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Abstract. Establishing a prognostic genetic signature closely 
related to the tumor immune microenvironment (TIME) 
to predict clinical outcomes is necessary. Using the Gene 
Expression Omnibus (GEO) database of a non‑small cell lung 
cancer (NSCLC) cohort and the immune score derived from the 
Estimation of Stromal and Immune cells in Malignant Tumours 
using Expression data (ESTIMATE) algorithm, we applied the 
least absolute shrinkage and selection operator (LASSO) Cox 

regression model to screen a 10‑gene signature among the 448 
differentially expressed genes and found that the risk predic-
tion models constructed by 10 genes could be more sensitive 
to prognosis than TNM (Tumor, Lymph node and Metastasis) 
stage (P=0.006). The CIBERSORT method was applied to 
quantify the relative levels of different immune cell types. It 
was found that the ratio of eosinophils, mast cells (MCs) resting 
and CD4 T cells memory activated in the low‑risk group was 
higher than that in the high‑risk group, and the difference 
was statistically significant (P=0.003, P=0.014 and P=0.018, 
respectively). Inconsistently, the ratio of resting natural killer 
(NK) cells and activated plasma cells in the low‑risk group was 
significantly lower than that in the high‑risk group (P=0.05 and 
P=0.009, respectively). Kaplan‑Meier survival results showed 
that patients of the high‑risk group had significantly shorter 
overall survival (OS) than those of the low‑risk group in the 
training set (P<0.001). Furthermore, Kaplan‑Meier survival 
showed that patients of the high‑risk group had significantly 
shorter OS than those of the low‑risk group (P=0.0025 and 
P=0.0157, respectively) in the validation set [GSE31210 and 
TCGA (The Cancer Genome Atlas)]. The 10‑gene signature 
was found to be an independent risk factor for prognosis in 
univariate and multivariate Cox proportional hazard regression 
analyses (P<0.001). In addition, it was found that the risk model 
constructed by the 10‑gene signature was related to the clinical 
related factors in logistic regression analysis. The genetic signa-
ture closely related to the immune microenvironment was found 
to be able to predict differences in the proportion of immune 
cells (eosinophils, resting MCs, memory activated CD4 T cells, 
resting NK cells and plasma cells) in the risk model. Our find-
ings suggest that the genetic signature closely related to TIME 
could predict the prognosis of NSCLC patients, and provide 
some reference for immunotherapy.

Introduction

Lung cancer ranks first among all malignant tumors in regards 
to morbidity and mortality worldwide, with 2.1 million new 
lung cancer cases and 1.8 million deaths expected worldwide 
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in 2018 (1). Non‑small cell lung cancer (NSCLC) accounts for 
85% of all lung cancer cases, and targeted therapy and immu-
notherapy for NSCLC treatment are developing rapidly (2,3). 
Accurate judgment and prognostic assessment are important 
factors influencing the appropriate treatment for each indi-
vidual case. The current TNM staging system has been tested 
over time and remains the most powerful prognostic instru-
ment for lung cancer (4). However, due to the heterogeneity 
of the tumor itself and the complexity of the pathogenesis, 
even patients with the same TNM stage and treatment may 
exhibit various clinical outcomes (5). The current direction 
is to combine TNM with other prognostic factors to create a 
comprehensive prognostic indicator for NSCLC.

The tumor immune microenvironment (TIME) consists of 
immune cells, mesenchymal cells, endothelial cells, inflamma-
tory mediators, and extracellular matrix (ECM) molecules (6,7). 
The type, density and location of immune cells in TIME play 
an important role in the development of the disease and have 
been proposed to be valuable for the diagnosis and prognostic 
assessment of tumors (8). Therefore, immunological structures 
based on TIME should be used as a separate component in the 
classification system (9). Immunological analysis of the TIME 
(immunoscore) shows great promise for improved prognosis 
and prediction of response to immunotherapy. Several reports 
have demonstrated that immune scores and stromal scores 
calculated based on the ESTIMATE algorithm could predict 
the infiltration of non‑tumor cells, by analyzing specific gene 
expression signature of immune and stromal cells (10‑13).

