
ONCOLOGY REPORTS  41:  3233-3243,  2019

Abstract. Ovarian cancer (OC) is the most common gyne-
cologic malignancy with high incidence and mortality. The 
present study aimed to develop approaches for determining the 
recurrence type and identify potential miRNA markers for OC 
prognosis. The miRNA expression profile of OC (the training 
set, including 390 samples with recurrence information) was 
downloaded from The Cancer Genome Atlas database. The 
validation sets GSE25204 and GSE27290 were obtained 
from the Gene Expression Omnibus database. Prescreening 
of clinical factors was conducted using the survival package, 
and the differentially expressed miRNAs (DE‑miRNAs) were 
identified using the limma package. Using the Caret package, 
the optimal miRNA set was selected to build a Support Vector 
Machine (SVM) classifier. The miRNAs and clinical factors 
independently related to prognosis were analyzed using the 
survival package, and the risk score system was constructed. 
Finally, the miRNA‑target regulatory network was built by 
Cytoscape software, and enrichment analysis was performed. 
There were 46  DE‑miRNAs between the recurrent and 
non‑recurrent samples. After the optimal 19‑miRNA set was 
selected for constructing the SVM classifier, 6 DE‑miRNAs 
(miR‑193b, miR‑211, miR‑218, miR‑505, miR‑508 and 
miR‑514) independently related to prognosis were further 
extracted to build the risk score system. The neoplasm cancer 
status was independently correlated with the prognosis and 
conducted with stratified analysis. Additionally, the target 
genes in the regulatory network were enriched in the regula-
tion of actin cytoskeleton and the TGF‑β signaling pathway. 
The 6‑miRNA signature may serve as a potential biomarker 
for OC prognosis, particularlyfor recurrence.

Introduction

Ovarian cancer (OC) is the most lethal gynecologic malig-
nancy with a 5‑year overall survival (OS) of ~47%, which 
has almost never changed over the past 20 years (1). In 2015, 
1.2 million women suffered from OC, and the disease led 
to 161,100 deaths worldwide (2). The symptoms of OC are 
inconspicuous and non‑specific thus most cases are diagnosed 
at a later stage (3). Therefore, early diagnosis and treatment 
of OC are critical for improving the outcomes of the disease, 
and prognosis mainly depends on the disease degree, tumor 
subtypes and medical conditions  (2,4). Understanding the 
underlying mechanisms of OC could facilitate the develop-
ment of advanced treatment approaches.

MicroRNAs (miRNAs) play important roles in OC pathogen-
esis and progression. By comparison of the transcriptome data 
from different tissues with genome‑scale biomolecular networks, 
miR‑124‑3p was identified as a potential biomarker for OC (5). 
miR‑27a is considered as an oncogene which inhibits forkhead box 
O1 (FOXO1) in OC (6), while miR‑34a serves as a suppressor by 
downregulating histone deacetylase 1 (HDAC1) (7). miR‑409‑3p 
was found to enhance the cisplatin‑sensitivity of OC cells by 
inhibiting autophagy controlled by Fip200 (8).

In addition, a growing number of studies have shown that 
the dysregulation of miRNAs is associated with the prognosis 
of OC. The miR‑200 family members have been identified as 
prognostic indicators for the disease stage, tumor histology 
and survival of OC (9). For example, miR‑200b‑429 may be 
a promising marker for OC survival, and the low expression 
of miR‑200 indicates a poor prognosis and plays a regulatory 
role in the tumor (10). An upregulated serum miR‑221 expres-
sion level is correlated with tumor stage and grade of epithelial 
ovarian cancer (EOC), which serves as an independent factor 
for a poor prognostic in EOC (11). The serum level of miR‑141 
and miR‑200c can distinguish OC patients from healthy 
controls, and they may be utilized as markers for predicting the 
prognosis of OC (12). A high expression level of miR‑203 has 
been reported as a candidate marker that predicts the progres-
sion and adverse outcome of patients with EOC (13,14). Serum 
miR‑21 expression was found to be increased in EOC patients, 
and it may function as a novel marker for the diagnosis and 
prognosis of EOC (15). The expression of miR‑150 is higher in 
primary serous OC than in omental metastases, and its lower 
expression is associated with shorter progression free‑survival 
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in metastatic tissues (16). Nevertheless, the miRNAs related to 
the recurrence of OC have not been fully revealed.

