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Abstract. At present, a large number of exciting results 
have been found regarding energy metabolism within the 
triple‑negative breast cancer (TNBC) field. Apart from aerobic 
glycolysis, a number of other catabolic pathways have also been 
demonstrated to participate in energy generation. However, the 
prognostic value of energy metabolism for TNBC currently 
remains unclear. In the present study, the association between 
gene expression profiles of energy metabolism and outcomes 
in patients with TNBC was examined using datasets obtained 
from the Gene Expression Omnibus and The Cancer Genome 
Atlas. In total, four robust TNBC subtypes were identified 
on the basis of negative matrix factorization clustering and 
gene expression patterns, which exhibited distinct immu-
nological, molecular and prognostic (disease-free survival) 
features. The differentially expressed genes were subsequently 
identified from the subgroup that demonstrated the poorest 
prognosis compared with the remaining 3 subgroups, where 
their biological functions were assessed further by means of 
gene ontology enrichment analysis. Any signatures found to 
be associated with energy metabolism were then established 
using the Cox proportional hazards model to assess patient 
prognosis. According to results of Kaplan‑Meier analysis, the 
constructed signature consisting of eight genes that were asso-
ciated with energy metabolism distinguished patient outcomes 
into low‑ and high‑risk groups. In addition, this signature, 
which was found to be markedly associated with the clinical 
characteristics of the patients, served as an independent factor 
in predicting TNBC patient prognosis. According to gene set 
enrichment analysis, the gene sets related to the high-risk group 
participated in the MAPK signal transduction pathway, focal 
adhesion and extracellular matrix receptor interaction, whilst 
those related to the low-risk group were revealed to be mainly 

associated with mismatch repair and propanoate metabolism. 
Findings from the present study shed new light on the role 
of energy metabolism within TNBC, where the eight-gene 
signature associated with energy metabolism constructed can 
be utilized as a new prognostic marker for predicting survival 
in patients with TNBC.

Introduction

Triple-negative breast cancer (TNBC) is a type of breast 
cancer (BC) in which the expression of human epidermal 
growth factor receptor 2 (HER2), progesterone receptor and 
oestrogen receptor have all been deleted (1). TNBC is asso-
ciated with distinct clinical characteristics and molecular 
complexity compared with other types of BCs (1). Typically, 
prognosis for women with TNBC following metastatic recur-
rence is poorer compared with those with other subtypes of 
BCs (2). Chemotherapy remains to be the preferred systemic 
treatment for TNBC (3). Although subpopulations showing 
effective response to chemotherapy can be identified, particu-
larly in those carrying BRCA1 mutations, the effectiveness 
of chemotherapy is restricted in other subpopulations with 
TNBC (4). A number of treatment strategies have been previ-
ously developed for clinical intervention, including platinum 
salts, poly ADP-ribose polymerase inhibitors, immunological 
agents and mitogen-activated extracellular signal-regulated 
kinase inhibitors (5‑7). Among these, although a number of 
predictive biomarkers, including O6-methylguanine DNA 
methyltransferase (8), isocitrate dehydrogenase (9), epidermal 
growth factor receptor (10) and phosphatase and tensin 
homolog (11), have been identified, though suitable molecular 
features for optimizing personalized treatment strategies for 
individual patients remain insufficient (12).

Accumulating evidence has demonstrated high heteroge-
neity within TNBC tumors, which is one of the main causes 
of recurrence and resistance (13,14). A number of previous 
studies have applied the use of gene expression profiles in 
classifying TNBCs, which can offer relevant clinical informa-
tion (15,16). For example, platinum‑based chemotherapy can 
be used for patients carrying breast cancer (BRCA) 1 and 
BRCA2 mutations. Harano et al (17) previously recognized 
six TNBC subtypes based on gene expression profiles, where 
the immunomodulatory subtype was frequently observed 
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during processes involving immunocytes. In another study, 
Bonsang‑Kitzis et al (18) classified six TNBC subgroups on 
the basis of gene selection driven by the biological network, 
where two immunity clusters were included and a gene signa-
ture was constructed based on the stromal immune module. In 
addition, Burstein et al (19) previously recognized four TNBC 
subtypes with high stability on the basis of mRNA expression 
and DNA genomic profile data: i) Mesenchymal; ii) luminal/
androgen receptor; iii) basal‑like immune activated; and 
iv) basal‑like immune suppressed. Based on this classification, 
Burstein et al (19) also proposed candidate treatment targets 
for the aforementioned subtypes. The TNBC classification 
strategies aforementioned have contributed to laying the foun-
dations for developing targeted TNBC treatments.