For the first time in the present study, using the Gene 
Expression Omnibus (GEO) database of the NSCLC cohort 
and the immune score derived from the ESTIMATE algo-
rithm, we extracted a genetic signature closely related to the 
TIME that predict the prognosis of lung cancer patients. Then 
the CIBERSORT method was used to quantify the relative 
levels of different immune cell types in complex gene expres-
sion mixtures. Furthermore, the validity and reliability of the 
gene signature were further verified. Our findings suggest that 
the genetic signature closely related to TIME is able to predict 
the prognosis of NSCLC patients, and provide some reference 
for immunotherapy.

Materials and methods

Data source and processing. Gene‑expression profiling data 
of NSCLC patients were downloaded from Gene Expression 
Omnibus datasets (GEO; GSE103584 and GSE31210) and 
The Cancer Genome Atlas (TCGA; https://tcga‑data.nci.nih.
gov/tcga/). Microarray analysis of 130 NSCLC patients in 
GSE103584 was based on CancerSCAN panel (14). Dataset 
GSE103584 was used as a training set for model construction, 
and data in GSE31210 (15) and TCGA were applied to verify 
the validity of the model.

ESTIMATE algorithm‑derived immune scores. Immune 
scores were calculated by applying the ESTIMATE algorithm 
using gene expression data.

The algorithm was publicly available through the 
SourceForge software repository (https://sourceforge.
net/projects/estimateproject/) (13). The algorithm was based 
on single‑sample gene set enrichment analysis and generates 

immune score (indicating the infiltration of immune cells in 
tumor tissue).

Differential gene screening related to immune scores and 
enrichment analysis of differentially expressed genes. The 
immune score for each sample in the training set was calcu-
lated according to the ESTIMATE algorithm, and the best 
cutoff value was generated using X‑tile plots (16). Data analysis 
was performed using packaging limma (17). The relapse‑free 
survival is defined as time from randomization to the first 
reucurrence or death. The overall survival is defined as the time 
from the initial confirmed diagnosis to the death of any cause. 
Fold change >1.5 and adj. P<0.05 were set as the cutoff value for 
screening differentially expressed genes. First, the low immune 
score and high immune score samples were normalized by the 
limma package, and then the differential genes were screened 
to obtain 448 differentially expressed genes.

Functional enrichment analysis of the differential genes 
was performed using Database for Annotation, Visualization 
and Integrated Discovery (DAVID) (18) and GO categories 
were identified by their biological processes (BP), molecular 
functions (MF) and cellular components (CC). The DAVID 
database was also used for pathway enrichment analysis with 
reference to the Kyoto Encyclopedia of Gene and Genomic 
(KEGG) pathway. False discovery rate (FDR) <0.05 was used 
as the cutoff.

Screening for prognosis‑related genes and building risk 
models. LASSO is a superior high‑dimensional regression 
classifier and was used to select the key genes influencing 
patient outcomes (19). LASSO 1000 iterations were performed 
using the publicly available R package glmnet (20). Multiple 
genomes containing the optimal solution were received after 
multiple dimensionality reduction. At the same time, for 
the stability and accuracy of the results, a random sampling 
method of leave‑one‑out cross‑validation (LOOCV) was used 
to select a set of genes to construct a prognostic model (19).

According to the selected genetic model, a risk formula of 
risk score was constructed to evaluate the high‑risk and low‑risk 
groups. The formula for obtaining the score is Σiωiχi, where ωi 
and χi are the coefficients and expressed value of each gene. The 
risk score for each sample in the data in the training set was 
calculated according to the formula, and the best cutoff value 
was generated using X‑tile plots (16). This threshold was set to 
classify patients: Higher than the best cutoff for the low‑risk 
group and lower than the risk score for the high‑risk group.

Estimating the composition of immune cells. To estimate the 
immune cell composition in the sample, the analytical plat-
form CIBERSORT (https://cibersort.stanford.edu/) was used 
to quantify the relative levels of distinct immune cell types 
within a complex gene expression mixture (21). The analysis 
was performed with an arrangement of 100 default statistical 
parameters. The activation and quiescence state of the same 
type of immune cells were analyzed as a whole. CIBERSORT's 
deconvolution of gene expression data provides valuable 
information about the composition of immune cells in a sample.