Thus, exploring the correlation between miRNAs 
and the development and recurrence of OC is critical for 
improving the curative effects and prognosis of OC patients. 
Based on the miRNA expression profile of OC in the public 
database, the miRNAs correlated with the recurrence of 
OC were screened, and then a classifier was constructed to 
recognize the recurrence of OC. Combined with the prog-
nostic information of the samples, a risk score system was 
constructed based on the expression levels of significant 
miRNAs. The present study may provide a theoretical basis 
for the prognostic prediction and targeted therapy of OC, 
particularlyrecurrent OC.

Materials and methods

Data source and prescreening of clinical factors. The miRNA 
expression profile of OC (the training set) was downloaded 
from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/) database (September 10, 2018), based on the 
Illumina HiSeq 2000 RNA Sequencing platform. The data 
in the ‘0a07b199‑d93d‑4202‑a63a‑b38e39dc5ca4.mirbase21.
mirnas.quantification.txt’ file that is level 3 was downloaded 
and used. Then we used the encoding information to obtain the 
sample information. There were 415 OC samples with avail-
able clinical information in the training set, of which 390 had 
information regarding recurrence: 170 were non‑recurrent 
OC samples and 220 were recurrent. The human reference 
genome hg38/GRCh38 was used to annotate the expression 
information.

Meanwhile, other relevant datasets were searched from the 
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) database with the keywords ‘ovarian cancer’ and 
‘Homo sapiens’. The inclusive criteria were: i) the samples 
in the dataset had recurrent information; ii) the samples had 
prognostic information; iii) the total number of samples was 
no <50; and iv) the dataset was an miRNA expression profile. 
Based on these criteria, only two datasets, GSE25204 (17) and 
GSE27290 (18), were selected and used as validation datasets. 
The GSE25204 dataset was based on the Illumina Human v2 
MicroRNA expression beadchip platform and included 85 OC 
samples with recurrent information (validation set 1). The 
GSE27290 dataset was based on the Agilent‑015508 Human 
miRNA Microarray platform (pre‑commercial version 6.0) 
and contained 58 OC samples with recurrent information (the 
validation set 2).

The clinical information of all the samples in the training 
set was statistically analyzed. In order to determine the basis 
for grouping, the univariate and multivariate Cox regres-
sion analysis in the R survival package (19) (version 2.41‑1, 
http://bioconductor.org/packages/survivalr/) was used to 
screen the clinical factors significantly associated with prog-
nosis. P<0.05 was set as the significance threshold.

Data standardization and differential expression analysis. 
The miRNA expression profile matrixes of the three datasets 
were stacked, and the matrix for each dataset was scaled 
according to the expression level. The unit specification was 
scaled as follows to provide a sample vector:

where  is the 2‑norm of the vector (l2 norm).

Using the sqrt [sum(data^2)] function in R (20), the square 
root of the eigenvalue of matrix B = A*AT was obtained. The 
purpose of this normalization was to obtain the sample values 
scaled to 1. Using median scaling, the expression level of each 
miRNA was centralized and normalized according to the 
median and median absolute deviation (MAD). Specifically, 
an eigenvector x = (x1,..., xn):

was assigned. The median scale normalization was defined as

For the training set, the samples were grouped according 
to the recurrence condition of the samples. Using the 
R package limma (21) (version 3.34.7, https://bioconductor.
org/packages/release/bioc/html/limma.html), the differentially 
expressed miRNAs (DE‑miRNAs) between the recurrent and 
non‑recurrent OC samples were selected. The false discovery 
rate (FDR) <0.05 and |log2fold change (FC)| >0.263 were set 
as the thresholds for the significant differences. According 
to the expression levels of the DE‑miRNAs in the training 
datasets, the bidirectional hierarchical clustering for expres-
sion levels of these DE‑miRNAs was performed based 
on the centered Pearson correlation algorithm, using the 
pheatmap package (22) (version 1.0.8, https://cran.r‑project.
org/web/packages/pheatmap/index.html) in R.

Construction of Support Vector Machine (SVM) classifier. In 
the training set, the Cox regression analysis in the R survival 
package (19) was used to select the DE‑miRNAs significantly 
related to prognosis, with the threshold of log‑rank P<0.05. 
The DE‑miRNAs significantly related to recurrent prognosis 
were further selected to perform the follow‑up analyses.

