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Abstract. Colorectal cancer (CRC) is one of the four leading 
causes of cancer‑related mortality worldwide. Even though 
over the past few decades the global scientific community has 
made tremendous efforts to understand this entity, many ques-

tions remain to be raised on this issue and even more to be 
answered. Epidemiological findings have unveiled numerous 
environmental and genetic risk factors, each one contributing 
to a certain degree to the final account of new CRC cases. 
Moreover, different trends have been revealed regarding the 
age of onset of CRC between the two sexes. That, in addi-
tion to newly introduced therapeutic approaches for various 
diseases based on androgens, anti‑androgens and anabolic 
hormones has raised some concerns regarding their possible 
carcinogenic effects or their synergistic potential with other 
substances/risk factors, predisposing the individual to CRC. 
Notably, despite the intense research on experimental settings 
and population studies, the conclusions regarding the majority 
of anabolic substances are ambiguous. Some of these indicate 
the carcinogenic properties of testosterone, dihydrotestosterone 
(DHT), growth hormone and insulin‑like growth factor (IGF) 
and others, demonstrating their neutral nature or even their 
protective one, as in the case of vitamin D. Thus, the synergistic 
nature of anabolic substances with other CRC risk factors (such 
as type 2 diabetes mellitus, metabolic syndrome and smoking) 
has emerged, suggesting a more holistic approach.
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1. Introduction

Colorectal cancer (CRC) is the fourth most common type of 
malignancy after breast, lung and prostate cancer, accounting 
for 49,190 deaths annually in the USA alone (1). Numerous 
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risk factors have been identified, such as age, a family history 
of CRC, ethnic background (individuals of African descent), a 
high carbohydrate diet, poor physical activity, obesity and meta-
bolic syndrome, smoking and alcohol abuse (2‑5). Originating 
from epithelial cells at the base of intestinal crypts, the current 
model of carcinogenesis is that of the adenoma‑carcinoma 
sequence, first described in the 1990s by Bert Vogelstein and 
Kenneth Kinzler [Fearon and Vogelstein (6) and Kinzler and 
Vogelstein (7)]. This model proposed a sequential transforma-
tion of the normal colorectal epithelium to an adenoma that 
could further transform into an invasive and metastatic tumor 
(carcinoma). Mutations in key regions begin to aggregate, 
turning normal mucosa to an early adenoma and, after a 
certain point of no return, the accumulated genetic alterations 
transform it to a carcinoma. Chromosomal instability, micro-
satellite instability, CpG island methylation and activating 
oncogenic mutations in genes such as adenomatous polyposis 
coli (APC), K‑ras and p53 are found to play a key role in this 
sequence (7‑9).

However, as it was found thereafter, the Vogelstein model 
could explain 90‑95% of CRC cases. The remaining 5‑10% 
of cases were found to be germline‑inherited cancers, such 
as familial adenomatous polyposis (FAP) and hereditary 
non‑polyposis colorectal cancer (HNPCC). Notably, 2‑3% 
of all CRC cases are associated with pre‑existing inflamma-
tion and are referred to as colitis‑associated cancer (CAC) 
(10). In these cases, the activation of nuclear factor (NF)‑κB 
signaling in tumor‑associated macrophages (TAMs) leads to 
the indirect activation of signal transducer and activator of 
transcription (STAT)3 in pre‑malignant intestinal epithelial 
cells (IECs) (11,12). Even though epidemiologic studies have 
witnessed a shift towards younger age groups over the past 
decade, the age group most commonly affected remains that 
of the middle‑aged (>50 years of age) (13), a finding closely 
related to the Vogelstein model (the accumulation of muta-
tions) (14,15).

Moreover, although CRC is not considered a sex‑related 
malignancy per se, sex differences in incidence rates do 
exist  (16‑21). As far as the male population is considered, 
cancer incidence exhibits two peaks; the first one appears 
before the age of 35 and the second after the age of 55. On 
the other hand, in the female population, there is a single 
peak trend, between 35 and 54 years of age (22,23). Taking 
into consideration that physical activity performed before or 
after cancer diagnosis is related to a reduced mortality risk 
among CRC survivors (24) and is therefore recommended, 
along with the high prevalence of the use/misuse and abuse of 
anabolic agents with hormonal activity, such as testosterone, 
dihydrotestosterone (DHT), finasteride, insulin, insulin‑like 
growth factor‑1 (IGF‑1) and growth hormone (GH) in the sports 
community over the past decades (25), a great concern of any 
possible carcinogenic properties or synergistic effects of the 
anabolic agents with the already well‑studied and identified 
CRC risk factors has emerged (5). Nonetheless, the data are 
not consistent: An increasing body of evidence indicates that 
adequate levels of vitamin D, structurally related to a number 
of anabolic agents, can indeed protect against carcinogenesis 
via genomic and non‑genomic mechanisms. In addition, the 
general population experiences uncontrolled multi‑chemical 
exposure from several different sources at doses around or well 

below regulatory limits (pesticides, food additives, lifestyle 
products components) (5,15,26) that can contribute to geno-
toxicity, endocrine disruption, target organ toxicity (3,4,27‑29) 
by affecting systemic mechanistic pathways, such as oxidative 
stress and cell aging (14,30‑32). These, along with the finding 
that human colorectal adenocarcinomas express specific 
steroid hormone receptors (33‑40), has sparked the interest of 
the scientific community to unveil any possible pathogenetic 
mechanisms. Nonetheless, an increasing body of evidence 
indicates that adequate levels of vitamin D, structurally related 
to a number of anabolic agents, can indeed protect against 
carcinogenesis via genomic and non‑genomic mechanisms.

2. Androgens

An androgen is considered any molecule capable of inducing 
and maintaining the male phenotype in an organism (male 
primary and secondary sexual characteristics and fertility) 
and taking part in the universal outgrowth of the musculoskel-
etal system and the anabolic shift of the metabolic status (41). 
Generally, the androgen‑producing endocrine glands are able 
to synthesize five androgens via a sole pathway: Testosterone, 
dehydroepiandrosterone sulfate (DHEAS), dehydroepiandros-
terone (DHEA), androstenedione and androstenediol, the latter 
of which has both androgenic and estrogenic properties. The 
molecules that prevail in this category are testosterone (the 
principal androgen in mammals) and DHT (potent metabolite 
of testosterones). In fact, they are the only androgens with 
direct androgenic activity. Other molecules, such as DHEA, 
due to their inferior potency, have received less attention. In 
an adult male organism, testosterone is primarily produced 
by Leydig cells in the testes. In addition, the extra‑gonadal 
synthesis of testosterone and DHT by the adrenal testosterone 
precursor, DHEA, also occurs (42). Although adrenal andro-
gens represent a minor fraction of the circulating testosterone 
for an adult male with an intact androgen biosynthesis cascade, 
they can be the main androgens in a female or a pre‑puberty 
male (43). In the majority of cases, the classical mode of action 
of androgen superfamily is mediated by the androgen receptor.