Validation of the validity and reliability. Univariate survival 
analysis of the gene signature was assessed by using survival 
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in R language (P<0.05) (22). Then survival receiver operating 
characteristic curve (ROC) was used to complete the area 
under the curve (AUC) of gene signature and TNM classifi-
cation (23). External data from GSE31210 and TCGA were 
applied to verify the reliability of the gene signature's impact 
on the prognosis of the patients.

The univariate and multivariate Cox proportional hazard 
regression analyses were used to evaluate independent prog-
nostic factors associated with survival. Gene signature, age, 
sex, smoking status, T  stage T, N  stage, histology, grade, 
epidermal growth factor receptor (EGFR) mutation status and 
adjuvant chemotherapy were employed as covariates. In addi-
tion, the logistic regression analysis were used to analyze the 
association between the clinical related factors and risk model 
of gene signature construction.

Results

Correlation between immune score and overall survival in 
patients with NSCLC. There were 13,035 gene expression 
profiles obtained from 130 tumor samples in the dataset 
GSE103584  (Table SI). After normalizing the data of 130 
samples, the immune score, stromal score, and estimate score 
were calculated by immunocyte‑related genes (Table SII). The 
21 low immune score samples and 109 high immune score 
samples were divided by X‑tile plots (Fig. 1A and B, P<0.001). 
Kaplan‑Meier survival curves showed that the relapse‑free 
survival of patients with the high score group of immune 
scores was longer than that when compared with the patients in 
the low score group (Fig. 1C, P<0.001). Consistently, patients 
with high immune scores also showed longer overall survival 
compared to the patients with low scores (Fig. 1D, P=0.017).

Differential gene screening related to immune scores and 
enrichment analysis of the differential genes. To reveal the 
correlation of gene expression profiles with immune scores, we 
compared the gene microarray data of all 130 cases obtained 
in the dataset GSE103584. The low immune score and high 
immune score samples were normalized by the limma 
package and 448 differential genes were extracted from the 
comparison of high vs. low immune score groups. Heatmaps 
showed distinct gene expression profiles of cases in the low vs. 
high low immune score groups (Fig. 2A).

To analyze the potential functions of differential genes, 
we performed functional enrichment analysis on 448 
differentially expressed genes. The Gene Ontology (GO) 
terminology was identified. The top 10 positions of the GO 
term for biological processes, cellular component terms and 
molecular functions are listed (Fig. 2B). The top GO terms 
included ‘extracellular matrix organization’ and ‘extracel-
lular structure organization’ closely related to the immune 
microenvironment of tumors. In addition, pathway enrich-
ment analysis with reference to KEGG mainly focused on 
‘protein digestion and absorption’, ‘AGE‑RAGE signaling 
pathway in diabetic complications’, ‘platelet activation and 
focal adhesion’ which also had a relationship with immune 
response (Fig. 2C).

Screening genes associated with prognosis and building risk 
models. We applied the LASSO Cox regression model to 

predict and analyze the most valuable prognostic genes among 
the 448 differential genes in the 130 sample data. A random 
sampling method of 10‑cross validation was used to construct 
a prognostic model containing 10 genes (Fig. 3A). Through 
calculation and verification, it was found that the model 
constructed by 10 genes had the lowest error rate (Fig. 3B). 
Fig. 3C shows the specific information and coefficients of the 
10 genes.

To further validate the accuracy of the risk prediction 
model, we established a ROC plot of the signature model and 
TNM stage. As shown in Fig. 3D, we found that risk prediction 
models were more sensitive to prognosis than the TNM stage 
(P=0.006).