The reprogramming of energy metabolism can serve as a 
hallmark in cancer physiology, making it possible for cancer 
cells to produce ATP whilst maintaining redox balance and 
macromolecular biosynthesis, processes that are necessary 
for cell proliferation, growth, migration, drug resistance and 
angiogenesis (20). It has been previously suggested that a large 
number of cancer types divert their energy metabolism towards 
the glycolytic pathway, resulting in the excessive production of 
lactate even under normoxic conditions, in a phenomenon known 
as the Warburg effect (21,22). Compared with non‑malignant 
cells, cancer cells generally prefer incomplete and non-oxidative 
glucose metabolism (22). Although glucose has been accepted 
as a major source of energy in tumor cells, there is growing 
consensus regarding the heterogeneity of metabolic phenotypes 
in tumors. A portion of cancer cells prefer glycolysis, whilst other 
tumor cell types can bias towards oxidative phosphorylation 
(OXPHOS) (23,24). In addition, there is an increasing number of 
reports revealing the presence of metabolic symbiosis between 
oxidative and glycolytic cancer cells. For instance, pyruvate and 
lactate produced by glycolysis can be transferred and utilized 
to become substrates of the tricarboxylic acid cycle (TCA) and 
for ATP production by neighboring tumor cells (25). Likewise, 
malignant cancer cells can absorb ketone bodies and free fatty 
acids generated through catabolic cells in their vicinity, thereby 
accelerating mitochondrial OXPHOS (26). Glutamine has also 
been reported to be metabolized by cancer cells through the 
TCA cycle for energy production under hypoxic conditions or 
those under glucose deficiency (27). Therefore, an extensive 
understanding of energy metabolism in different types of 
cancer cells can promote the development of novel therapeutic 
strategies.

Catabolic pathways have been previously reported to 
participate in energy metabolism in TNBC cells, which 
exhibit high OXPHOS rates and are not responsive to glyco-
lytic inhibitors. Under normoxic conditions, TNBCs generally 
prefer OXPHOS to glycolysis, whilst under hypoxic condi-
tions, TNBCs generally prefer glycolysis (28). Tumor stem 
cells do not display glycolytic phenotypes compared with 
those of the differentiated progeny cells for TNBC (29,30). 
Previous studies have indicated that fatty acids can also be 
utilized by TNBC cells as substrates for energy produc-
tion (31,32). Inhibiting the β-oxidation of fatty acids can reduce 
cancer cell proliferation in myc‑overexpressing TNBC (31). 
However, the association between the local metabolic state 
and its prognostic significance in patients with TNBC remain 
unknown at present.

The present study aimed to investigate the expression 
profiles of genes associated with energy metabolism, together 
with their clinical significance in patients with TNBC, based 
on data obtained from the gene expression omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) databases. Patients 
were divided into four groups based on differential gene 
expression patterns, where these four groups exhibited signifi-
cant differences in terms of prognosis, immunological and 
molecular features. A signature based on energy metabolism 
was subsequently constructed to assess TNBC patient prog-
nosis based on the TCGA dataset, which was then verified 
using the GEO dataset. This signature showed close associa-
tion with patient survival, suggesting that it can be used as an 
independent prognostic factor. These findings revealed that the 
energy metabolic state is closely associated with the clinical 
prognosis of TNBC.