Anabolic androogenic steroids (AAS) are used in the 
treatment of several disorders, such as hypogonadism, 
cachexia of various etiologies, hypercalcemia, hypercalciuria, 
in oncology as a supportive treatment and other chronic 
diseases (44). Since the early 1930s, AAS have been exten-
sively used by amateur and professional athletes and the 
general public for the improvement of their physical condition 
and athletic performance (45‑49). When used for ergogenic 
or recreational purposes, the dose levels are usually 5ement 
of physical condition and athletic performance (47,50,51). At 
such supraphysiological levels, AAS can cause a number of 
severe side‑effects, including liver dysfunction, renal disor-
ders, cardiotoxicity and potentially, stroke (52). In addition, 
anti‑androgen therapy is also relatively common, having a 
wide variety of applications ranging from severe conditions 
(such as the treatment of prostate cancer and polycystic ovary 
syndrome) to more benign or even aesthetic conditions (such as 
acne and male pattern hair‑loss). Thus, given their wide use in 
modern society, it is reasonable to scrutinize whether misbal-
anced androgen levels may possibly have a direct or indirect 
connection with CRC (41). In the following paragraphs, the 
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current data regarding androgens and CRC will be presented 
according to the clinical significance of the studied molecule.

Natural androgens
Testosterone. Testosterone, being the most clinically important 
androgen, has attracted scientific interest from as early as 1986. 
At that time, studies advocated that androgens played a protec-
tive role against CRC. In detail, Izbicki et al (1986) conducted 
experiments on 40 male rats. They found that chemical castration 
increased colonic tumor incidence, while testosterone admin-
istration following surgical castration produced a borderline 
statistically significant reduction in tumor incidence (P<0.053), 
particularly in the right colon (22). In recent years, hypotes-
tosteronemia (defined as levels of testosterone <11  nmol/l 
or 320 ng/dl) was found to contribute to the development of 
CRC (53). Further data indicating the protective role of testos-
terone came from studies on patients who received androgen 
deprivation treatment for prostate cancer. In detail, it was found 
that the group with the higher risk of developing CRC was 
that of the orchiectomized male patients followed by patients 
receiving gonadotropin‑releasing hormone (GnRH) agonist 
therapy (particularly if the treatment was prolonged) (54). On the 
contrary, there is evidence to suggest that androgens may act as 
promoters of colon carcinogenesis (2,55‑57). Experiments using 
genetically modified mice, found that in orchiectomized males, 
the tumor load was lower when there was no administration of 
male hormone replacement therapy (2). Other researchers have 
indicated that, at an early stage, androgens may play an active 
role in the transition from adenoma to carcinoma (6). In contrast 
to both previous statements, a large study on 4,165 males aged 
70‑88 years demonstrated that increased testosterone levels 
were associated neither with an increased nor with a decreased 
risk of colon cancer risk (58). The same conclusion was achieved 
by a prospective study of 8,771 males and females from the 
general population of Denmark, who were followed‑up for 
>30 years (59). Whichever the case may be, androgens can be 
related to CRC either through direct mechanisms (mediated 
through androgen receptors), indirect mechanisms (smoking 
and alcohol habits, metabolic syndrome and type 2 diabetes 
mellitus, altered gut microbiota and increased stress hormones) 
or even a combination of both (60). Worthy of mention is the 
fact that regardless of the nature of the study (in vitro, in vivo or 
epidemiological), a common ground has yet to be found given 
the opposing data derived from these studies. Thus, in order to 
reach a consensus on the possible carcinogenetic properties of 
testosterones and the circumstances under which they appear, 
and to provide the grounds for a safe comparison between 
studies, research teams will have to adopt a common method-
ology as the basis of their experiments (27).

DHEA. Despite being less extensively studied, opposing 
results have been obtained on this less potent molecule as 
well. In an observational study on 170 individuals, the plasma 
levels of dehydroepiandrosterone sulfate were shown to be 
inversely associated with the risk of developing colon cancer 
(with a borderline statistical significance)  (61). Moreover, 
another study proposed that DHEA strongly blunts serum 
deprivation‑induced apoptosis. The anti‑apoptotic effects of 
DHEA have been found to be completely reversed by testos-
terone through the blockade of DHEA receptors, thereby 
antagonizing its actions (62).

Mode of action. There are namely two modes of action, 
direct action and indirect action. These are discussed below.

a) Direct action: Androgen receptors (ARs). Steroid 
hormones, and thus androgens, exert their effects mainly 
through interactions with specific receptor proteins (37,56). 
The presence of ARs in human colonic tumors was first 
shown by Alford et al (34). The gene encoding the AR is 
located on the X chromosome. It contains two polymorphic 
trinucleotide repeat segments that encode polyglutamine 
(CAG) and polyglycine (GGC) (normally, ranging from 6 to 
39 repeats). Surprisingly, only the number of CAG repeats 
has been found to be associated with misbalanced androgen 
levels. In fact, studies have demonstrated an inverse associa-
tion between the number of repeats and the risk of prostate 
cancer  (63,64). According to Hoque et al, the number of 
these repeats is gradually reduced in prostate cancers (65). 
Existing data advocate that fewer CAG repeats result in 
a higher transcription activity of AR, a finding positively 
associated with prostate cancer (66,67). In parallel, a greater 
number of repeats are associated with increased serum 
androgen levels, indicating a protective role of these against 
CRC (61,66).

Notably, Westberg et al came across a sex‑related differ-
ence in the association between the number of the CAG repeats 
and the risk of developing CRC. The association was found 
to be direct in males, but inverse in females. They concluded 
that the inverse association observed in females would imply 
a stimulatory rather than inhibitory influence of AR on 
androgen production. A possible explanation could be found 
in the implication of both the AR and the estrogen receptor 
b (ERb) in the regulation of serum androgen levels (68). The 
above‑mentioned hypothesis was reinforced by the similar 
findings of Slattery et al, who analyzed two large case‑control 
studies of CRC. They further found a greater chance of 
microsatellite instability (MSI) or p53 mutated tumors in the 
male population when more CAG repeats were present in the 
AR gene. Their concern was the lack of a common accepted 
parameter to determine the regulation of androgen levels. 
It has not yet been established whether the CAG repeat (as 
suggested by haplotype analysis of the AR gene) or the func-
tionality of the receptor for the specific polymorphism is the 
most informative variant (64).