Estimating the composition of immune cells. We used 
CIBERSORT to estimate the immune cell composition of the 
130 samples and quantify the relative levels of different cell 
types in a mixed cell population. All results were normal-
ized relative proportions by cell type (Table SIII). As shown 
in Fig. 4A, B and E, we compared different types of cells in 
the low‑risk group and the high‑risk group. It was found that 
the ratio of eosinophils, mast cells resting and CD4 T cells 
memory activated in the low‑risk group was higher than that 
in the high‑risk group, and the difference was statistically 
significant (P=0.003, P=0.014 and P=0.018, respectively). 
Inconsistently, the ratio of NK cells resting and plasma 
cells activated in the low‑risk group was lower than that 
in the high‑risk group (P=0.05 and P=0.009, respectively) 
(Fig. 4C and D). The results indicated that activation and 
inhibition of various immune cells existed simultaneously in 
the tumor microenvironment.

Validation of the validity and reliability. Survival analysis 
in R language package was applied to examine the effects of 
the 10‑gene signature on the prognosis of NSCLC patients. 
Kaplan‑Meier survival curves for overall survival were used 
to represent the survival probabilities of the high‑risk group 
and the low‑risk group. The results showed that patients in the 
high‑risk group had shorter overall survival than patients in 
the low‑risk group (Fig. 5A, P<0.001).

Furthermore, external data from GSE31210 and TCGA 
were applied as a validating set to verify the validity and 
reliability of the 10‑gene signature impact on the prognosis 
of the NSCLC patients. Kaplan‑Meier survival showed that 
patients in the high‑risk group had shorter overall survival 
than patients in the low‑risk group (Fig. 5B, P=0.0025 and 
Fig. 5C, P=0.0157).

Correlation of the clinical information. The correlation 
analysis between gene signature and clinical pathological 
parameters in the training set (GSE103584) is shown in Table I. 
The high‑risk group was found to be significantly associated 
with all clinical pathological parameters. The univariate and 
multivariate Cox proportional hazard regression analyses were 
used to evaluate independent prognostic factors associated with 
survival. Gene signature, age, sex, smoking status, T stage, 
N stage N, histology, grade, EGFR mutation status and adju-
vant chemotherapy were employed as covariates. It was found 
that the risk model constructed by the 10‑gene signature was an 
independent risk factor for prognosis (Table II, P<0.001).
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In addition, logistic regression analysis was used to 
analyze the association between the clinical related factors 
and risk model of 10‑gene signature construction. As shown 
in Table III, we analyzed the risk factors for the risk model of 
the 10‑gene signature construction. Age, sex, smoking status, 
T stage, N stage, histology, grade, EGFR mutation status and 
adjuvant chemotherapy were selected in the logistic regression 
model. T stage, N stage and EGFR mutation status were all 
independent risk factors in the multivariable analysis. The 
results showed that the patients with Stage T2 and Stage T4 
had a significantly higher risk than those with Stage T0‑1 (OR 
3.822, 95% CI 1.422‑10.269, P=0.008; OR 19.671, 95% CI 
2.304‑167.949, P=0.006) and the patients with Stage N2 had a 
significantly higher risk than those with Stage N0 (OR 13.066, 
95% CI 2.680‑63.700 P=0.001). We also found that the patients 
without EGFR mutations had a significantly higher risk than 
those with EGFR mutations (OR 16.150, 95% CI 2.122‑122.877, 
P=0.007).

Discussion

Malignant solid tumor tissues include not only tumor cells, but 
also tumor‑associated normal epithelial cells and stromal cells, 
immune cells and vascular cells. Infiltrating immune cells are 
an integral component of the tumor immune microenvironment 

(TIME) and play an important role in increasing the effective-
ness of immunotherapy (24). This infiltrating immune cell 
population is usually a heterogeneous mixture of immune 
cells, including cell types associated with activity and inhibi-
tion (25). Because of the need for different types and subtypes 
of TIME to be identified in the immunotherapy of tumors, 
their characteristics and differences must be identified (26). In 
order to ensure substantial progress, bioinformatic techniques 
are used to assess the composition, functional status and 
cellular localization of immune cells. Based on gene signature, 
a more precise classification of patients based on their TIME 
will better predict overall survival and response to immuno-
therapeutic agents.

