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Abstract. Gastric cancer is currently the fourth most common 
cancer and the third leading cause of cancer‑associated 
mortality worldwide. Studies have identified that certain 
biomarkers contribute to the prognosis, diagnosis and treatment 
of gastric cancer. However, the biomarkers of gastric cancer 
are rarely used clinically. Therefore, it is imperative to define 
novel molecular networks and key genes to guide the further 
study and clinical treatment of gastric cancer. In the present 
study, raw RNA sequencing data and clinicopathological infor-
mation on patients with gastric cancer were downloaded from 
The Cancer Genome Atlas, and a weighted gene co‑expression 
network analysis was conducted. Additionally, functional 

enrichment and protein‑protein interaction analyses were 
implemented to further examine the significant modules. As 
a result, 16 modules of highly correlated genes were acquired 
and colour coded, and the yellow module containing 174 genes 
associated with chemotherapy resistance and prognosis in 
gastric cancer was further analysed. The biological processes 
of the yellow module were primarily associated with cell 
adhesion, vasculature development and the regulation of cell 
proliferation. In addition, the Kyoto Encyclopedia of Genes 
and Genomes pathways primarily involved the transforming 
growth factor‑β signalling pathway, the cellular tumour 
antigen p53 signalling pathway, extracellular matrix‑receptor 
interactions and focal adhesions. Notably, survival analysis 
and cell verification confirmed that high expression of GLIS 
family zinc finger 2 is significantly associated with chemore-
sistance and a worse prognosis in gastric cancer, and that this 
high expression is likely to be an important biomarker for the 
guidance of clinical treatment and prognostic evaluation.

Introduction

Gastric cancer is currently the fourth most common cancer, 
after lung cancer, breast cancer and colon cancer, and the third 
leading cause of cancer‑associated mortality worldwide (1,2). 
A previous study identified various biomarkers for gastric 
cancer, including cancer antigen 19‑9, erb‑b2 receptor tyrosine 
kinase 2 and vascular endothelial growth factor, certain of 
which may predict clinical prognosis and therapeutic effect 
or serve as a hallmark of diagnosis (3). However, biomarkers 
of gastric cancer are rarely used clinically due to a lack of 
specificity or sensitivity. Thus, it is imperative to identify 
novel molecular biomarkers that are able to predict the clinical 
outcome of gastric cancer, which may help to further the study 
of gastric cancer pathogenesis and facilitate personalised 
treatment.

With the development and maturation of third‑generation 
sequencing technology, network approaches have been used 
to study the progression of various diseases, bridging the gaps 
between individual genes and the occurrence and development 
of disease (4,5). However, identification of key biomarkers 
remains a challenge. At present, although there are numerous 
studies based on bioinformatics approaches, including 
screening for differentially expressed genes (DEGs), similar 
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expression patterns between genes have not been a focus (6). 
Weighted gene co‑expression network analysis (WGCNA), an 
unbiased algorithm, elucidates the higher‑order associations 
between genes or between gene sets and clinical features 
based on their co‑expression relationships and delineates 
modules of biologically‑associated genes (7). WGCNA has 
been widely applied to screen key biomarkers associated with 
clinical characteristics, including tumour grade, metastasis 
and prognosis, among different tumour types and even among 
different diseases or species (8‑11). The present study utilized 
the unbiased strategy of WGCNA to study a module of genes 
significantly associated with chemotherapy resistance and 
prognosis in gastric cancer, and GLIS family zinc finger 2 
(GLIS2) was identified as a previously unreported biomarker 
of gastric cancer by integrating the data analysis with cellular 
verification in vitro.