Recursive feature elimination (RFE) is an integrated 
machine learning method, which considers the selection 
of subset as an optimization problem (23). Using the RFE 
algorithm in the R  package Caret  (24) (version  6.0‑76, 
https://cran.r‑project.org/web/packages/caret), the optimal 
miRNA set was filtered from the training dataset. In the 
100‑fold cross validation, the miRNA with the highest 
accuracy was selected as the signature miRNA.

SVM is a supervised classification algorithm of machine 
learning, which discriminates sample types by estimating the 
probability that a sample belongs to a certain category (25). 
For the training set, the SVM classifier was constructed 
based on the optimal miRNA set using the SVM method 
(Core: Sigmoid Kernel; Cross: 100‑fold cross validation) in 
the R package e1071 (26) (version 1.6‑8, https://cran.r‑project.
org/web/packages/e1071).

The performance of the SVM classifier was separately 
evaluated in the training set and the validation sets using 4 valu-
ation indicators [Concordance index, C‑index; Brier score; 
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Log‑rank P‑value of Cox‑proportional hazard (PH) regression; 
and area under the receiver operating characteristic (ROC) 
curve, AUC]. The C‑index and Brier score were calculated 
using the R package survcomp (27) (version 1.30.0, http://www.
bioconductor.org/packages/release/bioc/html/survcomp.html). 
Using the R package survival (19), the Kaplan‑Meier (KM) 
curves for the two groups classified by the SVM classifier were 
generated, and the log‑rank P‑value of the difference between 
the two groups was calculated. Furthermore, the indicators 
of ROC curves (sensitivity, Sen; specificity, Spe; positive 
prediction value, PPV; negative prediction value, NPV) were 
calculated using the R package pROC (28) (version 1.12.1, 
https://cran.r‑project.org/web/packages/pROC/index.html).

Construction of the risk score system. Based on the multi-
variate Cox regression analysis in the R survival package (19), 
the prognosis‑associated miRNAs were further analyzed to 
identify the DE‑miRNAs independently related to prognosis. 
The log‑rank P<0.05 was set as the threshold.

Based on the regression coefficients of the independent 
prognostic miRNAs, the risk score system was constructed, 
and the risk score of each sample was obtained according to 
the following formula:

Risk score = ∑Coef DE‑miRNAs x Exp DE‑miRNAs

where Coef DE‑miRNA represents the regression coefficient, 
and Exp DE‑miRNA indicates the expression level of the corre-
sponding miRNA.

For the training set, the samples were divided into 
high‑ and low‑risk groups with the median of risk scores as the 
cut‑off point. Using the KM curve analysis in the R survival 
package (19), the correlation between the risk score system and 
prognosis was evaluated. Meanwhile, the risk score system 
was confirmed in the validation sets.

Stratified analysis of clinical factors. Using the univariate 
and multivariate Cox regression analysis in the R survival 
package (19), the clinical factors independently correlated with 
prognosis in the training set were screened out. Combined 
with the high‑ and low‑risk samples determined by the risk 
score system, stratified analysis was further carried out.

miRNA‑target regulatory network analysis and enrichment 
analysis. The risk scores of the mRNA‑sequencing samples 
matched with the miRNA‑sequencing samples were calcu-
lated using the risk score system. Based on the risk scores, the 
samples in the training set were divided into high‑ and low‑risk 
groups. Using the R package limma (21), the differentially 
expressed genes (DEGs) between the two groups were selected, 
with the thresholds of FDR <0.05 and |log2FC| >0.263. Based 
on the starBase database  (29) (version 3.0, http://starbase.
sysu.edu.cn/), the miRNA‑mRNA regulatory interactions in 
at least one of the five databases, targetScan, picTar, RNA22, 
PITA, and miRanda, were selected. Then, the correlation of 
the expression levels of the miRNAs and target DEGs in the 
matched samples were calculated, and the interactions with 
significant negative correlations were selected. Subsequently, 
the miRNA‑target regulatory network was visualized using 
the Cytoscape software (30) (version 3.6.1, http://www.cyto-
scape.org/). Using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) tool  (31) (version 6.8, 
https://david.ncifcrf.gov/), the functional and pathway enrich-
ment analyses were carried out, with P<0.05 as the screening 
criterion.