Firstly, we utilized an ESTIMATE algorithm to calculate 
immune scores and predict the level of infiltrating immune cells 
by immunocyte‑related genes. The 21 low immune score 
samples and 109 high immune score samples were divided 
by X‑tile plots. Kaplan‑Meier survival curves showed that 
relapse‑free survival and overall survival of patients in the 
high score group of immune scores was longer than the 
patients in the low score group. Next, 448 differential genes 
were extracted from the comparison of high vs. low immune 
score groups and the top Gene Ontology (GO) terms included 
extracellular matrix organization and extracellular structure 
organization closely related to the immune microenvironment 

Figure 1. Correlation between immune score and overall survival in patients with NSCLC. (A) X‑tile plot pattern diagram. The red portion represent samples 
with a low immune score and the green portion represent samples with a high immune score. ‑151.5 is the AQUA score for this set of samples to determine the 
best cutoff value by X‑title software. 0‑10 represents the level of expression intensity. (B) Comparison of immune scores between low‑immunity score samples 
and high‑immunity score samples. (C) Kaplan‑Meier survival curves for relapse‑free survival in the immune score groups. (D) Kaplan‑Meier survival curves 
for overall survival in the immune score groups. NSCLC, non‑small cell lung cancer.
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of tumors. In addition, pathway enrichment analysis with 
reference to KEGG mainly focused on ‘protein digestion 
and absorption’, ‘AGE‑RAGE signaling pathway in diabetic 
complications’, ‘platelet activation and focal adhesion’ which 
also had a relationship with immune response.

Furthermore, we applied the LASSO Cox regression model 
to screen a 10‑gene signature among the 448  differential 

genes and found that risk prediction models constructed by 
10 genes were more sensitive to prognosis than TNM stage. 
That is the 10 differential gene signature including neural 
cell adhesion molecule 2 (NCAM2), caldesmon 1 (CALD1), 
neuron navigator 3 (NAV3), kinase insert domain receptor 
(KDR), islet cell autoantigen 1‑like (ICA1L), CLN5 intracel-
lular trafficking protein (CLN5), zinc finger and BTB domain 

Figure 2. Differential gene screening related to immune scores and enrichment analysis of differential genes. (A) Heatmaps of the differential gene expression 
profile in the low immune score group and the high immune score group. Color represents the level of gene expression: Red represents high expression, and 
blue represents low expression. ‑5 stands for the lowest and 5 stands for the highest. (B) The top 10 positions of the Gene Ontology (GO) terminology for 
biological processes, cellular component terms and molecular functions. (C) The KEGG pathway enrichment analysis. Blue represents less enrichment to a 
pathway factor, and red represents more factors that are enriched into a pathway. Black dots represent the number of enrichment factors, the larger the dot, the 
higher the number. KEGG, Kyoto Gene and Genomic Encyclopedia.
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containing  34 (ZBTB34), PML‑RARA regulated adaptor 
molecule 1 (PRAM1), sulfatase 1 (SULF1) and translocase of 
outer mitochondrial membrane 6 (TOMM6) may influence the 
survival time of NSCLC patients.

Moreover, survival analysis in R  language pack was 
applied to examine the effects of the 10‑gene signature on the 
prognosis of NSCLC patients. Kaplan‑Meier survival curves 
for overall survival showed that patients in the high‑risk group 
had shorter over survival than patients in the low‑risk group. 
Then, external data from GSE31210 and The Cancer Genome 
Atlas (TCGA) were applied as a validating set to verify the 
validity and reliability of the 10‑gene signature impact on 
the prognosis of the patients. Kaplan‑Meier survival showed 
that indeed patients in the high‑risk group had shorter overall 
survival than patients in the low‑risk group.

We not only confirmed the stability and accuracy of the 
10‑gene signature, but also found it was closely associated with 
other clinical information. The univariate and multivariate Cox 
proportional hazard regression analyses were used to evaluate 
independent prognostic factors associated with survival. It was 
found that the risk model constructed by the 10‑gene signature 
was an independent risk factor for prognosis (Table III). In 
addition, logistic regression analysis was used to analyze the 
association between the clinical related factors and risk model 

of 10‑gene signature construction. T stage, N stage and EGFR 
mutation status were all independent risk factors in the multi-
variable analysis. The results showed that the patients with 
Stage T2 and T4 had a significantly higher risk than those with 
Stage T0‑1 and the patients with Stage N2 had a significantly 
higher risk than those with Stage N0. We also found that the 
patients without EGFR mutations had a significantly higher 
risk than those with EGFR mutations. These results suggest 
that our characteristics may contribute to the clinical manage-
ment of NSCLC.