Materials and methods

Pre‑processing of initial sample information. In total, 1097 
BC samples were collected from the TCGA database for 
analysis, from which 191 samples that were negative for 
‘HER2’, ‘progesterone’ and ‘estrogen receptor expression’ were 
screened using the three key words. A total of 177 samples with 
disease free survival (DFS) >30 days was then obtained from 
the 191 samples. In addition, two GEO datasets [GSE58812 (33) 
and GSE21653 (34)] were extracted from NCBI database, 
which were then normalized according to the robust multichip 
average (RMA) method (35). The GSE21653 dataset included 
87 TNBC cases, whilst the GSE58812 dataset included 107 
TNBC cases. Of note, 2 cases were excluded due to the lack 
of prognostic information in the GSE21653 dataset. Following 
series data preprocessing aforementioned, 369 samples, 
including 177 from the TCGA training set and 192 from the 
GEO validation set, were acquired for further analysis. Using 
following three keywords ‘metabolism’, ‘TCA’ and ‘glycogen’, 
the expression profiles of 594 genes associated with energy 
metabolism were extracted from the Reactome database (36) 
based on the related metabolic pathways (Table I). Table II 
displays the sample clinicopathological features of the samples.

NMF (Negative matrix factorization) clustering. NMF 
clustering was performed to identify stable sample clusters 
based on 50 iterations according to the Brunet method (37) 
using genes associated with energy metabolism. In addition, 
the cluster number, represented by k, was set as 2-10, whilst 
the best cluster number was calculated based on the cluster 
cophenetic correlation and the observed consensus map. The 
mean silhouette width of the consensus membership matrix 
was determined using the ‘NMF’ function in the R package 
(version 3.5.3; http://bioconductor.org/biocLite.R). For every 
member, the lowest cluster number for each member was set 
as 10. Maftools v1.6.15 from the R package was used to analyze 
the gene mutation profiles within the TNBC case clusters. The 
tumor immune estimation resource (TIMER; https://cistrome.
shinyapps.io/timer/) was applied to calculate the scores of 
immune cell infiltration within the TNBC clusters (38).

Identification of gene signature. Differentially expressed 
genes (DEGs) associated with energy metabolism in the 
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TCGA training set (n=177) first underwent univariate survival 
analysis by using the ‘survival coxph function’ in the R 
package to investigate the genes linked to patient prognosis 
and survival. Typically, a difference of P<0.05 was considered 
to indicate a statistically significant difference. The signifi-
cant genes were subsequently screened by multivariate Cox 
proportional hazards regression, using regional lymph nodes 
(N) and tumor size (T) as covariants for the model and P<0.05 
as threshold for significance. Prognostic genes recognized 
using the glmnet of R package (family=‘cox’; nλ=100; α=1) 
were then refined using lasso Cox regression (39), which was 
appropriate for the regression analysis of high-dimensional 
data. By using the regularization coefficient of machine 
learning (λ, also known as penalty coefficient), the number 
of variables when the cross validation error is minimum was 
found. DESeq2 (40) was then used for calculating DEGs that 
participated in energy metabolism by applying the thresholds 
of false discovery rate (FDR) <0.05 and |log2 fold change|>1. 
The R package cluster profile (41) was subsequently used to 
perform enrichment analysis of the DEGs by turning them 
to ENTREZID. Afterwards, the ENTREZIDs were enriched 
using the enrich Kyoto Encyclopedia of Genes and Genomes 
pathways (KEGG) and the enrich gene ontology (GO) func-
tions by applying the P<0.05 threshold. Using the enrichment 
map software from Cytoscape (version 3.8.0; https://cytoscape.
org/) (42), a visualization of the enrichment results was then 
obtained. By applying the coefficients obtained from lasso 
Cox regression analysis and expression value of each gene, a 
specific risk signature was finally constructed, the formula of 
which was shown below:

Risk score=0.051 x IL1RL2 + 0.012 x FBLN7 + 0.01 x CA3 
+ 0.146 x PDE1B + 0.01 x SLURP1 + 0.002 x CILP + 
0.011 x AQP7 + 0.003 x TPSB.

The risk score values of all patients in the TCGA training 
set were determined based on linear combination with the 
expression of signature-related genes weighted according 
to the corresponding regression coefficients. The regression 
coefficients from the training set were then applied into the 
GEO validation set for risk score calculation.

Table I. Gene sets related to energy metabolism extracted from the Reactome database.