Results

Prescreening of clinical factors and differential expression 
analysis. The clinical information of the 415 OC samples in 
the training set was performed with statistical analysis, and 

Table I. Clinical information of all the tumor samples in the training set and the prescreening of the clinical factors significantly 
associated with prognosis.

	 Univariables Cox	 Multivariables Cox
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Clinical characteristics	 TCGA (n=415)	 HR	 95% CI	 P‑value	 HR	 95% CI	 P‑value

Age (years, mean ± SD)	 59.42±11.41	 1.018	 1.006‑1.030	 3.78x10‑3a	 1.016	 1.003‑1.0301	 1.73x10‑2a

Neoplasm histologic grade 	 1/52/353/1/8	 1.385	 0.959‑2.019	 8.09x10‑2	‑	‑	‑  
(G1/G2/G3/G4/‑)
Pathological stage (II/III/IV/‑)	 23/327/62/3	 1.375	 1.037‑1.823	 2.74x10‑2a	 1.001	 0.730‑1.3730	 9.93x10‑1

Tumor recurrence (yes/no/‑)	 220/171/24	 1.316	 1.057‑2.012	 6.08x10‑9a	 1.385	 1.272‑1.544	 6.76x10‑8a

Neoplasm cancer status 	 92/274/49	 0.070	 0.026‑0.189	 4.72x10‑12a	 0.0481	 0.017‑0.133	 5.61x10‑9a

(tumor‑free/with tumor/‑)
Lymphatic invasion (yes/no/‑)	 103/55/257	 1.144	 0.704‑1.859	 5.87x10‑1	‑	‑	‑  
Venous invasion (yes/no/‑)	 63/47/305	 0.788	 0.437‑1.419	 4.26x10‑1	‑	‑	‑  
Decreased (deceased/alive)	 121/139	‑	‑	‑  
Overall survival time	 34.16±27.67	‑	‑	‑  
(months,  mean ± SD)

TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval. aSignificant P‑value.
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then the clinical factors significantly associated with prognosis 
were screened. The age, tumor recurrence, and neoplasm 
cancer status were found to be the clinical factors signifi-
cantly related to prognosis (Table I and Fig. 1). To identify the 

recurrence prognosis‑associated miRNAs, the samples in this 
study were grouped based on the recurrence information.

For the training set, a total of 46 DE‑miRNAs (18 upregu-
lated and 28 downregulated) were identified between the 
recurrent and non‑recurrent OC samples  (Fig.  2A). The 
clustering heatmap was drawn based on the expression levels 
of the DE‑miRNAs, which indicated that the samples were 
clearly divided into two types (Fig. 2B).

Construction of the SVM classifier. Using the Cox regression 
analysis, 24 prognosis‑associated miRNAs were selected in 
the training set. Using RFE algorithm, the optimal miRNA 
set involving 19 miRNAs (including miR‑135b, miR‑139, 
miR‑151, miR‑187, miR‑193b, miR‑210, miR‑211, miR‑218, 
miR‑219, miR‑30b, miR‑30d, miR‑365, miR‑505, miR‑506, 
miR‑508, miR‑509, miR‑513c, miR‑514 and miR‑760) was 
selected (Fig. 3). Based on the optimal 19‑miRNA set, the 
SVM classifier was constructed. Then, the performance of 
the SVM classifier in the training set and the validation sets 
was assessed using the 4 valuation indicators aforementioned. 
The results showed that the C‑index values were >0.80, and 
Brier score values <0.1 in both the training and validation 
sets  (Table  II). As shown in the confusion table diagrams 
that indicated the sample classification based on the SVM 

Figure 2. Rresults of the differential expression analysis for screening differentially expressed miRNAs (DE‑miRNAs). (A) The volcano plot of the DE‑miRNAs 
(blue and red dots represent DE‑miRNAs with FDR <0.05 and |log2FC| >0.263). (B) Clustering heatmap of the DE‑miRNAs (green and red sample bars 
separately represent the samples with information on non‑recurrence and recurrence).