Finally, we used CIBERSORT to estimate the immune cell 
composition of 130 samples and quantify the relative levels 
of the different cell types in a mixed cell population and 
compared the different types of cells in the low‑risk group and 
the high‑risk group. Surprisingly, it was found that the ratio 
of eosinophils, mast cells resting and CD4 T cells memory 
activated in the low‑risk group was higher than that in the 
high‑risk group, and the difference was statistically signifi-
cant. Inconsistently, the ratio of NK cells resting and plasma 
cells activated in the low‑risk group was lower than that in 
the high‑risk group. The results indicated that activation and 
inhibition of various immune cells existed simultaneously in 
TIME. The 10‑gene signature was used to analyze the compo-
sition of immune cells helping to clarify the role of TIME 

Figure 3. Screening genes associated with prognosis and building risk models. (A) Trend graph of LASSO coefficients. The lines represent the coefficient 
of Lasso. L1 norm represents the calculation method of random sampling method. (B) Partial likehood deviation map. (C) The name and coefficient of the 
10‑gene signature closely related to TIME. The partial likelihood represents the error rate chosen by random sampling. (D) ROC curves of the risk model 
and TNM staging in the training set. TIME, tumor immune microenvironment; LASSO, least absolute shrinkage and selection operator; ROC, receiver 
operating characteristic; NCAM2, neural cell adhesion molecule 2; NAV3, neuron navigator 3; KDR, kinase insert domain receptor; ICA1L, islet cell autoan-
tigen 1‑like; CLN5, intracellular trafficking protein; ZBTB34, zinc finger and BTB domain containing 34; PRAM1, PML‑RARA regulated adaptor molecule 1; 
TOMM6, translocase of outer mitochondrial membrane 6; CALD1, caldesmon 1; SULF1, sulfatase 1.
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and increase our understanding of molecular phenotype. The 
success of cancer immunotherapy has revolutionized cancer 
treatment and has used TIME parameters (immune cell 
composition and proportion) as predictive immunotherapy 
markers  (8). Detailed characterization of the immune cell 
composition in tumors may be the basis for determining 

the prognostic and predictive biomarkers of immuno-
therapy (27,28). Therefore, incorporating TIME parameters 
into a gene signature can be more conducive to individualized 
treatment options (29). Studies have reported that the expres-
sion levels of various proliferation‑related genes are related to 
the response to immune checkpoint inhibitors in NSCLC (30). 

Figure 5. Kaplan‑Meier survival curves for overall survival in the training and validating set. (A) Kaplan‑Meier survival curves for overall survival in the 
training set. (B) Kaplan‑Meier survival curves for overall survival in the GSE31210 set. (C) Kaplan‑Meier survival curves for overall survival in TCGA. 
TCGA, The Cancer Genome Atlas.

Figure 4. Estimating the composition of immune cells. (A) The ratio of eosinophils activated in the high‑risk and low‑risk group. (B) The ratio of mast cells 
resting in the high‑risk and low‑risk group. (C) The ratio of NK cells resting in the high‑risk and low‑risk group. (D) The ratio of plasma cells in the high‑risk 
and low‑risk group. (E) The ratio of CD4 T cells memory activated in the high‑risk and low‑risk group. NK, natural killer.
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In addition, JAK1/2 mutations are associated with resistance 
to anti‑PD‑1/PD‑L1 antibodies and MDM2/MDM4 and EGFR 
changes may be associated with hyperprogression  (31‑33). 
Here, the 10‑gene signature closely related to TIME could 
predict the prognosis of lung cancer patients, and provide 
some reference for immunotherapy.