Metabolic pathways from the Reactome Pathway ID Gene count

Biological oxidations R‑HSA‑211859 221
Metabolism of carbohydrates R‑HSA‑71387 292
Mitochondrial fatty acid beta‑oxidation R‑HSA‑77289 38
Glycogen synthesis R‑HSA‑3322077 16
Glycogen metabolism R‑HSA‑8982491 27
Glucose metabolism R‑HSA‑70326 92
Glycogen breakdown (glycogenolysis) R‑HSA‑70221 15
Glycolysis R‑HSA‑70171 72
Pyruvate metabolism R‑HSA‑70268 31
Pyruvate metabolism and citric acid (TCA) cycle R‑HSA‑71406 55
Citric acid cycle (TCA cycle) R‑HSA‑71403 22
Sum 881 (unique: 594)

Table II. Clinicopathological features of the samples after 
series data pre‑processing.

Characteristic TCGA datasets GSE21653 GSE58812
 (n=177) (n=85) (n=107)

Age (years)   
  ≤60 118 50 64
  >60 59 35 43
Survival status   
  Living 150 58 78
  Deceased 27 27 29
Gender   
  Female 177 85 107
  Male 0 0 0
T   
  T1 45 16 -
  T2 110 45 -
  T3 14 23 -
  T4 7 0 -
N   
  N0 105 51 -
  N1 45 33 -
  N2 15 0 -
  N3 10 0 -
M   
  M0 154 ‑ ‑
  M1 1 ‑ ‑
  MX 21 ‑ ‑
Tumor stage   
  Stage I 31 ‑ ‑
  Stage II 109 ‑ ‑
  Stage III 32 ‑ ‑

TCGA, the cancer genome atlas.
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Multiple regression analyzes, gene set enrichment analysis 
(GSEA) and gene ontology (GO) analysis. GO analysis was 

performed to annotate the major functions of the DEGs using 
the Database for Annotation, Visualization and Integrated 

Figure 1. Identification of the molecular subtypes of TNBC by NMF analysis. (A) Plots showing the NMF cluster results. Colour scale represents the P‑values 
of the cluster results, where red indicates high probability of two samples belonging to the same cluster and blue indicates low probability of two samples in 
the different cluster. (B) Expression levels of genes associated with energy metabolism across the four subtypes were tested. Colour scale represents the gene 
expression levels, where red indicates upregulation and green indicates downregulation.
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Discovery online tool v6.8 (version 6.8; http://david.ncifcrf.
gov/). The statistically different genes identified between high 

risk and low risk groups, which were classified according to the 
median risk score values, were using the GSEA v7.1 software 

Figure 1. Continued. Identification of the molecular subtypes of TNBC by NMF analysis. (C) The difference in prognosis among the four subgroups. (D) The 
overall heterogeneity in mutation frequency among the four subtypes. Colour scale represents the expression levels of each gene, where blue indicates upregula-
tion and grey indicates downregulation. NMF, non‑negative factorization; TNBC, triple‑negative breast cancer; HR, hazard ratio.

https://www.spandidos-publications.com/10.3892/or.2020.7657
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(MSigDB; http://software.broadinstitute.org/gsea/msigdb/
index.jsp) (43). Multiple regression analyses were performed 
to determine the association between the clinical features and 
the risk score values, which were displayed as forest plots and 
nomograms.

Statistical analysis. All cases were classified into high‑risk 
or low‑risk groups according to the median risk score value. 
Differences in disease-free survival (DFS) between the two 
groups were evaluated using Kaplan‑Meier combined with 
a two‑sided log‑rank test. Differences in the pathological 

Figure 2. Identification of the immune features for each triple‑negative breast cancer subtype. The immune scores of samples across 4 subtypes were calculated 
and compared using the tumor immune estimation resource approach. The scores of (A) B cells, (B) CD4 T cells, (C) CD8 T cells, (D) neutrophils, (E) macro-
phages and (F) dendritic cells for each of the four subtypes were calculated.
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characteristics between the two groups were compared using 
χ2 test. Multivariate and univariate cox regression analyses 
were performed for identifying the independent prognosis 
factors. Lasso regression was used for narrowing the number 
of genes. ROC curve was used to test the sensitivity and 
specificity of risk score model and to calculate the cutoff 
value using Youden's index (44). R or SPSS version 19.0 
software (IBM Corp.) was used for all statistical analyses. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Molecular subtypes on the basis of different genes associ‑
ated with energy metabolism. To examine the state of energy 
metabolism in TNBC, a total of 369 cases including available 
clinical data and RNA sequencing profiles were acquired from 
the GEO and TCGA databases. In addition, one separate gene 
set containing 594 genes that were associated with energy 
metabolism was also collected from the Reactome database. 
The NMF algorithm was applied for clustering the TNBC 
cases, where the best k number was calculated to be 4 based 
on silhouette, dispersion and cophenetic analyses (Fig. 1A). 
The expression levels of genes associated with energy 
metabolism across the four subtypes are displayed in Fig. 1B, 
where the expression profiles of some genes were shown to 
be heterogenous across the different subtypes. Prognosis 