The above‑mentioned results are in discordance with 
a following larger scale study of 1,798  CRC cases and 
1,810 controls. In that study, the implication of the AR CAG 
repeat polymorphism in colorectal cancer prognosis was 
investigated for the first time. Of note, no association was 
found between the above‑mentioned polymorphism and CRC 
overall or the disease‑specific survival rate. As outlined by 
the authors, the genotyping error rate calculated from the 
duplicated samples was relatively high for the AR CAG repeat 
polymorphism  (69). A genotyping error occurs when the 
genotype of an individual observed in the laboratory does not 
correspond to the individual's true genotype (70). The causes 
could be categorized as a variation of the DNA sequence, the 
low quantity or quality of DNA, biochemical artifacts (low 
quality reagents, poor equipment precision or reliability, Taq 
polymerase errors, the lack of specificity, electrophoresis 
artifact) and human error (sample manipulation, experimental 
error, data handling) (71). Since the main cause of genotyping 
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error is human error (71), Rudolph et al concluded that further 
studies are required to extract solid results (69).

Further attempts to unveil a possible prognostic value of 
the AR CAG repeat sequence with regards to sex differences 
have yielded some interesting findings. A recent case‑control 
study of 550 CRC cases and 540 healthy controls concluded 
that long CAG repeats confer an increased risk of developing 
CRC in both sexes along with a poor 5‑year survival, while 
fewer CAG repeats seem to protect against CRC (72). Previous 
studies have indicated that the CAG repeat length of AR 
inversely affects its transactivation potential, either through 
directly altering the receptor's function  (73) or indirectly 
reducing AR messenger in RNA and protein levels (74). Either 
way, long CAG repeat sequences lead to absence of AR expres-
sion, which, in turn, has been linked to tumor size >5 cm in 
diameter and moderate to poor differentiation (at T3‑T4 and 
N1‑2 stages). These patients have also demonstrated a great 
risk of recurrence or metastasis. Notably, the above are found 
less frequently when there are short CAG repeat sequences 
and, thus, the normal expression of AR (72).

It should be pointed out that the trans‑activating function 
of AR is dependent on its ligands, the androgens. The receptor 
participation in controlling cellular differentiation and prolif-
eration in hormone‑dependent tissues does not always occur 
in the same manner (75). Catalano  et  al shed some light 
onto this phenomenon. They mentioned two isoforms of the 
AR; androgen receptor A (AR‑A) (87 kDa) and androgen 
receptor B (AR‑B) (110 kDa). In the healthy colonic mucosa, 
both receptors are present; however, in the neoplastic colonic 
mucosa, only AR‑A could be detected. The loss of expression 
of AR‑B and the continuous expression of AR‑A was proposed 
to indicate a loss of cell differentiation (76).

Another category of AR was also discovered; the 
membrane androgen receptors (mARs). Normally, the actions 
of the androgens are mediated through intracellular receptors 
(iARs). mARs seem to mediate opposite actions than iARs, 
inducing tumor regression (77). Furthermore, the affinity and 
selectivity of mARs differ among specific androgens (78). 
Through this receptor, testosterone exerts pro‑apoptotic effects 
in both prostate and colon cancer cells. In human colon cancer 
cell lines, the activation of the ligand‑bound androgen receptor 
suppresses the transcription of β‑catenin. Consequently, there 
is a decreased expression of β‑catenin target oncogenes, 
including cyclin D1 (79).

The long‑term activation of mAR by testosterone‑albumin 
conjugated (TAC) treatment has also been linked to the 
dephosphorylation of protein Kinase B (Akt) both in vitro and 
in vivo (77). It is closely connected with the invasiveness of 
colon cancer cells in response to a variety of stimuli [heregulin, 
P21 (RAC1) activated kinase 1 (PAK1), Sprouty‑2 etc.] (80‑82), 
a finding supported through the examination of the upstream 
regulators of Akt, in particular PI3K. Upon long‑term TAC 
treatment, it is dephosphorylated, leading to reduced cell 
motility in colon cancer and, consequently, invasiveness. Of 
note, although testosterone seems to induce p‑Akt downregu-
lation when it binds to mARs, iAR bondage induces p‑Akt 
upregulation, even within the same cells. The main target of 
mAR activation that may regulate cell motility is thought to be 
vinculin; a cytoskeletal protein which links integrin adhesion 
molecules to actin. The inhibition or silencing of vinculin via 

the phosphorylation by specific inhibitors, as is the case with 
activation of mARs, largely reverses both actin reorganization 
and the inhibition of migration (77). An illustrated representa-
tion of the mode of action of mAR is presented in Fig. 1.

Upstream in the AR activation pathway, the role of co‑acti-
vator‑associated arginine methyltransferase 1 (CARM1) is 
crucial. CARM1 is a protein with arginine‑specific histone 
methyltransferase activity. It primarily binds to the histone and 
p160 co‑activators, leading to the activation of nuclear recep-
tors, ARs included. Thus, it promotes nuclear receptor activity 
and acts as a molecular switch for gene‑specific transcription 
factors including p53, NF‑ĸB, lymphoid enhancer‑binding 
factor 1 (LEF1)/transcription factor 4 (TCF‑4) and E2Fs (83,84). 
Taking the above into consideration, it is clear that the role 
of CARM1 is of utmost importance for cell proliferation and 
survival  (85,86). Kim et al reported the overexpression of 
CARM1 in CRC specimens, but a weak expression in normal 
mucosal cells. They demonstrated that CARM1 inhibits the 
p53 response and instead promotes the NF‑ĸB response in 
Caco2 cells (87). However, the mechanisms involved remain 
to be fully clarified (87,88).

b) Indirect mode of action. Decreased levels of androgens 
seem to lead to a net increase in stress hormone levels, such 
as cortisol, which affect the tumor environment (89). The 
involvement of the innate immune system in the development 
of CRC has been demonstrated as well. The neutrophil count is 
reduced, as found by Chuang et al in castrated males, although 
it can be restored to normal levels through androgen supple-
mentation (90). Androgens also seem to affect the production 
and excretion of biliary steroids and bile, compounds that are 
suggested to act as co‑carcinogens (17,38). Lastly, an induc-
tion of insulin resistance following androgen deprivation 
therapy (91) has been linked to increased risk of developing 

Figure 1. Actions of membrane androgen receptors (mARs). mARs have been 
found to mediate opposing actions to the intracellular androgen receptors. 
They induce apoptosis through the activation of caspase‑3. Furthermore, 
they phosphorylate vinculin in cancer cells, leading to the inhibition of their 
migration. The suppression of β‑catenin transcription leads to decreased 
expression of β‑catenin target oncogenes, including cyclin D1. Finally, the 
long‑term activation of mAR has been linked to the dephosphorylation of 
PI3K. As a result, Akt is downregulated and the motility of the colon cancer 
cells and their invasiveness are reduced. IGF‑R, insulin‑like growth factor 
receptor; IRS‑1, insulin receptor substrate 1; IGFBPs, insulin‑like growth 
factor binding proteins; ERK, extracellular signal‑regulated kinase; VEGF, 
vascular endothelial growth factor.
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CRC (92). The connection between insulin and CRC will be 
further discussed.