Materials and methods

Dataset acquisition and pre‑processing. A flow diagram of 
the study is presented in Fig. 1. The raw data on patients with 
gastric cancer containing RNA sequencing (RNA_seq) and 
clinical information were obtained from The Cancer Genome 
Atlas (TCGA) repository website (https://cancergenome.nih.
gov/). The R ‘limma’ Bioconductor package (12) was adopted 
to screen the DEGs between normal gastric and tumour tissues 
based on the following criteria: Fold change (FC), |log2(FC)|>1; 
and false discovery rate (FDR) <0.05. To minimize noise in 
the DEG dataset, in strict accordance with the analysis method 
on the WGCNA official website (https://labs.genetics.ucla.
edu/​horvath/​htdocs/​Coex​pressionNetwork/​Rpackages/WGCNA/), 
genes with too many missing values and unknown names 
were checked for and excluded, and genes for which the 
names corresponded to multiple probes were deleted. The 
samples were clustered to exclude the obvious outliers (7,13). 
The microarray dataset of filtered probe sets was constructed 
using the remaining genes and samples. In addition, clinical 
variables, including age and gender, pathological variables 
[including drug response, tumour (T) stage and tumour grade] 
and survival information were compiled for the WGCNA 
analysis. The DEGs were normalized by log2 transformation 
prior to the subsequent analyses. A total of two investigators 
separately collated and analysed the data, and a joint decision 
was reached in cases of disagreement.

WGCNA construction. Construction of a weighted co‑expres-
sion network represents an effective method for identifying 
modules and for defining the intra‑module connectivity. In 
the current study, WGCNA was performed on the microarray 
data of filtered probe sets using the R ‘wgcna’ Bioconductor 
package (13). Each paired gene‑gene association was corre-
lated utilizing the absolute value of the Pearson product 
moment correlation (a gene co‑expression similarity measure); 
the absolute value represents the co‑expression similarity. 
An adjacency matrix was constructed utilizing a ‘soft’ power 
adjacency function, where the ‘soft’ power indicates that the 
resulting adjacency measures the connection strength. Clusters 
of co‑expressed genes were designated by hierarchical cluster 
analysis following subtraction of the topological overlap 
measure of similarity of 1 (7,10).

The modules of WGCNA are groups of highly correlated 
genes. In network terminology, modules are sets of genes with 
high topological overlap. To obtain the potential associations 
between the co‑expressed gene clusters and clinical variables, 
a single column of vectors termed the module eigengenes 
(MEs) (7) was used. The MEs were generated by reserving 
the first principal component of a given module and were 
representative of the gene expression profiles in a module. 
Since each ME contains the majority of the variance in the 
original data, it represents a summary measure for the overall 
co‑expression network. The consistency between the expres-
sion of a particular gene and the ME expression is termed the 
module membership. This measure of co‑expression network 
centrality is decided by calculating the Pearson correlation 
coefficient between each individual gene and the ME. Further 
details on WGCNA theory and algorithm have been previously 
published (7,10).

Key module identification and analysis. To define the pivotal 
module, the correlations between the MEs and clinical 
features were calculated. Furthermore, functional enrichment 
analysis and protein‑protein interaction (PPI) analysis was 
conducted on the genes in the yellow module to examine the 
probable mechanism underlying the impact of the genes on 
chemotherapy resistance and the prognosis of gastric cancer. 
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID; https://david‑d.ncifcrf.gov/) was used 
to analyse the enriched biological process (BP) terms and 
pathways (14). The top 15 most significant BP terms (P≤0.05) 
are presented. Only those KEGG pathways with P≤0.05 and 
≥10 enriched genes were considered to be significant. In 
addition, the PPI networks were constructed using STRING 
(https://string‑db.org/).

Cell culture and plasmid transfection. The human gastric cancer 
cell lines AGS and MKN45 were purchased from the American 
Type Culture Collection (Manassas, VA, USA). All the cell lines 
were maintained in RPMI 1640 medium (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) supplemented with 10% 
foetal bovine serum (ScienCell Research Laboratories, Inc., San 
Diego, CA, USA) and 2 mM penicillin and streptomycin, and 
were cultured in a humidified 37˚C incubator at 5% CO2.

The GLIS2 overexpression plasmids were constructed 
and cloned into the CV061 vector (Shanghai GeneChem 
Co., Ltd., Shanghai, China) between the EcoRI and HindIII 
sites. The primer sequence used for GLIS2 was: 5'‑ACG​
GGC​CCT​CTA​GAC​TCG​AGA​TGC​ACT​CCC​TGG​ACG​AGC​
CGC​TCG‑3'. AGS and MKN45 cells were transfected with 
GLIS2 overexpression plasmids using Lipofectamine® 3000 
(Invitrogen; Thermo Fisher Scientific, Inc.). According to the 
manufacturer's instructions, 1x105 gastric cancer cells were 
inoculated onto a 24‑well plate and 1 µg/ml of the plasmid 
was added, and the transfected cells were incubated in a 5% 
CO2 incubator at 37˚C for 48 h. Subsequent treatments were 
performed when the cells had grown to 80‑90% confluence.