among the patients within the four subtypes was subsequently 
examined. Subtype C2 exhibited the poorest prognosis, such 
that subtypes C1, C3 and C4 all exhibited markedly superior 
prognoses compared with those in the C2 subtype (log rank 
P=0.06; Fig. 1C).

Differences in the aforementioned four TNBC case clusters 
was measured. Firstly, associations of the TNBC mutation 
profiles with each of the four sub‑classifications were examined 
using maftools v1.6.15 from R package. After the synonymous 
mutations were eliminated, the missense and nonsense gene 
mutations were obtained. The overall heterogeneity in muta-
tion frequency among the different subtypes was found to be 
of statistical significance (Fig. 1D). Subsequently, differences 
in the clinicopathological characteristics, including age, TNM 
and stage, were compared among the four subtypes. The differ-
ences in the clinicopathological features among the four TNBC 
subtypes were not found to be statistically significant (Table III). 
In addition, samples from these 4 subtypes were analyzed using 
the TIMER method. The scores in terms of the three types of 
immune cells, including dendritic cells, macrophages and CD4 
T cells were found to be higher in samples from the C2 subtype 
compared with those from the other subtypes (Fig. 2). These 
findings suggested that the immune microenvironment or the 
degree of immunocyte infiltration in TNBC was associated with 
patient prognosis. In addition, the expression profiles of genes 
associated with energy metabolism displayed close association 
with the clinical characteristics and patient prognosis in TNBC.

Identification of the prognostic signature associated with 
energy metabolism for TNBC. To examine the relationship 
between the expression profiles of genes associated with 
energy metabolism and the TNBC prognosis, DESeq2 was 
used for calculating DEGs that participated in energy metabo-
lism between samples from the C2 subtype, which had the 
poorest prognosis and those in the C1, C3 or C4 subtypes, by 
applying the thresholds of FDR <0.05 and |log2 fold change|>1. 
Data shown in Fig. 3 and Table IV suggested that a total of 
1941 DEGs were identified between the subtype C2 samples 
and those in the C1, C3 and C4 subtypes. The R package 
cluster profile was subsequently used to perform enrichment 
analysis of these 1941 DEGs. KEGG pathway enrichment and 
GO enrichment analysis results appeared to show that these 
genes were mostly enriched in biological functions and path-
ways associated with ‘calcium homeostasis’, ‘angiogenesis’, 
the metabolism of molecules including glutathione, arachi-
donic acid, drugs and xenobiotics and ‘positive cell migration 
regulation’ (Fig. 4).

Table IV. Comparison of differentially expressed genes in 
samples from the C2 subtype with the C1, C3 and C4 subtypes.

Type C2/C1 C2/C3 C2/C4

PCG_Up 700 304 448
PCG_Down 628 186 233
PCG_All 1328 490 681

PCG, protein coding gene.

Table III. Clinicopathological features among the four 
triple‑negative breast cancer subtypes.

Clinical features C1 C2 C3 C4 P-value

Outcome      0.130
  Alive 28 20 48 54 
  Deceased 6 8 5 8 
T      0.078
  T1 8 10 16 11 
  T2 20 14 30 46 
  T3 3 1 6 4 
  T4 3 3 1 0 
N      0.058
  N0 14 19 33 39 
  N1 8 4 15 18 
  N2 6 1 5 3 
  N3 4 4 0 2 
Stage      0.061
  I 5 8 10 8 
  II 17 12 35 45 
  III 11 8 7 6 
Gender      -
  Female 34 28 53 62 
  Male 0 0 0 0 
Age      0.686
  ≤60 20 19 35 44 
  >60 14 9 18 18 