Figure 1. The Kaplan‑Meier (KM) survival curves for the clinical factors significantly associated with prognosis. (A) The KM curve for age (blue and red 
curves separately represent the tumor samples with age < and >60 years). (B) The KM curve for tumor recurrence (blue and red curves separately represent the 
tumor samples with information on non‑recurrence and recurrence). (C) The KM curve for neoplasm cancer status (blue and red curves separately represent 
the tumor‑free samples and the samples with tumor).

Figure 3. Accuracy curve for screening the optimal miRNA set. The hori-
zontal axis represents the number of miRNA variables, and the vertical axis 
represents the cross‑validation accuracy. The marked content is the number 
of miRNAs corresponding to the optimal miRNA set.
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classifier, the 19‑miRNA set could distinguish well the recur-
rent samples from the non‑recurrent (Fig. 4). The AUC curves 
showed that the AUC values of the training set and the vali-
dation sets were >0.9 (Fig. 4 and Table II). The KM curves 

suggested that the predictive results of the SVM classifier were 
significantly related to prognosis (P<0.05; Fig. 4). These results 
indicated that the 19‑miRNA‑based classifier could accurately 
determine the recurrence type of the OC samples.

Table II. Evaluation indicators for the Support Vector Machine (SVM) classifier in the training set and the validation sets.

	 ROC
	 Brier	 Log rank	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ -‑‑‑‑‑‑‑‑‑‑‑‑
Datasets	 C‑index	 score	 P‑value	 AUC	 Sensitivity	 Specificity	 PPV	 NPV

Training set (TCGA, n=390)	 0.942	 0.021	 4.72x10‑12a	 0.905	 0.847	 0.946	 0.914	 0.829
Validation set 1 (GSE25204, n=85)	 0.899	 0.066	 7.98x10‑7a	 0.941	 0.783	 0.903	 0.75	 0.918
Validation set 2 (GSE27290, n=58)	 0.842	 0.063	 6.39x10‑6a	 0.902	 0.875	 0.905	 0.778	 0.95

ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve; PPV, positive prediction value; NPV, 
negative prediction value. aSignificant P‑value.

Figure 4. Area under the receiver operating characteristic (AUC) curves, the Kaplan‑Meier (KM) survival curves, and the confusion table diagrams based 
on the Support Vector Machine (SVM) classifier. (A) The AUC curve (left), KM curve (middle) and confusion table diagram (right) for the training dataset. 
(B) The AUC curve (left), KM curve (middle) and confusion table diagram (right) for the validation set 1 (GSE25204). (C) The AUC curve (left), KM curve 
(middle) and confusion table diagram (right) for the validation set 2 (GSE27290). In the KM curves, blue and red curves separately represent the non‑recurrent 
and recurrent tumor samples determined by the SVM classifier.
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Construction of risk score system. Combining the optimal 
19‑miRNA set with the recurrence prognosis informa-
tion of the samples, 6  independent prognosis‑related 
DE‑miRNAs  (miR‑193b, miR‑211, miR‑218, miR‑505, 
miR‑508 and miR‑514) were identified (Table III).

Combined with the regression coefficients of the 6 inde-
pendent prognostic miRNAs, the risk score system for OC was 
constructed. The formula for calculating the risk score of each 
sample was:

Risk score =  (0.2618) x Exp hsa‑mir‑193b +  (0.1507) x Exp 

hsa‑mir‑211  +  (0.1588)  x  Exp hsa‑mir‑218  +  (‑0.1959)  x  Exp 

hsa‑mir‑505 + (‑0.1704) x Exp hsa‑mir‑508 + (0.2526) x Exp hsa‑mir‑514

With the median of risk scores as the cut‑off point, the 
samples were classified into high‑ and low‑risk groups. For the 
training and the validation sets, the KM curves showed that 
the high‑ and low‑risk groups determined by the risk score 

system were significantly associated with the actual recurrence 
prognosis information (Fig. 5).

Figure 5. The Kaplan‑Meier (KM) survival curves and the area under the receiver operating characteristic (AUC) curves based on the risk score system. (A) The 
KM curve (left) and AUC curve (right) for the training dataset. (B) The KM curve (left) and AUC curve (right) for the validation set 1 (GSE25204). (C) The KM 
curve (left) and AUC curve (right) for the validation set 2 (GSE27290). In KM curves, blue and red curves separately represent the low‑ and high‑risk groups.