Western blotting. For the western blotting assay, cells were 
lysed using radioimmunoprecipitation assay and phenylmeth-
ylsulfonyl fluoride buffers (100:1; Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany), and the lysates were collected 
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by centrifugation at 12,000  x  g for 12  min at 4˚C. The 
protein concentration was determined using a bicinchoninic 
acid protein assay kit (Sigma‑Aldrich; Merck KGaA). Equal 
amounts of protein lysates (30 µg) were electrophoresed on 
10% SDS‑polyacrylamide gels and transferred to meth-
anol‑activated polyvinylidene fluoride (PVDF) membranes. 
The PVDF membranes were blocked with 5% non‑fat 
dried milk in Tris‑buffered saline (pH 7.4) containing 0.1% 
Tween‑20 (TBST) for 1 h, and incubated with the primary 
GLIS2 (Abcam, Cambridge, UK; cat. no. ab28462; diluted 
1:750) and GAPDH antibodies (Abcam; cat. no.  ab8245; 
diluted 1:750) in TBST at 4˚C overnight. The membranes were 
subsequently washed three times with TBST and incubated 
with a secondary Alexa Fluor‑conjugated anti‑rabbit antibody 
(Abcam; cat. no. ab150077; goat anti‑rabbit IgG H&L; diluted 
1:5,000) for 1 h at room temperature. Signal detection was 
performed for 5 min using an enhanced chemiluminescence 
reaction (Dalian Meilun Biotechnology Co., Ltd., Dalian, 
China). The GAPDH antibody was used to normalize protein 
expression.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was isolated from cells using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.). RT 
was performed (on 500 ng of RNA) using the PrimeScript 
RT Reagent kit (Takara Biotechnology Co., Ltd., Dalian, 
China), and the RT‑qPCRs were performed using SYBR 
Premix Ex Taq (Takara Biotechnology Co., Ltd.), according 
to the manufacturer's protocol. The following primers were 
used: GLIS2 forward, 5'‑CTT​CGG​GGA​GGC​TGG​ATT‑3' 
and reverse, 5'‑GGT​GAT​ACT​CAG​CTT​CAG​GTC​G‑3'; and 
GAPDH forward, 5'‑AAT​CCC​ATC​ACC​ATC​TTC​CAG‑3' 
and reverse, 5'‑GAG​CCC​CAG​CCT​TCT​CCA​T‑3'. The relative 
expression of the genes (GLIS2 and GAPDH) was calculated 
using the 2‑ΔΔCq method (15).

MTT assay. Fluorouracil (5‑FU), cisplatin and doxorubicin 
were purchased from Selleck Chemicals (Houston, TX, 
USA). Cells (6x103 per well) were seeded in 96‑well plates 
and incubated for 48 h. 5‑FU, cisplatin and doxorubicin were 
added at final concentrations of 0, 2, 4, 8, 16 and 32 µmol/l 

Figure 1. Flow diagram of the present study. GO, gene ontology; KEGG, Kyoto Encyclopaedia of Genes and Genomes; PPI, protein‑protein interaction; 
DEG, differentially‑expressed gene; GLIS2, GLIS family zinc finger 2.
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with dimethyl sulfoxide (DMSO) alone serving as a control. 
The cells were incubated in a 5% CO2 incubator at 37˚C for 
24 h. The medium was removed, and the cells were cultured 
in fresh growth medium containing 0.5 mg/ml MTT for 4 h 
under the above conditions. The supernatant was removed, and 
100 µl DMSO was added to dissolve the formazan crystals. 
The absorption was measured at 490  nm, and the results 
were expressed as the half‑maximal inhibitory concentration 
(IC50), the concentration of chemotherapeutic drug required 
for 50% inhibition in vitro.