Notably, among the 10‑gene signature, only the gene 
KDR is involved in tumor immunity and most of the genes 
(NCAM2, CALD1, NAV3, PRAM‑1 and SULF1) are closely 

related to tumors and can be used as novel tumor biomarkers. 
There are also two other genes (ICA1L, CLN5) that have 
been reported to have related functions, but no reports exist 
on tumors and immunity. The TOMM6 gene has not been 
reported. NCAM2 is a close homolog of the neuronal cell 
adhesion molecule NCAM1 and stimulates neurite outgrowth 
through FGFR‑dependent activation of the Ras/MAPK 
pathway (34,35). Several studies have reported that NCAM2 
can be used as a new therapeutic target for cancer, especially 
prostate cancer and breast cancer (36‑38). CALD1 is a novel 
target of the TEA domain family member (39). Moreover, 
CALD1 encodes the caldesmon protein, which is a calmod-
ulin‑binding and cytoskeleton‑associated protein and regulates 
cell motility, such as migration and invasion (40,41). It has 
been suggested that CALD1 may indicate a general splicing 
event associated with cancer (41,42) and was also identified as 
a potential prognostic molecular marker for bladder and colon 
cancer (43‑45).

NAV3 is a novel cancer‑associated gene located at chro-
mosome 12q21 and belongs to the ‘hill’ genes of genomic 
landscaping associated with cancer  (46). Accumulating 
evidence suggests that the NAV3 gene is a key player in a 
variety of cancers, with downregulation of NAV3 found in 
40% of primary neuroblastomas and adrenocortical carci-
nomas (47,48). NAV3 mutations have been found in melanoma, 
pancreatic cancer, breast cancer and colon cancer (49). We 
also found NAV3 gene copy number changes (deletions/ampli-
fications) in other cancer types of epithelial origin (50) and 
NAV3 gene allelic loss was found to be associated with several 
subtypes of cutaneous T‑cell lymphoma (51,52). KDR, also 
known as VEGFR2, is expressed in endothelial cells (ECs) to 
promote EC growth and survival, thereby initiating angiogen-
esis (53). Research has shown that T cell KDR is an important 
molecule in immunity, and it was found that KDR was induced 
to be expressed in activated CD4 and CD8 T cells in vitro (54). 
In addition, KDR was also demonstrated to be expressed 
on T  cells after interaction with tumor necrosis factor 
(TNF)‑activated ECs, and have a function in transendothelial 
migration (55).

ICA1L is highly expressed in sperm cells and is closely 
related to male infertility  (56). CLN5 mutations cause 
neurodegenerative diseases, and symptoms include mainly 
seizures, visual failure, motor decline, and progressive 
cognitive deterioration  (57). ZBTB34 encodes a nuclear 
protein and functions as a potential transcriptional 
repressor. The transcript of ZBTB34 appears in a variety 
of adult tissues related to the immune, nervous, muscle and 
endocrine systems suggesting that ZBTB34 is a ubiquitously 
expressed protein that may function universally in transcrip-
tional regulation (58). PRAM‑1 is an intracellular adaptor 
molecule that is upregulated during the induced granulocytic 
differentiation of promyelocytic leukemic cells and during 
normal human myelopoiesis (59). PRAM‑1 is involved in a 
signaling pathway induced by retinoic acid in acute promy-
elocytic leukemia (APL) cells (60). SULF1 plays a key role 
in the pathogenesis of various types of human cancer, and 
SULF1 protein is secreted to the cell surface to regulate the 
sulfation of heparan sulfate proteoglycans (HSPGs) (61,62). 
SULF1 was also found to be a novel prognostic marker 
and predictor of lymph node metastasis in patients with 

Table I. Correlation analysis between genetic signature and 
clinical pathological parameters of the NSCLC patients in the 
training set (GSE103584).