Table  III. The 6  differentially expressed miRNAs indepen-
dently related to prognosis.

ID	 Coef	 P‑value	 Hazard ratio (95% CI)

hsa‑mir‑193b	 0.2618	 0.0431a	 1.2993 (1.008‑1.674)
hsa‑mir‑211	 0.1507	 0.0331a	 1.1627 (1.012‑1.336)
hsa‑mir‑218	 0.1588	 0.0179a	 1.1721 (1.028‑1.337)
hsa‑mir‑505	‑ 0.1959	 0.0052a	 0.8221 (0.675‑0.902)
hsa‑mir‑508	‑ 0.1704	 0.0181a	 0.8433 (0.657‑0.983)
hsa‑mir‑514	 0.2526	 0.0211a	 1.2874 (1.066‑1.913)

CI, confidence interval. aSignificant P‑value.
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Stratified analysis of the clinical factors. In the training set, 
although the age, tumor recurrence, and neoplasm cancer status 
were all identified as prognosis‑associated clinical factors, 
only the neoplasm cancer status was considered as an indepen-
dent prognostic factor relating to the recurrence, based on the 
multivariate Cox regression analysis (Table IV and Fig. 6A). 
To analyze the correlation between the neoplasm cancer status 
and recurrence prognosis separately in the high‑ and low‑risk 
groups, stratified analysis was further performed for the 
neoplasm cancer status (Fig. 6B and C).

miRNA‑target regulatory network analysis and enrichment 
analysis. In total, we identified 615 DEGs (400 upregulated 
and 215  downregulated) between the high‑  and  low‑risk 
groups. Based on the StarBase database, the target genes were 
predicted for the 6 independent prognostic miRNAs. The over-
lapping genes between the target genes and the DEGs were 
obtained after comparison, and 601 miRNA‑mRNA regula-
tory interactions were selected. Then, 218 interactions with 
significant negative correlations were retained for constructing 
the miRNA‑target regulatory network (involving miR‑193b, 
miR‑211, miR‑505, miR‑508, and miR‑514) (Fig. 7). In addi-
tion, the target genes in the regulatory network were enriched 
in 25 functional terms (such as blood vessel development and 

vasculature development) and 6 pathways (such as regulation 
of actin cytoskeleton and TGF‑β signaling pathway) (Table V).

Discussion

In the present study, we identified 46 DE‑miRNAs between 
the recurrent and non‑recurrent ovarian cancer (OC) samples. 
Nineteen prognosis‑associated miRNAs were used to construct 
an SVM classifier, among which 6 were deregulated and inde-
pendently related to prognosis. A risk score system based on 
the 6 miRNAs had a high accuracy for risk prediction in both 
the training and validation sets. The neoplasm cancer status 
was a clinical factor independently correlated with recurrence.

miR‑193b serves as a tumor suppressor in many cancer 
types. Its role in OC has recently been investigated. The 
epigenetic silencing of miR‑193a‑3p could promote OC 
progression by targeting the growth factor receptor‑bound 
protein‑7 (GRB7) (32). miR‑193b‑3p has an antitumor effect 
in OC cells by inhibiting the p21‑activated kinase 3  (33). 
Downregulation of miR‑193b could induce OC metas-
tasis (34). These results indicate that miR‑193b may be a tumor 
suppressor in OC. Moreover, low expression of miR‑193b is 
associated with a poor prognosis of OC patients (35). In the 
present study, miR‑193b was one of the 6 miRNA signatures 

Table IV. Cox regression analysis for screening the clinical factor independently correlated with prognosis in the training set.

	 Uni‑variables cox
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Clinical characteristics	 HR	 95% CI	 P‑value

Age (years)	 1.012	 0.999‑1.024	 6.38x10‑2

Neoplasm histologic grade (G1/G2/G3/G4/‑)	 1.338	 0.927‑1.932	 1.19x10‑1

Pathological stage (II/III/IV/‑)	 1.005	 0.753‑1.342	 9.73x10‑1

Neoplasm cancer status (tumor free/with tumor/‑)	 0.279	 0.129‑0.601	 5.30x10‑4a

Lymphatic invasion (yes/no/‑)	 1.078	 0.678‑1.714	 7.52x10‑1

Venous invasion (yes/no/‑)	 0.619	 0.365‑1.049	 7.21x10‑2 

HR, hazard ratio; CI, confidence interval; aindicates significant P‑value.