Statistical analysis and visualization. The majority of 
the visualizations were generated using R version 3.3.1 
(https://www.r‑project.org/) except for the KEGG network and 
PPI visualizations, for which the ClueGO (16) and STRING 
online tools were used. Survival analysis and clinical corre-
lation analysis was performed using TCGA expression and 
clinical data on gastric cancer, setting the median expression 
value of GLIS2 as a cut‑off value between high and low 
expression. The Kaplan‑Meier method was used to estimate 
survival, and a log‑rank test was used to assess differences 
between the survival curves. Furthermore, the prognostic 
role of GLIS2, including its role in predicting overall survival 
and disease‑free survival, was validated using online tools 
(http://kmplot.com/analysis/)  (17). Statistical analyses 
were implemented using GraphPad Prism 6.0 (GraphPad 
Software, Inc., La Jolla, CA, USA). All data are presented 

as the mean ± standard deviation. Student's t‑tests were used 
for comparisons between groups, except for the analysis of 
clinicopathological features, for which the two‑sample t‑test 
was used. P<0.05 was considered to indicate a statistically 
significant difference.

Results

DEG screening and pre‑processing. As presented in the flow 
chart (Fig. 1), public RNA_seq datasets were downloaded 
from TCGA repository website, containing 238 gastric cancer 
samples and 33 normal tissue samples. Based on the criteria 
of |log2(FC)|>1 and FDR<0.05, a total of 5,630 DEGs were 
screened out. Prior to constructing the microarray dataset 
of filtered probe sets, 204 low‑quality DEGs and 26 cancer 
samples were excluded (data not shown). To facilitate the 
subsequent WGCNA analysis, the clinical information was 
compiled and converted. To obtain an overview of the clinical 
information, hierarchical cluster analysis was performed (data 
not shown).

Co‑expression network construction. The remaining 5,426 
most varying and most connected genes from 212 gastric 
cancer samples were obtained for construction of the 
co‑expression network. As presented in Fig. 2, 16 distinct 
gene modules with high topological overlap were identified 
when the soft threshold power β was set to 6. The number 

Figure 2. Analysis of network topology for various soft thresholding powers. (A) The scale‑free fit index (y‑axis) as a function of the soft thresholding power 
(x‑axis). (B) The mean connectivity (degree, y‑axis) as a function of the soft thresholding power (x‑axis). (C) Clustering dendrogram of genes, with dissimi-
larity based on topological overlap, together with assigned module colours.
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of genes included in the modules ranged between 36 (light 
cyan) and 3,068 (turquoise). Each module was assigned a 
different colour to distinguish between them, and the grey 
module was reserved for genes that were identified as not 
being co‑expressed.

Key module identification. The yellow module had the 
highest correlation with drug response (r=0.31; P<0.001) and 
days to mortality (r=‑0.3; P<0.001) among the module‑trait 
relationships (Fig.  3A), and was selected for study in the 
subsequent analyses due to its clinical importance. The yellow 

module was also associated with new tumour type (including 
locoregional recurrence, distant metastasis and new primary 
tumour; r=0.39; P<0.001). It was additionally identified that 
the red module was associated with histological type (r=‑0.24; 
P<0.001), the blue module was associated with tumour 
histological grade (r=0.23; P<0.001), and the tan module was 
associated with microsatellite instability (r=0.37; P<0.001). 
In addition, the intra‑modular connectivity was calculated for 
each gene based on its Pearson correlation with all other genes 
in the module (Fig. 3B), to help prove the importance of these 
modules.

Figure 3. Module‑trait associations. (A) Each cell contains the corresponding correlation and P‑value. (B) The scatterplot of gene significance for biological 
trait vs. module membership in different modules. ME, module eigengene; cor, correlation.
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Biological importance of the modules. To investigate the 
biological importance of the yellow module, 174 genes in 
the yellow module were functionally enriched using DAVID 
for BP analysis and KEGG pathways analyses. The BPs of 

the yellow module were primarily enriched in a number of 
aspects, including ‘cell adhesion’ (P<0.001), ‘vasculature 
development’ (P<0.001), and ‘regulation of cell proliferation’ 
(P<0.001. Fig. 4A). In addition, the DAVID‑based enrichment 