https://www.spandidos-publications.com/10.3892/or.2020.7657


LI et al:  ENERGY METABOLISM IN TNBC826

Since patient prognosis was found to be closely associated 
with the energy metabolism state, a signature associated with 
energy metabolism was therefore proposed to predict patient 
prognosis. Univariate Cox regression analysis suggested that 
102 of these DEGs showed significant association with the DFS 
of patients in the training set (top 20 DEGs shown in Table V). 
Subsequently, the univariate Cox proportional hazards regres-
sion model was performed to analyze the age, TNM stages, 
stage, age and survival data. Differences in stage, lymph node 
and tumor size were found to be statistically significant in 
predicting prognosis (Fig. 5). Multivariate Cox proportional 
hazards regression model was utilized to select for the genes 
associated with energy metabolism that displayed the highest 
prognostic significance, using stage, N and T as covariants. 
A total of 14 genes associated with energy metabolism that 
were specific to prognosis were mined and narrowed by lasso 
regression to reduce the number of genes selected for the 
construction of the prognostic signature. Typically, the lasso 
algorithm uses the biased estimate to process multicollinearity 
data, to estimate and screen variables and to solve the multi-
collinearity problem encountered during regression analysis. 
In the present study, the glmnet function of R package was 
used to perform the lasso regression analysis. For every 
independent parameter, a variation trajectory was evaluated 
(Fig. 6A) The coefficients of the 14 genes were revealed to 
be ~0 as the λ gradually increased. Additionally, a model was 
constructed using a three‑fold cross‑validation. Fig. 6B pres-
ents the confidence interval for every λ, which suggested that 
λ=0.0283271 would result in the best model. Consequently, 
the signature with λ=0.0283271 was applied to be the eventual 

signature, which involves eight genes associated with energy 
metabolism.

The eight‑gene based signature shows potential in predicting 
prognosis for TNBC. The risk score values for the samples 
in the training set were first calculated, following which the 
samples were divided into high-risk and low-risk groups 
according to the risk score values and set at a threshold of 
1.351149 according to the 3‑year area under the curve (AUC) 
after Youden's index analysis. Fig. 7 displays the efficiency of 
the constructed eight-gene signature in classifying samples in 
the TCGA training set. showed that, for the samples from the 
deceased group, the survival time was markedly reduced as 
the patient risk score value increased (Fig. 7A). In addition, the 
high-risk group was found to be associated with the increased 
number of deceased samples (Fig. 7A). The increased levels 
of the eight genes associated with energy metabolism also 
appeared to be risk factors, since the risk score values were 
found to be increased when the expression levels of these 
eight genes were increased (Fig. 7A). According to the ROC 
curves, the 1‑, 3‑ and 5‑year AUC were calculated to be 0.89, 
0.80 and 0.80, respectively (Fig. 7B). After the patients were 
divided into low-risk and high-risk groups, the difference in 
DFS between the two groups was revealed to be statistically 
significant (HR=3.78; P<0.0001; Fig. 7C).

To determine the reliability of the constructed eight-gene 
signature, an identical model used for the TCGA training set 
samples was performed on the two GEO test sets. For the 
GSE21653 dataset, according to the ROC analysis, a 1-year 
AUC of 0.65 was found, although interpretation was restricted 

Figure 3. Calculation of DEGs associated with energy metabolism between samples of the C2 subtype and those of the C1/C3/C4 subtypes. (A) Volcano plots of 
DEGs comparing C1 and C2. (B) Volcano plots of DEGs comparing C3 and C2. (C) Volcano plots of DEGs comparing C4 and C2. (D) The upset intersection 
diagram showing the three types of DEGs between C1/C3/C4 and C2. DEGs, differentially expressed genes; FDR, false discovery rate.
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by the limited follow‑up time of the samples (Fig. 8A). 
Subsequently, a total of 70 cases were divided into the low‑risk 
group, whereas 15 were allocated into the high-risk group using 
a threshold of 1.475448 according to the 1‑year AUC, where a 
statistically significant difference was found between the two 
groups (P=0.0011; Fig. 8B). For the GSE58812 dataset, ROC 
analysis revealed the 1‑year AUC to be 0.63, but interpretation 
was restricted by the limited follow-up time of the samples 
(Fig. 8C). According to Fig. 8D, a total of 98 cases were allo-
cated into the low-risk group, whereas 8 were assigned into 
the high‑risk group using a threshold of 32.77999 according 
to the 1‑year AUC, where there was a statistically significant 
difference between the two groups (P=0.0019). The threshold 

was found to be large, possibly due to the larger variation in 
the GSE58812 dataset. For the overall expression levels of the 
two GSE datasets, the calculated risk scores differed drasti-
cally. In conclusion, the signature constructed based on these 
eight genes showed high accuracy in predicting prognosis for 
patients in both internal and external TNBC datasets.