Synthetic anabolic agents. Synthetic anabolic agents 
are categorized into two categories: Anabolic‑androgenic 
steroids (AAS) and selective androgen receptor modulators 
(SARMs) (93). The AAS molecules that have thus far been 
approved as therapeutic agents are testosterone, nortestos-
terone, dihydrochlormethyltestosterone (DHCMT), metenolon, 
metandienone, methyltestosterone, oxandrolone, fluoxyme-
sterone, stanozolol, formestane, 5on, metandieno (94). SARMS 
are non‑steroidal alternatives to AAS with the selective activa-
tion of the AR in either muscle tissue or bones (93).

A number of adverse effects of these compounds have been 
described when used either as medicine or as doping agents. As 
far as AAS's relation to cancer is concerned, a positive associa-
tion with hepatocellular carcinoma (95), renal cancer (96‑98), 
soft tissue carcinoma  (99), adenocarcinoma  (100,101) and 
lymphosarcoma (102) has been found, along with a case report 
hypothesizing their involvement in leiomyosarcoma  (103). 
SARMs have also been linked to prostate cancer  (104). 
However, to the best of our knowledge, there are currently no 
data available in the current literature associating any of these 
compounds with CRC.

3. Anabolic hormones

Insulin and insulin receptors (IRs). Insulin is one of the prin-
cipal anabolic hormones in the majority of animals since it 
regulates the metabolism of almost all key energy points in 
favor of their synthesis and storage. The target substances 
of insulin k are namely carbohydrates, lipids and proteins. 
Acting on adipocytes, hepatocytes and muscle cells, induces 
and maintains to a certain extent, an anabolic state which is 
described by the synthesis of carbohydrates, fatty acids and 
proteins, while reducing their degradation. Although a basic 
requirement is the prior balance between the circulating levels 
of the target substances and the intracellular ones, for a short 
period of time, it can overcome the concentration gradient of a 
substance and induce its endocytosis (105). The role of insulin 
in CRC was first introduced by the observation that obesity was 
associated with an increased risk of developing CRC in males. 
Subsequently, hyperinsulinemia and insulin resistance were 
linked to obesity and CRC development (106). In a large epide-
miological study of almost 25,000 patients with type 2 diabetes 
mellitus (107) and in a large meta‑analysis of 16 studies (108), 
a direct association between long‑term insulin therapy and 
type 2 diabetes mellitus with an increased risk of developing 
CRC was found. It has also been established that CRC survi-
vors with excess amounts of blood insulin have a greater risk 
of recurrence (109). By contrast, a large registry‑based study in 
Connecticut that included 9,395 patients with CRC (110) and 
a smaller Norwegian study of 1,194 hospitalized patients with 
CRC (111), failed to find an association between diabetes and 
CRC‑specific death. It must be stated though, that the latter 
studies included patients with metastatic CRC as well.

Schoen et al found a statistically significant association 
between insulin and adenoma status. The association was even 
stronger with advanced adenomas. The association with adeno-
matous polyps, the precursor of CRC, confirms a link between 
insulin and early neoplasia (112). It must be kept in mind that 

high insulin levels increase serum IGF‑1 levels (113,114), a 
factor which is closely related to carcinogenesis.

To date, two isoforms of IR have been described, differing 
at the short exon 11 (encodes 12 amino acids). The absence of 
exon 11 transcripts the IR‑A (short isoform), while its pres-
ence the IR‑B (long isoform) (115). Existing evidence supports 
that the two IR isoforms play different biological roles. IR‑A 
mostly exerts mitogenic effects and IR‑B modulates cell 
metabolism (116). Abbruzzese et al found a strong IR expres-
sion in adenomas and low‑grade adenocarcinomas (117). The 
expression of IR‑A has been found in cells that have lost their 
differentiation, a finding which is in accordance with the pres-
ence of this receptor in cancer (118,119).

The expression of IR is mainly considered to be present 
in epithelial tumor cells [epithelial insulin receptor (EIR)]. 
However, Heckl et al found the expression of the receptor 
in other tumor compartments, e.g., the tumor‑vasculature 
[vascular insulin receptor (VIR)]. When 1,580 cases of CRC 
were examined concerning the expression of the IR, differ-
ential expression patterns of the IR in tumor cells (EIR) and 
endothelial cells of tumor vessels (VIR) have been observed. 
EIR expression is strongly associated with distant metastasis, 
lymphatic invasion, lymph node metastasis, tumor‑specific 
survival (TSS) and overall survival (OS). Moreover, EIR has 
been found almost exclusively in the cytoplasm of tumor cells, 
whereas a (simultaneous) membranous IR expression was 
less prevalent (120). These findings were further clarified by 
in vitro experiments by Morcavallo et al, who demonstrated 
that insulin or IGF‑II stimulation induced the phosphory-
lation‑activation of IR‑A, which was then internalized from 
the cell surface. The underlying mechanism was speculated 
to be a sustained phosphorylation of the receptor, leading to 
prolonged activation (121).

On the other hand, VIRs are thought to contribute to 
neovascularization following abduction by elevated insulin 
levels. VIRs are frequently found in CRC, particularly in 
left‑sided CRCs, and they are significantly associated with 
tumor invasiveness (120).

From another point of view, insulin resistance in vascular 
endothelial cells can promote tumor formation, possibly 
through mechanisms involving chronic inflammation (122). 
This resistance is characteristic of endothelial dysfunction 
in obesity and type 2 diabetes (123‑126) and was found to 
promote tumor development. By contrast, there was almost no 
effect of insulin signaling on intestinal carcinogenesis through 
epithelial receptors (122).

In order to fully understand the role of insulin in the tumor 
cascade, special reference must be made to extracellular vesi-
cles (EVs). These are vesicles found in the extracellular space of 
various cell types. They can be found under normal and patho-
logical conditions (127,128). EVs package biologically active 
content (including proteins, mRNA and miRNA), which they 
further transfer to the recipient cells. Due to their action they 
are considered as mediators of signaling cascades (129,130). 
EVs are known to mediate various biological cascades rela-
tive to cancer, such as the activation of Wnt signaling and the 
activation of PI3K/Akt signaling (129).