Figure 4. Gene ontology (GO) functional analysis and KEGG pathway enrichment analysis for genes in the yellow module. The x‑axis indicates the number of 
genes, and the y‑axis indicates the GO and KEGG pathway terms. The‑log10 (P‑value) of each term is coloured according to the legend. (A) Biological process 
enrichment analyses. (B) KEGG pathway enrichment analysis. (C) KEGG pathway visualization. GO, gene ontology; KEGG, Kyoto Encyclopaedia of Genes 
and Genomes; ECM, extracellular matrix; p53, cellular tumour antigen p53.
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analysis identified KEGG pathways for the 174 genes in 
the yellow module (Fig. 4B and C). Among them, certain 
tumorigenesis‑associated signalling pathways were present, 
including the TGF‑β (P=0.006) and p53 (P=0.036) signalling 
pathways. In particular, cell adhesion‑associated signalling 
pathways, including extracellular matrix (ECM)‑receptor 
interactions (P<0.001) and focal adhesion (P<0.0001), were 
observed to serve a key role in the regulation of drug resis-
tance in gastric cancer.

Hub gene identification. The present study proceeded to 
develop the PPI network and investigate the hub genes 
of the yellow module (Table I). To identify novel proteins 
and pathways modulated by the pivotal genes, GLIS2 was 
selected as a candidate gene for further analysis and veri-
fication subsequent to comparing the data and reviewing 
the literature. Analysis of the TCGA dataset demonstrated 
that high expression of GLIS2 was significantly associated 
with tumour chemotherapeutic resistance (P=0.031; Fig. 5A). 
Furthermore, high GLIS2 positivity in gastric cancer samples 
corresponded to a significantly worse prognosis (P=0.003; 
Fig. 5B). Similar results were obtained using the online tools 

to verify the prognostic role of GLIS2. Patients with higher 
GLIS2 positivity had significantly shorter overall survival 
(P<0.001; Fig.  5C) and disease‑free survival (P<0.001; 
Fig. 5D) times. In addition, the association between GLIS2 
and other clinicopathological characteristics was evaluated 
in patients with gastric cancer (Table II). The expression of 
GLIS2 was significantly associated with histological type 
(P=0.039), histological grade (P=0.02), pathological stage 
(P=0.013), T stage (P=0.002) and microsatellite instability 
(P<0.001).

GLIS2 functional verification. To examine whether the 
overexpression of GLIS2 enhanced chemotherapy tolerance 
in gastric cancer, MTT assays were performed. Fig. 6A‑D 
demonstrates that the relative mRNA and protein expres-
sion levels of GLIS2 were markedly increased following 
transfection of GLIS2 plasmids in the AGS and MKN45 
cell lines, respectively (P<0.05). Following treatment with 
different concentrations of three chemotherapeutic agents 
for 24 h, the results indicated that gastric cancer cells that 
overexpressed GLIS2 had increased survival in response 
to cisplatin, fluorouracil and doxorubicin compared with 

Figure 5. (A) Expression level of GLIS2 in cancer tissues. (B) Prognostic value of GLIS2 at different expression levels among gastric cancer patients. Survival 
analysis of patients with gastric cancer was performed based on GLIS2 expression, as assessed with online tools. (C) Overall survival time; (D) disease‑free 
survival time. *P<0.05. HR, hazard ratio; CI, confidence interval; GLIS2, GLIS family zinc finger 2; PR, partial response to chemotherapy; CR, complete 
response to chemotherapy.
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parental cells with lower GLIS2 expression. Specifically, 
the growth activity of the AGS experimental groups were 
higher compared with the control group (Fig. 6E; P<0.05), 
and consistent results were also obtained in the MKN45 cell 
line (Fig. 6F; P<0.05).

Discussion

WGCNA provides an efficient algorithm to reveal the asso-
ciations between genes and BP among different diseases 
and species (10,11). Modules, or groups of highly correlated 
genes, may be a consequence of transcriptional co‑activation, 
which results in the coordinated operation of associated gene 

networks to accomplish a group of biological functions (13,18). 
Therefore, a highly connected hub node may be established to 
control the entire network and the associated biological func-
tions, and the hub node may be used for guiding further study 
and the clinical treatment of cancer.