Figure 6. Kaplan‑Meier (KM) survival curves for neoplasm cancer status. (A) The KM curve showing the correlation between neoplasm cancer status and 
recurrence prognosis in all samples. (B) The KM curve showing the correlation between neoplasm cancer status and recurrence prognosis in the low‑risk 
group. (C) The KM curve showing the correlation between neoplasm cancer status and recurrence prognosis in the high‑risk group. Blue and red curves 
represent the tumor‑free samples and the samples with tumor, respectively. 
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that could predict recurrence of OC, suggesting that its expres-
sion also might be linked to recurrence.

Currently, only a few studies have reported the correlations 
between miR‑218 and OC. It was reported that miR‑218 prevents 
the proliferation and invasion in OC by downregulating its 
target gene, runt‑related transcription factor 2 (RUNX2) (36). In 
colon adenocarcinoma, the long noncoding RNA MNX1‑AS1 
could promote progression. It acts as a competing endogenous 
RNA (ceRNA) of miR‑218‑5p and upregulates SEC61A1, the 
downstream target gene of miR‑218‑5p (37). MNX1‑AS1 was 
also found to facilitate the progression of OC (37). However, 
it is unclear whether MNX1‑AS1 also has this competing rela-
tionship with miR‑218‑5p. In the present study, miR‑218 was 
another important miRNA identified to be related to the recur-
rence of OC, indicating it may be a novel predictive factor for 
OC recurrence.

It has been found that downregulation of the tumor 
suppressor miR‑211 induces the overexpression of 
cyclin‑dependent kinase 6 (CDK6) and cyclin D1 (CCND1), 
which contributes to the proliferation of epithelial ovarian 
cancer (EOC) cells (38). The high expression of PHF19 (PHD 
finger protein 19) was found to be related to the poor prognosis 
of OC patients, and it is a target of miR‑211. By competing 
with the lncRNA MALAT1, miR‑211 suppresses the expres-
sion of PHF19, and thus functions as a suppressor in OC 
development (39). This suggests that miR‑211 is linked to OC 

prognosis by regulating the downstream targets. However, 
there are no studies reporting the role of miR‑211 in the recur-
rence of OC. Based on the present study, it was one of the 
6 miRNA signatures for OC recurrence. Therefore, miR‑211 
may be a potential biomarker indicative of the recurrence of 
OC.

miR‑30a, miR‑30e and miR‑505 exhibit significantly lower 
expression in ovarian clear cell carcinoma (OCC) compared 
with those in elderly advanced ovarian papillary serous 
carcinoma (OPSC) patients, and the activating transcription 
factor 3 (ATF3) is the primary gene co‑targeted by them (40). 
Overexpression of the tumor suppressors miR‑130b‑3p, 
miR‑509‑3p, miR‑509‑5p, miR‑508‑3p and miR‑508‑5p has 
been association with the improved survival of OC patients, 
and these miRNAs may alter the physical properties of OC 
cells via regulating the actin cytoskeleton (41). Moreover, by 
downregulating gene expression levels in the MAPK1/ERK 
signaling pathway, miR‑508 acts as an inhibitor for cell prolif-
eration, migration and invasion in OC cells  (42). Reduced 
miR‑514 is correlated with adverse prognosis of OC patients, 
and miR‑514 can inhibit cell proliferation and lower cisplatin 
chemosensitivity in OC by regulating the ATP binding cassette 
subfamily (43). These findings indicate that the three miRNAs, 
miR‑505, miR‑508 and miR‑514 may function as suppressors 
in OC development and their low expression could be asso-
ciated with poor prognosis. Our results demonstrated that 

Figure 7. miRNA‑target regulatory network. Squares and circles represent miRNAs and mRNAs, respectively.
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miR‑505, miR‑508 and miR‑514 were three miRNA signatures 
in recurrent OC, suggesting that they may be the predictive 
indicators for OC recurrence.