Insulin, similar to other growth factors, induces PI3K/Akt 
signaling  (131‑133). PI3K/Akt‑positive CRC cells react to 
PI3K/Akt signaling by producing EVs which, in turn, amplify 
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the proliferative signal in other CRC cells in the close environ-
ment. The deeper in the proliferative core the EVs reach, the 
greater the benefit for the tumor, as in these areas the transfer 
of nutrients/growth factors would have been otherwise impos-
sible. Thus, EVs amplify the proliferative signal and aid cancer 
progression (134).

IGF and its receptor (IGF‑R). IGF is a hormone that serves 
as the mediator of growth hormone (GH)‑stimulated somatic 
growth, as well as a mediator of GH‑independent anabolic 
responses in a number of cells and tissues, while it is also 
associated with mitogenesis, cell survival and differentia-
tion (135‑142). In detail, IGF‑1 promotes cell cycle progression 
and inhibits apoptosis either by triggering other growth factors 
or by interacting with pathways which have an established 
role in carcinogenesis and cancer promotion (142). Ma et al 
stated that there is an increase in IGF‑1 levels in patients with 
CRC (143), while other studies have advocated the overexpres-
sion of IGF‑R, as well (144‑147). In accordance with this, several 
studies have linked elevated plasma IGF‑1 and IGF‑1R down-
stream signaling to an enhanced risk of colorectal neoplasia 
and a poor survival (148‑152). Furthermore, Peters et al found 
that IGF‑1 was closely related to the expression of the prolif-
eration marker Ki‑67 (153). Ki‑67 is a nuclear protein that is 
active only in dividing cells and absent in cells locked in G0 
phase. This is a logical outcome when taking into consider-
ation that IGF‑1 can stimulate the expression of cyclin D1, a 
molecule that accelerates the progression of the cell cycle from 
G1 to S phase (154). However, there is no prognostic relevance 
of Ki‑67 in CRC, regardless of the stage of disease (155,156). 
Through a reverse line of thought, octreotide, a molecule that 
lowers the IGF‑1 concentration, has been shown to attenuate 
the growth rate of tumor cells in vivo (157).

The expression of IGF‑2 is also highly associated with 
tumor stage. The association was speculated when it was found 
that autocrine IGF‑2 production and consequent IGF‑R acti-
vation increased tumor growth and reduced apoptosis (153). 
Thus, it is plausible that, when IGF‑1 or IGF‑2 is present, an 
IGF‑1R self‑stimulation will produce an autocrine/paracrine 
loop in CRC. However, no prognostic effect of IGF‑1 and 
IGF‑2 has been proven (153).

A family of six circulating proteins termed insulin‑like 
growth factor binding proteins (IGFBPs) has been found to 
interfere with the action of IGF. Thus, their involvement in 
CRC must be investigated, as well. They act either as tumor 
suppressors by limiting IGFs activity (158) or as inhibitors of 
cancer growth through IGF‑independent mechanisms (159). 
High IGFBP2 plasma levels were found by Liou et al to be inde-
pendently associated with a reduced overall survival (OS) of 
patients with CRC (160). By contrast, IGFBP3 has been shown 
to be inversely associated with CRC, as its plasma levels were 
found to be lower in those patients (143). Notably, IGFBP‑3 can 
either oppose or enhance the biologic action of IGF‑I through 
direct bondage to IGF‑I or indirectly to IGF‑R (161).

In a prospective cohort study of 210 patients with CRC, 
IGF‑1 expression was shown to be closely associated with 
tumor size and the depth of invasion. However, it was stated 
that a shift of investigation towards the IGF‑1/IGFBP‑3 ratio 
is warranted, as it better describes the biological effects 
of IGF‑1 (152). A nested case control study of males in the 

Physician's Health Study demonstrated an increased risk 
of CRC in subjects with high IGF‑I levels. The risk was 
decreased when high IGFBP‑3 levels were measured (143). A 
study of 460 patients was carried out to further examine the 
association between IGF‑I and the IGF‑I/IGFBP‑3 ratio with 
colorectal adenomatous polyps. A statistically significant posi-
tive association was found, with greater odds ratio when the 
case group was limited to advanced adenomas. This finding 
indicates a possible stimulation of non‑advanced adenomas 
towards advanced adenomas (112).

Closer attention must be paid to the IGF‑R, as it has been 
stated that it contributes to resistance to cytotoxic (162), radia-
tion (163) and targeted therapies (164‑166). Indeed, the silencing 
of the receptor increases the intracellular drug concentration 
(such as oxaliplatin and vincristine); an effect mediated via the 
PI3K/Akt pathway (167). A progressive increase in IGF‑1R 
expression occurs in normal colonic mucosa, while it transits 
to adenomatous, as well as in the transition from adenomatous 
to carcinomatous tissue (147). Peters et al have confirmed a 
strong expression of the IGF‑1 receptor in >99% of all CRC 
cell lines of their experiments (153).

Following its activation, IGF‑R induces multiple intra-
cellular mechanisms, as shown in Fig.  2. It induces the 
transcription of the vascular endothelial growth factor 
(VEGF) gene (168,169), upregulates the anti‑apoptotic protein, 
Bcl‑xL (170) and inhibits the action of β‑catenin (through 
PI3K/Akt activation)  (171). From another perspective, 
Nahor et al demonstrated that the tumor‑suppression genes 
p63 and p73 inhibit the IGF‑1R promoter, reducing the endog-
enous IGF‑1R levels in a dose‑dependent manner. Through 
this mechanism, it was proposed that they control colon cancer 
proliferation (172).

The pro‑oncogenic activities of IGF‑1R are solely mediated 
through its proximal downstream effectors: Insulin receptor 
substrate 1 (IRS‑1) and 2 (IRS‑2) (173,174). IRS‑1 expression 
appears to be inversely associated with CRC differentiation. 
However, it may be upregulated in both primary and metastatic 
human CRC, a finding that has not been observed in normal 
colonic epithelium (175). It has been further supported that the 
upregulation of IRS‑1 can occur directly from androgens (64). 
IRS‑2 mRNA and protein expression have a positive associa-
tion with the transition from normal colorectal epithelium to 
adenoma and adenocarcinoma. Furthermore, IRS‑2 overex-
pression promotes the invasiveness of CRC cells. It activates 
the oncogenic PI3K/Akt pathway and at the same time reduces 
cell adhesion (176). Finally, IRS‑1 and IRS‑2 polymorphisms 
have been independently associated with the risk of developing 
CRC in a direct manner (177).