Following this approach, raw data for patients with gastric 
cancer were downloaded from TCGA database and identified 
16 gene co‑expression modules using WGCNA. Modules 
that are significantly associated with clinical features have 
important biological and clinical implications  (19). The 
results of the present study demonstrated that the yellow 
module was correlated with drug response and days to 
mortality, the red module was associated with histological 
type, the blue module was associated with tumour histo-
logical grade, and the tan module was associated with 
microsatellite instability. The yellow module, containing 
174 genes, was further functionally enriched, and the PPI 
network was analysed, as it was apparently associated with 
chemotherapy resistance and tumour prognosis. Cell adhesion 
serves an important role in the chemotherapy resistance of 
gastric cancer, and associated signalling pathways include 
ECM‑receptor interactions and focal adhesion. Previous 
studies have illustrated that ECM‑receptor interactions 
lead to growth arrest at the G1 phase of the cell cycle and 
resistance to chemotherapy‑induced apoptosis, and the inhibi-
tion of focal adhesion may impair DNA repair, resulting in 
increased residual DNA damage and treatment sensitivity 
in malignant tumours (20,21). In addition, the present study 
demonstrated that the TGF‑β and p53 signalling pathways 
are involved in the chemotherapy resistance of gastric cancer. 
The mechanisms of the TGF‑β and p53 signalling pathways 
in chemoresistance have also been reported and are involved 
in the induction of cytoskeletal molecular remodelling, cell 
growth regulation and cytokinesis (22‑24).

Relevant hub genes are hypothesized to serve an impor-
tant role in the biological processes of tissues, and central 
hub genes in the network are likely to be key drivers of 
aberrant regulatory mechanisms (25). The hub genes from 
the yellow module were screened, and it was identified by 
reviewing the literature that the roles of the majority of the 
genes in chemoresistance have been revealed. GLIS2 was 
further validated as a candidate hub gene that has an essen-
tial association with the biological behaviour of gastric 
cancer. GLIS2, a member of the sub‑family of Krüppel‑like 
zinc finger proteins, has been linked to the development of 
nephronophthisis, while few studies have been conducted 
on the connection between tumorigenesis and GLIS2 (26). 
In the TCGA dataset, GLIS2 was highly correlated with 
chemotherapy effects and the prognosis of gastric cancer. 
To verify this result, a survival analysis online tool was 
used to demonstrate that low expression of GLIS2 is 
associated with an improved gastric cancer prognosis. In 
addition, through gastric cancer cell line culture and MTT 
assays, it was demonstrated in vitro that high expression of 
GLIS2 may increase the chemotherapy resistance of gastric 
cancer cells. Furthermore, the analyses indicated that the 
expression of GLIS2 was significantly associated with 
histological type, histological grade, pathological stage, 
clinical T  stage and microsatellite instability. All these 
results suggested that GLIS2 may serve an important role 

Table I. Hub genes (n=30) contained in the yellow module.

Gene symbol	 Gene name

COL1A1a	 Collagen type I α1 chain
COL5A1a	 Collagen type V α1 chain
COL1A2a	 Collagen type I α2 chain
FN1a	 Fibronectin 1
COL3A1a	 Collagen type III α1 chain
COL6A3a	 Collagen type VI α3 chain
COL5A2a	 Collagen type V α2 chain
THBS1a	 Thrombospondin 1
SPARCa	 Secreted protein acidic and cysteine rich
COL11A1a	 Collagen type XI α1 chain
ABCA1	 ATP binding cassette subfamily A member 1
ADAMTSL1	 ADAMTS like 1
BET3L	� Trafficking protein particle complex 3 like
BTBD19	 BTB domain containing 19
ADAM12	 ADAM metallopeptidase domain 12
AEBP1	 AE binding protein 1
BGN	 Biglycan
C1QTNF5	 C1q and TNF related 5
ADAMTS12	 ADAM metallopeptidase with
	 thrombospondin type 1 motif 12
ANTXR1	 ANTXR cell adhesion molecule 1
BICC1	 BicC family RNA binding protein 1
C1QTNF6	 C1q and TNF related 6
ADAMTS2	 ADAM metallopeptidase with
	 thrombospondin type 1 motif 2
ARHGAP22	 Rho GTPase activating protein 22
BMP1	 Bone morphogenetic protein 1
CCDC71L	 Coiled‑coil domain containing 71 like
ADAMTS3	 ADAM metallopeptidase with 
	 thrombospondin type 1 motif 3
ATP10A	 ATPase phospholipid transporting 10A 
(putative)
BMP8A	 Bone morphogenetic protein 8a
CD248	 CD248 molecule

aTop ten hub genes.
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in the development of gastric cancer. However, whether 
GLIS2 is an independent prognostic factor requires further 
study.

