and poor differentiation. 
Global regulation of H3K9me3 has been observed in several 
human cancers, including colorectal, ovarian and lung cancer, 
all of which are characterized by deficiency or elevated activity 
of H3K9 methyltransferases or altered expression of H3K9 
demethylases. 5hmC can be used to identify cancer type and 
track tumor stage. DNMT3Ab cooperated with H3K9me2 and 
H3K27me3 played a crucial role in directing EMT‑associated 
metastasis in gastric cancer.

Understanding the epigenetic mechanisms of tumor metas-
tasis related to piRNAs can assist in the identification of new 
tumor markers and treatments. piRNAs can be indicative of 

patient outcomes and can be helpful in selecting effective 
surgical methods, radiotherapy and chemotherapy to prolong 
patient survival time. piRNAs can be used as biomarkers to 
predict TNM stage and disease prognosis. Since preventing 
tumor metastasis is still a formidable problem, studies on 
the potential of piRNAs and epigenetic alternations for 
diagnosis and prediction of clinical cancer stages are greatly 
needed.
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