The above‑mentioned findings are further supported by the 
action of NT157 in murine and human CRC cells. NT157 is a 
molecule that, through bondage to an allosteric site of the IGF‑1R, 
it induces a conformational change. As a result, the receptor 
is dissociated from IRS1 and IRS2 proteins. Consequently, 
IGF‑1R stronger interacts with the adaptor protein Shc, leading 
to an enhanced activation of extracellular signal‑regulated 
kinase (ERK). Indeed, experiments have confirmed that NT157 
activates ERK1/2, without activating Akt (178).

Vitamin D. Vitamin D regulates cellular functions, such as 
differentiation and proliferation in normal and malignant 
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tissues. It also regulates cell adhesion in tumor cells and modi-
fies tumor angiogenesis, invasion and metastasis along with 
decreasing oxidative DNA damage (179). Vitamin D deficiency 
has been associated with various cancer types (180,181).

Vitamin D first attracted scientific attention after an inverse 
association was observed between solar UV‑B exposure and 
CRC incidence in both genres (182). As it has been well‑estab-
lished, UV‑B radiation is essential for the production of 
vitamin D3, which after two steps becomes 1,25‑(OH)2‑vitamin 
D (calcitriol), the most active component (183,184).

The study by Boscoe and Schymura on 3.1 million indi-
viduals from the northern part of the USA supported that 
low levels of vitamin D can induce the progression of CRC, 
although no association was found with disease onset. Their 
proposal was based upon a higher death rate which occurred 
during the winter months (when levels of vitamin D are 
markedly reduced) (182). Feskanich et al found an inverse 
association of 25‑OH‑vitamin D and CRC in observation in the 
female population, although only in areas where high levels of 
UV‑B are available (185). In fact, levels of 25‑OH‑vitamin D 
>20 ng/ml have been advocated to provide protection against 
CRC  (186). If levels of 25‑OH‑vitamin D are >82  ng/ml, 
then it is estimated that the cancer incidence is decreased by 
50% (187). However, no association has been found between 
1,25‑OH2‑vitamin D and CRC (185); a finding disputing the 
results of two previous studies (188,189).

Calcitriol has been found to reduce tumorigenesis in 
rats (190,191) and proliferation in both normal and premalignant 
human rectal epithelioma (192), as well as in human colorectal 
cell lines, while it stimulates their differentiation (193‑196). 
Vandewalle et al proposed that an increased expression of 
vitamin D receptor (VDR) may lead to cell differentiation 

and growth inhibition either through calcitriol or through 
non‑calcemic analogs  (195). The mechanisms behind the 
protective role of vitamin D against CRC are multiple and can 
be categorized into genomic and non‑genomic mechanisms, as 
discussed below.

Genomic mechanisms. The genomic mechanisms are 
mediated through the VDR as is shown in Fig. 3. Following the 
bondage of 1,25‑OH2‑vitamin D to the receptor, the complex 
is dimerized with another receptor, the retinoid X receptor 
(RXR). This heterodimer targets specific areas in genes called 
vitamin D response elements (VDREs)  (197). As a result, 
several miRNAs are affected through up‑ or down‑regulation. 
These miRNAs have been speculated to suppress oncogenes 
or enhance the expression of tumor suppressor genes. For 
example, vitamin D can induce the promoter of miR‑627. This 
gene has been inversely linked with CRC, as its decreased 
expression (an aftermath of reduced levels of vitamin D) has 
been found to promote cancer (198).

Further action of vitamin D in human colon tumor cells 
leads to the upregulation of the potent anti‑angiogenic factor, 
thrombospondin 1 (199). The upregulation of the transcription 
of the Wnt‑inhibitors, the DICKKOPF‑1 and DICKKOPF‑4 
genes, has also been linked with the action of calcitriol (200). 
There are data to suggest that calcitriol regulates apoptosis as 
well (201). Following treatment of colorectal cell lines with 
1,25‑OH2‑vitamin D, it was found that apoptosis was trig-
gered through secreted protein acidic and rich in cysteine 
(SPARC)‑induced VDR synthesis (202). In another cell line, 
treatment with calcitriol induced the mRNA expression of 
the pro‑apoptotic protein, G0S2 (G0/G1 switch gene) (203). 
Furthermore, WAF1 and KIP1 were found to be up‑regulated, 
leading to cell‑cycle arrest in G1 phase (201,204,205).

Figure 2. Mechanisms mediated through IGF‑1/IGF‑1R. The activation of IGF‑1R takes place following the bondage of IGF‑1 (or IGF‑2) to the extracellular 
part of the receptor. IGF‑1 plasma levels, and thus IGF‑1R activation, are reduced by the IGFBPs. However, IGFBP‑3 can act as an enhancer of the IGF‑1 
activity when it is bonded to the receptor and not directly to IGF‑1. Following its activation, IGF‑1R induces the phosphorylation of IRS‑1,2 molecules, which 
they further activate the PI3K‑Akt pathway. Consequently, there is induction of cell survival, cell cycle progression, cell proliferation and VEGF transcription. 
At the same time, apoptosis is inhibited and the cell gains resistance against cancer therapies. Even when IRS‑1,2 molecules are silenced, the activation of 
IGF‑1R leads to increased cell proliferation through the activation of Shc‑ERK pathway. IRS‑1, insulin receptor substrate 1; IGFBPs, insulin‑like growth factor 
binding proteins; ERK, extracellular signal‑regulated kinase; VEGF, vascular endothelial growth factor.
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Other studies have demonstrated the effects of calcitriol on 
tumor growth. Through the induction of cyclin‑dependent kinase 
inhibitors, such as p21, p27 and cystatin D and the inhibition 
of pro‑proliferative genes, including c‑my and cyclin D1, tumor 
growth is halted (198). NF‑κB is another target family of genes 
(fundamental for the cancer cell survival) which are downregu-
lated by vitamin D (206). Finally, the reduction of colon cancer 
cell lines has been suggested following the decreased expression 
of Toll‑like receptor (TLR)2 and 4 on human monocytes (207).

Non genomic mechanisms. Apart from the genomic action 
through the nuclear receptor, calcitriol can bind to membrane 
receptors in certain tissues (including the intestines), leading to 
non‑genomic, non‑nuclear actions (208‑211). It has been well 
documented that in CRC, APC mutation is by far one of the 
most common, allowing various downstream pro‑oncogenic 
pathways to upshift. One of these pathways is the Wnt pathway, 
where β‑catenin acts as a transcriptional co‑regulator, cooper-
ating with transcription factors of the T‑cell factor (TCF) family 
to determine gene expression (212,213). Pendás‑Franco et al 
described the protective action of calcitriol in colon cancer 
cells, according to which it induces VDR to bind with β‑catenin 
and restrain it from translocating to the nucleus and inducing 
the expression of pro‑carcinogenic genes (200). Furthermore, 
vitamin D‑related compounds have been found to induce 
the production of IGFBP‑5. These molecules bind both with 
IGF‑1 and IGF‑2, suppressing the stimulating effect of these 
molecules (214).