	 Low risk	 High risk
Variables	 n (%)	 n (%)	 P‑value

Age (years)			   <0.001
  <65	 29 (32.6)	 8 (19.5)	
  >64	 60 (67.4)	 33 (80.5)	
Sex			   <0.001
  Female	 26 (29.2)	 8 (19.5)	
  Male	 63 (70.8)	 33 (80.5)	
Smoking status			   <0.001
  Yes	 75 (84.3)	 35 (85.4)	
  No	 14 (15.7)	 6 (14.6)	
T stage			   <0.001
  T0‑1	 46 (51.7)	 12 (29.3)	
  T2	 28 (31.5)	 21 (51.2)	
  T3	 13 (14.6)	 3 (7.3)	
  T4	 2 (2.2)	 5 (12.2)	
N stage			   <0.001
  N0	 76 (85.4)	 28 (68.3)	
  N1	 9 (10.1)	 3 (7.3)	
  N2	 4 (4.5)	 10 (24.4)	
Histology			   <0.001
  Adenocarcinoma	 67 (75.3)	 29 (70.7)	
  Squamous	 21 (23.6)	 10 (24.4)	
  Others	 1 (1.1)	 2 (4.9)	
Grade			   <0.001
  I	 17 (19.1)	 5 (12.2)	
  II	 44 (49.4)	 18 (43.9)	
  III	 16 (20.0)	 11 (26.8)	
  Other	 12 (13.5)	 7 (17.1)	
EGFR status			   <0.001
  Yes	 17 (19.1)	 2 (4.9)	
  No	 49 (55.1)	 33 (80.5)	
  Unknown	 23 (25.8)	 6 (14.6)	
Adjuvant therapy			   <0.001
  Yes	 66 (74.2)	 14 (34.1)	  
  No	 23 (25.8)	 27 (65.9)	

NSCLC, non‑small cell lung cancer; EGFR, epidermal growth factor 
receptor.
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gastric cancer (63). From the above results, we can conclude 
that our gene signature not only identified new promising 
biomarkers, but also may provide a direction for the study of 
TIME mechanisms.

In summary, the present research has the following 
novelty and innovation. First, multiple bioinformatic analysis 
methods were used to extracted a 10‑gene signature closely 

related to TIME. Second, the risk model constructed by 
the 10‑gene signature was able to predict the prognosis of 
NSCLC patients and was more sensitive for predicting 
prognosis than TNM stage. Third, the 10‑gene signature was 
found to be closely related to TIME parameters (immune cell 
composition and proportion) and provides a certain reference 
for the immunotherapy of NSCLC. Fourth, some previously 

Table II. Univariate and multivariate Cox proportional hazard regression analyses between the risk factors and overall survival 
of NSCLC patients.

	 Univariate analysis	 Multivariate analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 Wald χ2	 P‑value	 HR (95% CI)	 P‑value

Age (years)	 0.253	 0.615		  NI
  <65				  
  >64				  
Sex	 0.432	 0.511		  NI
  Female				  
  Male				  
Smoking status	 0.443	 0.506		  NI
  Yes				  
  No				  
T stage	 2.545	 0.467		  NI
  T0‑1				  
  T2				  
  T3				  
  T4				  
N stage	 4.706	 0.095		  NI
  N0				  
  N1				  
  N2				  
Histology	 0.379	 0.827		  NI
  Adenocarcinoma				  
  Squamous				  
  Others				  
Grade	 3.066	 0.382		  NI
  I				  
  II				  
  III				  
  Other				  
EGFR status	 0.975	 0.614		  NI
  Yes				  
  No				  
  Unknown				  
Adjuvant therapy	 0.766	 0.381		  NI
  Yes				  
  No				  
Gene signature	 26.149	 <0.001		  <0.001
  Low risk			   Reference	
  High risk			   8.828 (3.831‑20.342)	 <0.001

NSCLC, non‑small cell lung cancer; EGFR, epidermal growth factor receptor; CI, confidence interval; NI, not included.



LI et al:  GENETIC SIGNATURE FOR TIME PREDICTS NSCLC PROGNOSIS804

ignored genes in the 10‑gene signature may become poten-
tial novel markers for NSCLC. However, the present study 
also has certain limitations. First, the study consisted solely 
of bioinformatics research, and there was no validation of 
clinical sample data. Second, the study only verified the 
validity and reliability of the 10‑gene signature impact on the 
overall survival of the patients, but did not verify relapse‑free 
survival. Third, the sample size requires further expansion to 
verify the accuracy of the 10‑gene signature and truly clarify 
its clinical value.
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