The role and mechanism of GLIS2 in tumo-
rigenesis and chemoresistance have rarely been reported. 
Thirant  et  al  (27,28) reported that the CBFA2/RUNX1 
translocation partner 3 (ETO2)‑GLIS2 fusion protein controls 
the transcription of GATA binding proteins 1 and 2 and ERG 

by directly binding to DNA and upregulating the expression 
of enhancer elements, and ETO2‑GLIS2 is closely associ-
ated with a poor prognosis in leukaemia. Guerra et al (29) 
reported that activation of GLIS2 is associated with the over-
expression of trophoblast antigen 2, subsequently driving the 
transcription factor AP‑1, NF‑κB and G1/S‑specific cyclin‑D1 
(CCND1) pathways and leading to tumorigenesis. NF‑κB 
signalling activates anti‑apoptotic genes and overexpression 

Table II. Clinicopathological characteristics of patients according to GLIS2 expression.

	 No.	 GLIS2 relative of expression
Variable	 patients	 (mean ± standard deviation)	 P‑value

Age at diagnosis, years			 
  <60	   76	 6.613±0.1318	 0.053
  ≥60	 157	 6.299±0.0926	 ‑
Histological type			 
  Adenocarcinoma	 159	 6.506±0.0864	 0.039
  Intestinal adenocarcinoma	   78	 6.174±0.1460	 <0.05
Pathological stage			 
  I+II	 125	 6.231±0.1074	 0.013
  III+IV	 104	 6.617±0.1087	 <0.05
Lymph node status			 
  N0	   84	 6.234±0.1349	 0.109
  N1‑3	 154	 6.487±0.0899	‑
Microsatellite instability			 
  MSS	 157	 6.604±0.0801	 0.000
  MSI‑L+ MSI‑H	   81	 5.998±0.1494	 <0.05
Family history			 
  No	 195	 6.416±0.0859	 0.682
  Yes	     6	 6.618±0.3467	‑
Sex			 
  Male	 151	 6.434±0.0910	 0.523
  Female	   87	 6.334±0.1333	‑
Histological grade			 
  G1+G2	   81	 6.154±0.1378	 0.020
  G3+GX	 157	 6.523±0.0882	 <0.05
T stage			 
  T1+T2	   70	 6.035±0.1581	 0.002
  T3+T4	 165	 6.551±0.0828	 <0.05
Metastasis			 
  M0	 216	 6.400±0.0798	 0.613
  M1	   11	 6.584±0.3607	‑
Drug response			 
  Partial response	   48	 6.638±0.1598	 0.002
  Complete response	     6	 5.158±0.2595	 <0.05
Helicobacter pylori infection			 
  No	   58	 5.893±0.1588	 0.680
  Yes	     4	 6.153±0.6512	‑

T, tumour; MSS, microsatellite stability; MSI‑H, high‑level microsatellite instability; MSI‑L, low‑level microsatellite instability; GLIS2, GLIS 
family zinc finger 2.
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of drug transporters, and further promotes drug resist-
ance (30). CCND1 is involved in chemoresistance, primarily 
by increasing the expression of multidrug resistance proteins 
and regulating the cell cycle (31).

In conclusion, a molecular network was constructed 
based on gene expression and biological characteristics 
using the WGCNA approach. Numerous modules and 
molecular networks associated with clinical manifestations 
of gastric cancer have been demonstrated. Furthermore, 
GLIS2 was significantly associated with chemotherapy 
resistance and the prognosis of gastric cancer. GLIS2 
expression is likely to be an important biomarker that is 
able to guide clinical treatments and prognostic evaluation. 
However, the present study had certain limitations. First, 
to determine the validity of this bioinformatics analysis, 

the expression level of GLIS2 requires further confirmation 
in different cell types and gastric tissue samples. Second, 
the mechanisms by which GLIS2 causes chemoresistance 
require further study. Third, whether GLIS2 overexpression 
in vivo is an important cause of chemoresistance remains to 
be confirmed.
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