Furthermore, vitamin D seems to be able to reprogram the 
tumor‑associated macrophages (TAMs) in a manner that halts 
their tumor‑promoting actions  (215), probably by inhibiting 
STAT1 activity. As a result, there is no production of interleukin 
(IL)‑1 from the latter, rendering the tumor colon cells sensitive 
to apoptosis through the TRAIL pathway (216). In parallel, 
due to the lack of IL‑1β expression, the Wnt pathway is deacti-
vated (215).

Further observations of a crosstalk between vitamin D and 
TGF‑β1/SMAD1 signaling in the growth inhibition of human 
colon cancer‑derived cells has shown that this interaction halts 
tumor growth by blocking the expression of cell cycle proteins 
and inhibiting the action of cyclins D1, D2, D3 and E (217). It 
has also been found to inhibit mitogenic Ras signaling, as well 
as the epidermal growth factor (EGF) (218‑220). Furthermore, 
Ben‑Shoshan et al exhibited an inhibition of vascular endo-
thelial growth factor (VEGF) in colon cancer cell lines by 
vitamin D (221).

Last but not least, the association of vitamin D with 
calcium must be examined. It seems they exert a synergistic 
effect in reducing CRC incidence. This was first described 
in Apcmin mouse models by Harris and Go (222) and later 
on by Lappe et al who carried a clinical trial on post‑meno-
pausal women in Nebraska. They concluded that although 
calcium alone reduced the all‑cancer incidence by 44%, 
when accompanied by vitamin  D the reduction reached 
77% (223).

Figure 3. Mechanisms mediated through vitamin D. The insertion of vitamin D into a colorectal cell triggers multiple pathways; both in the cytoplasm 
(non‑genomic actions of vitamin D) and in the nucleus (genomic actions of vitamin D). Through its non‑genomic actions, vitamin D halts tumor development 
through he inhibition of VEGF, EGF, Ras‑signaling and TGF‑β. At the same it induces IGFBP‑5 production, diminishing this way the cancer‑promoting effects 
of IGF‑1,2. Also of importance is the reprogram of TAMs, which results in lower levels of IL‑1 production. Consequently, the Wnt‑pathway is halted, while 
apoptosis through the TRAIL pathway is triggered. Followin bondage with the VDR it can either bind β‑catenin (inhibiting its translocation to the nucleus) 
or, after being heterodimerized with the RXR, translocates to the nucleus. In the nucleus, the complex vitamin D‑VDR‑RXR binds to VDREs gene sequences. 
As an aftermath, the induction of the anti‑angiogenic factor thrombospondin 1 occurs, as well as apoptosis through the SPARC pathway and transcription 
of Wnt‑inhibitors. Finally, the inhibition of NF‑κB and TLR‑2,4, while tumor growth is halted (through inhibition of CDK‑Is, cyclin D1, c‑myc, etc). ERK, 
extracellular signal‑regulated kinase; VEGF, vascular endothelial growth factor; TAMs, tumor‑associated macrophages; VDR, vitamin D receptor; RXR, 
retinoid X receptor; VDREs, vitamin D response elements; SPARC, secreted protein acidic and rich in cysteine.
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Table I. Association between anabolic hormones and CRC.

Substance	 Relation to CRC	 Author (year)/(Refs.)	 Nature of the study

Testosterone 	 Physiological testosterone levels induce reduction	 Izbicki et al (1986) (22)	 In vivo
	 in tumor incidence especially in right colon		
	 Hypotestosteronemia contributes to CRC	 Gould and Petty (53)	 In vivo
	 development	 Gillesen et al (54)	 Epidemiological
	 Androgens may act as promoters of CRC	 Amos‑Landgraf et al (2)	 In vivo
		  Izbicki et al (1983) (55)	
		  Mehta et al (56)	
		  Moon and Fricks (57)	
	 Androgens may play an active role in	 Fearon and Vogelstein (6)	 In vivo
	 the adenoma => carcinoma sequence		
	 Increased testosterone levels have no connection	 Hyde et al (58)	 Epidemiological
	 with CRC	 Orsted et al (59)	
Dehydroepiandrosterone	 DHEA levels are inversely associated with	 Alberg et al (61)	 Epidemiological
(DHEA)	 CRC risk	 Anagnostopoulou et al (62)	 In vitro
Androgen receptors	 Number of CAG repeats is linearly correlated	 Slattery et al (2005) (64)	 Epidemiological
(ARs)	 with CRC in men and inversely in women	 Westberg et al (68)	
	 Number of CAG repeats is independent from	 Rudolph et al (69)	 Epidemiological
	 CRC survival rate		
	 Long CAG repeats	 Huang et al (72)	 Epidemiological
	 Ιncreased risk for CRC in both sexes		
	 Poor 5‑year survival		
	 High T and N stage		
	 Few CAG repeats protect against CRC		
	 mARs seem to mediate opposite actions than iARs	 Gu et al (2011) (77)	 In vitro
Synthetic	 AASs positive correlation with a variety of	 Watanabe and	 Epidemiological
anabolic agents	 cancers (among which is adenocarcinoma)	 Kobayashi (95)	
(AAS and SARMs)	 SARMs are linked with prostate cancer but not	 Rosner and Khan (96)	
	 with CRC	 Martorana et al (97)	
		  Bryden et al (98)	
		  Zahm and Fraumeni (99)	
		  Bronson and Matherne (102)	 In vivo
		  Froehner et al (103)	
		  Chacon and Monga (104)	
Insulin	 Long‑term insulin therapy/ high blood insulin	 Yang et al (107)	 Epidemiological
	 levels	 Larsson et al (108)	
	 Increased risk of CRC	 Flood et al (109)	
	 Greater risk of CRC recurrence		
	 No connection between diabetes and CRC‑specific	 Polednak (110)	 Epidemiological
	 death	 Jullumstrø et al (111)	
Epithelial insulin	 EIR expression results to distant metastasis, 	 Heckl et al (120)	 Epidemiological
receptor (EIR)	 lymphatic invasion, lymph node metastasis, tumor	 Morcavallo et al (121)	 In vitro
	 specific survival and overall survival		
Vascular insulin receptor	 VIR is frequently found in CRC, especially 	 Heckl et al (120)	 Epidemiological
(VIR)	 in left‑sided CRCs, and associated with tumor		
	 invasiveness		
Insulin‑like growth	 High levels of IGF‑1 are related with CRC	 Soubry et al (149)	 In vivo
factor 1 (IGF‑1)		  Lee et al (148)	 In vitro
		  Ma et al (143)	 Epidemiological
		  Ollberding et al (150)	
		  Giovannucci (2001) (151)	
		  Shiratsuchi et al (152)	
	 IGF‑1 expression is associated with tumor	 Shiratsuchi et al (152)	 Epidemiological
	 size and depth of invasion		
IGFBPs	 High IGFBP2 positively associated with reduced	 Liou et al (160)	 Epidemiological
	 overall survival in CRC		