Compared with recent studies that also investigated the 
prognostic models for TNBC (45-47), that present study also 
calculated the risk scores of each sample obtained from the 
TCGA database using the method reported in the present study 
and those from the previous studies, where ROC analysis was 
performed for each model. The samples were then divided 
into high-risk and low-risk groups using the median risk score, 

Figure 4. Functional analysis of the DEGs associated with energy metabolism. (A) Top 20 gene ontology terms enriched by the 1941 DEGs. (B) Kyoto 
Encyclopedia of Genes and Genomes pathways enriched by the 1941 DEGs. DEGs, differentially expressed genes.

https://www.spandidos-publications.com/10.3892/or.2020.7657
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Table V. Top 20 DEGs that showed significant correlation with the disease‑free survival of patients in the training set by analysis 
of univariate Cox regression.

Symbol P‑value Hazard ratio Low 95% CI High 95% CI

KRTDAP 1.48x10-05 1.009 1.005 1.013
PLAC9 4.89x10-05 1.021 1.011 1.031
CD248 6.91x10-05 1.004 1.002 1.006
SPRR2G 2.55x10-04 1.035 1.016 1.055
EFNB1 2.82x10-04 1.016 1.007 1.025
SPON2 3.17x10-04 1.006 1.003 1.010
PTGDS 4.44x10-04 1.002 1.001 1.003
CA3 5.86x10-04 1.010 1.004 1.015
PTGER1 6.55x10-04 1.747 1.267 2.407
CILP 6.66x10-04 1.005 1.002 1.007
COL16A1 7.28x10-04 1.009 1.004 1.014
CNFN 7.99x10-04 1.015 1.006 1.024
PDE1B 1.12x10-03 1.246 1.091 1.422
ACVRL1 1.170x10-03 1.055 1.022 1.090
COL5A3 1.39x10-03 1.009 1.003 1.014
PYGM 1.40x10-03 1.914 1.285 2.850
MYL3 1.55x10-03 1.490 1.164 1.907
DCSTAMP 1.63x10-03 1.292 1.102 1.515
RARRES2 1.68x10-03 1.003 1.001 1.005
C1QTNF7 1.68x10-03 1.297 1.103 1.525

CI, confidence interval.

Figure 5. Analysis of tumor size, lymph node, TNM stage and age as prognostic indicators for triple‑negative breast cancer. Comparison of patient prognosis 
according to (A) tumor size, (B) lymph node, (C) TNM stage and (D) age.
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Figure 6. Identifying the prognosis signature associated with energy metabolism for triple‑negative breast cancer using lasso. (A) Coefficients calculated for 
each lambda. Each line represents a gene confidence value. (B) The changing trajectory of each independent variable. The horizontal axis represents the log 
value of the independent variable λ, whilst the vertical axis represents the partial likelihood deviance of the log value of each independent variable λ.

Figure 7. The classification effect of the eight‑gene signature associated with energy metabolism in the TCGA training set. (A) The relationship between the 
risk score, survival time, survival status and the expression levels of the eight genes derived from the TCGA training set. Colour scale represents the expression 
levels of the eight genes, where red indicates upregulation and green indicates downregulation. (B) ROC curves of the eight‑gene signature in triple‑negative 
breast cancer samples obtained from the TCGA training set. (C) Analysis of prognosis following classification into the high risk and low‑risk groups according 
to the eight‑gene signature. TCGA, The cancer genome atlas; ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; 
IL1RL2, interleukin‑1 receptor‑like 2; CA3, carbonic anhydrase 3; PDE1B, phosphodiesterase 1B; SLURP, secreted Ly‑6/uPAR‑related protein; AQP7, 
aquaporin 7; TPSB, tryptase‑β2; FBLN7, fibulin 7; CILP, cartilage intermediate layer protein.
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following which the difference in the prognosis of patients 
between the high‑risk and low risk groups were compared. It 
was found that the signature derived from the present study 
was superior compared with the other models from the recent 
studies in terms of prognostic prediction (Fig. S1).