For the target genes in the miRNA‑target regulatory 
network (involving miR‑193b, miR‑211, miR‑505, miR‑508 and 
miR‑514), they were significantly enriched in the regulation 
of the actin cytoskeleton and the TGF‑β signaling pathway. 
The TGF‑β signaling pathway functions in various cellular 
processes correlated with tumorigenesis, and the genetic vari-
ants in the pathway are related to OC risk and may help to 
identify high‑risk individuals (44). TGF‑β signaling can be 
suppressed by the accumulation of epigenetic modifications, 
which contributes to the oncogenesis of OC (45). The dynamic 
remodeling of the actin cytoskeleton is important for multiple 
cellular activities, and dysfunction of cytoskeletal proteins can 
lead to many diseases in humans (46). Therefore, miR‑193b, 
miR‑211, miR‑505, miR‑508 and miR‑514 may influence the 

prognosis of OC via the regulation of the actin cytoskeleton 
and the TGF‑β signaling pathway.

Although we performed comprehensive bioinformatic 
analyses using the miRNA expression profile of OC and 
confirmed the classification accuracy by the validation data-
sets, several limitations remain. First, the sample size with 
available recurrence information was small. Second, this study 
lacks validation experiments to validate the expression of 
these predictive miRNAs and interplayed target genes.. Third, 
the accuracy of the SVM classifier and clinical value of the 
6‑miRNA risk score system should be further tested in OC 
patients. Therefore, further experiments should be prepared 
and conducted to support our findings.

In conclusion, the SVM classifier may be accurate in 
determining the recurrence status of OC patients. Moreover, 
the 6‑miRNA risk score system may be effective in predicting 
the outcome of OC patients. Furthermore, miR‑193b, miR‑211, 

Table V. Gene Ontology (GO) functional terms and pathways enriched in the target genes involved in the regulatory network.

Category	 Term	 Count	 P‑value

GO biology process	 GO:0001568~blood vessel development	 16	 4.26x10‑7a

	 GO:0001944~vasculature development	 16	 5.81x10‑7a

	 GO:0001525~angiogenesis	 10	 9.95x10‑5a

	 GO:0007155~cell adhesion	 22	 1.72x10‑4a 
	 GO:0022610~biological adhesion	 22	 1.75x10‑4a

	 GO:0048514~blood vessel morphogenesis	 11	 3.19x10‑4a

	 GO:0006928~cell motion	 14	 6.66x10‑3a

	 GO:0051674~localization of cell	 10	 1.51x10‑2a

	 GO:0048870~cell motility	 10	 1.51x10‑2a

	 GO:0008219~cell death	 16	 3.56x10‑2a

	 GO:0016265~death	 16	 3.75x10‑2a

	 GO:0006915~apoptosis	 14	 3.87x10‑2a

	 GO:0012501~programmed cell death	 14	 4.27x10‑2a

GO cellular component	 GO:0031012~extracellular matrix	 14	 3.11x10‑4a

	 GO:0005578~proteinaceous extracellular matrix	 12	 1.89x10‑3a

	 GO:0009986~cell surface	 11	 1.03x10‑2a

	 GO:0044421~extracellular region part	 20	 2.47x10‑2a

	 GO:0005794~golgi apparatus	 18	 3.72x10‑2a

GO molecular function	 GO:0030246~carbohydrate binding	 13	 1.10x10‑3a

	 GO:0005198~structural molecule activity	 17	 3.75x10‑3a

	 GO:0032555~purine ribonucleotide binding	 32	 2.72x10‑2a

	 GO:0032553~ribonucleotide binding	 32	 2.72x10‑2a

	 GO:0017076~purine nucleotide binding	 33	 2.89x10‑2a

	 GO:0001882~nucleoside binding	 28	 4.24x10‑2a

	 GO:0005524~ATP binding	 26	 4.52x10‑2a

Pathway	 hsa04512:ECM‑receptor interaction	 8	 6.16x10‑6a

	 hsa04510:Focal adhesion	 10	 6.47x10‑5a

	 hsa04810:regulation of actin cytoskeleton	 7	 4.57x10‑3a

	 hsa03010:ribosome	 4	 8.91x10‑3a

	 hsa04350:TGF‑beta signaling pathway	 3	 2.87x10‑2a

	 hsa04142:lysosome	 3	 4.20x10‑2a 

aSignificant P‑value.
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miR‑505, miR‑508 and miR‑514 may affect the prognosis of 
OC via regulation of the actin cytoskeleton and the TGF‑β 
signaling pathway.
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