KRASANAKIS et al:  ANABOLICS AND CRC: MYTHS AND REALITIES 2237

Growth hormone (GH). Human growth hormone (hGH) 
or somatotropin, is a peptide‑hormone secreted mainly by 
somatotropic cells within the lateral wings of the anterior pitu-
itary. After entering the bloodstream it reaches its target organs 
(namely the liver, muscles, bones and adipose tissue) binding to 
its receptor [growth hormone receptor (GHR)] and thus inducing 
its anabolic properties through the activation of the mitogen 
activated protein kinase (MAPK)/ERK and JAK/STAT path-
ways (224,225). It has been well documented that GH plays a 
key role in longitudinal growth during childhood, while main-
taining various important metabolic functions throughout life 
(promoting lipolysis, protein synthesis and gluconeogenesis, 
while reducing glucose uptake from the liver) (226). Of note 
though, GH action is slightly more sophisticated. Apart from 
its direct action, an indirect one through the production of 
IGF‑1 also takes place, representing an important part of GH 
physiology. In fact, a potent stimulus of IGF‑1 production is 
the GH per se. Moreover, the tissues producing IGF‑1 (the liver 
75% and the peripheral tissues) are indeed the target organs 
of GH (227). However, it has been proven that GH is not only 
synthesized in the pituitary, but also in various other tissues, 
such as the large intestine, prostate and breast (228,229). In this 
case however, GH lacks the endocrine potential and its action 
is mainly restricted to an autocrine or paracrine manner (230).

Due to its proliferative properties, GH has attracted 
reasonable attention for its carcinogenic potential. In fact, 
various studies have demonstrated that GH is indeed able 
to create a favorable microenvironment for tumor cells. 
In detail, GH overexpression is linked to an increased 
risk of malignancies  (231), while its downregulation is 
linked to a carcinoprotective state. As for CRC risk per se, 
GH has been proven to act as a tumor promoter in colon 
tissue by suppressing p53 (232), phosphatase and tensin 
homolog (PTEN) and APC  (8), while it has also been 
proven that colon cancer cells overexpress GHR (232). In 
fact, upregulated GH has been exhibited to increase ERK 
phosphorylation and to decrease APC expression (232). It 
is known that a decreased APC expression promotes the 
nuclear accumulation of β‑catenin, which in turn increases 
Wnt signaling through the activation of pro‑proliferative 
genes (233,234). Thus, even though it is difficult to estimate 
the exact concentration for any given age above which GH 
poses its carcinogenic effect on colon cells, there is enough 
evidence supporting that the ability of GH to change the 
microenvironment of tumor cells can have a synergistic 
effect with other CRC risk factors (such as intestinal 
dysbiosis, smoking etc.), shifting the balance towards tumor 
survival and proliferation (235).

Table I. Continued.

Substance	 Relation to CRC	 Author (year)/(Refs.)	 Nature of the study

Vitamin D	 Low levels of vitamin D can induce the	 Boscoe and Schymura	 Epidemiological
	 progression of CRC	 (182)
	 Levels of 25‑OH‑vitamin D >20ng/ml can protect	 Braun et al (186)	 Epidemiological
	 against CRC	 Gorham et al (187)	
	 Levels of 25‑OH‑vitamin D >82ng/ml cancer		
	 incidence is decreased by 50%		
	 Vitamin D can induce the promoter of	 Padi et al (198)	 In vivo
	 onco‑protective miR‑627		
	 Vitamin D in human colon tumor cells	 Fernandez‑Garcia et al	 In vitro
	 up‑regulates the potent anti‑angiogenic factor	 (199)	
	 thrombospondin 1		
	 Vitamin D up‑regulates the transcription	 Pendás‑Franco et al (200)	 In vitro
	 of the Wnt‑inhibitors DICKKOPF‑1 and		
	 DICKKOPF‑4		
	 Vitamin D regulates apoptosis through SPARC	 Ylikomi et al (201)	 In vitro
		  Taghizadeh et al (202)	
	 Vitamin D down‑regulates NF‑κB, TLR2 and	 Liu et al (206)	 In vitro
	 TLR4	 Kim and Brasitus	
		  (2001) (208)	
	 Vitamin D may be able to reprogram the	 Kaler et al (215)	 In vitro
	 tumor‑associated macrophages (TAM) and halt		
	 their tumor‑promoting actions
Growth hormone (GH)	 Growth hormone suppresses p53, PTEN, and APC	 Brown‑Borg et al (231)	 Epidemiological
		  Chesnokova et al (232)	 In vivo
		  Morin et al (233)	 In vivo
		  Clevers and Nusse (234)	

CRC, colorectal cancer; IGF, insulin‑like growth factor; IGFBP, insulin‑like growth factor binding protein; SPARC, secreted protein acidic and 
rich in cysteine; TLR, Toll‑like receptor; PTEN, phosphatase and tensin homolog; APC, adenomatous polyposis coli.
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4. Conclusions

After 30 years of intense research on CRC and its biological 
behavior, only few facts have withstood the test of time, all 
revealing the impressive complexity and diversity of this 
entity. In fact, this is the case for the association between 
CRC and anabolic substances. Driven by epidemiological 
observations on both sexes, a time pattern of CRC onset has 
been found. However, studies thus far have failed to reach a 
consensus regarding the direct connection between andro-
gens and the risk of developing CRC, as some studies have 
indicated a negative effect, while others have pointed out 
a neutral or even a protective one (Table I). In the case of 
androgens, the androgen receptor (the principal mediator of 
their action) has been proven to be altered in CRC in contrast 
to healthy individuals. Moreover, anabolic substances 
are also put to scrutiny given the intense presence of such 
substances in patients with CRC (namely IGF‑1). However, 
no direct or well‑studied indirect mode of action on CRC 
pathogenesis has been found for both classes. Thus, more 
studies are needed that will focus on both epidemiologic data 
(that will try to investigate how the use of anabolic agents, 
androgens included, alters CRC statistics) and the elucidation 
of molecular pathways implicated in CRC, in order to allow 
the extraction of solid conclusions. In addition, as passive 
everyday life exposure to hazardous chemicals could affect 
traditional clinical risk factors and act synergistically, the 
patterns of living and consumers' trends should also be taken 
into consideration when evaluating CRC.
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