The signature constructed based on genes associated with 
energy metabolism is superior compared with other clinical 
features in predicting survival of patients with TNBC. The 
risk score values were utilized in combination with other clini-
copathological features to construct a nomogram model for 
the TNBC cases. Nomogram is a method for effectively and 
intuitively presenting the results of a risk model, which can 
be adopted conveniently for predicting patient outcome (48). 
Specifically, length of the straight line within the nomogram 
indicates the influence of the various parameters on the signifi-
cance of patient outcome. In the present study, a nomogram 
was constructed by integrating age, risk scores, stage, N and T 

(Fig. 9A). The risk score features were revealed to be associ-
ated with survival prediction. This predictive efficiency was 
assessed further using the ROC analysis to calculate the AUC 
of the nomogram scores, which was obtained using the ‘predict’ 
function from the R package. According to Fig. 9B, the 1‑, 3‑ 
and 5‑year AUC of nomogram were calculated to be 0.95, 0.93 
and 0.92, respectively. In addition, the constructed nomogram 
model displayed consistent predictive capacity compared with 
that of the ideal model (dotted line) for predicting the 3-year 
survival of patients with TNBC (Fig. 9C). Finally, a forest 
plot was constructed based on the risk score values and the 
clinicopathological features. The HRs of the risk score value 
was calculated to be ~3.848, as observed from the forest plots 
constructed based on risk score values, stage, N, T and age 
(P<0.001; Fig. 9D), suggesting that the signature constructed 
based on the expression profiles of the eight genes associ-
ated with energy metabolism exhibited adequate capacity in 
predicting prognosis in patients with TNBC.

Figure 8. The classification effect of the eight‑gene signature associated with energy metabolism on the GEO test set. (A) ROC curves of the eight‑gene signa-
ture in TNBC samples obtained from the GSE21653 test set. (B) Analysis of the prognosis into the high risk and low‑risk groups according to the eight‑gene 
signature in the GSE21653 test set. (C) ROC curves of the eight‑gene signature in TNBC samples obtained from the GSE51882 test set. (D) Analysis of the 
prognosis into the high risk and low‑risk groups according to the eight‑gene signature in the GSE51882 test set. TNBC, triple‑negative breast cancer; HR, 
hazard ratio; CI, confidence ratio; ROC, receiver operating characteristic; AUC, area under the curve.
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Differences in pathways involved in GSEA between the low 
and high‑risk groups. GSEA was used for analyzing the mark-
edly enriched pathways between the low-risk and high-risk 
groups according to the TCGA training set samples, where 

20 markedly enriched pathways were acquired in total. Genes 
associated with the high-risk group were particularly enriched 
in the ‘MAPK signal transduction pathway’, ‘focal adhesion’, 
‘hedgehog signaling’, ‘cardiomyopathy’ and ‘ECM receptor 

Figure 9. The eight‑gene signature constructed based on genes associated with energy metabolism is a more accurate prognostic indicator for TNBC compared 
with other clinicopathological features. (A) The nomogram model constructed by combining the T, N, TNM stage, age with risk scores for TNBC samples. 
‘Points’ and ‘total points’ represents the reference index for the score of nomogram. (B) ROC curves of the nomogram scores in the TNBC samples. (C) The 
calibration plots for predicting 3‑year overall survival of patients with TNBC. nomogram‑predicted probability of survival is plotted on the x‑axis; actual 
survival is plotted on the y‑axis.
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interaction’, whilst those associated with the low‑risk group 
were involved in ‘mismatch repair’ and ‘propanoate metabo-
lism’ (Fig. 10; Table VI).

Discussion

TNBC accounts for ~15‑20% of all BC cases, which 
is particularly prevalent among younger women aged 
<40 years. TNBC is a complex disease with substantial 
heterogeneity, which is associated with inferior prognosis 

compared with that in other BC subtypes. Currently, 
treatments for TNBC mainly include surgery combined 
with adjuvant chemotherapy for early stage disease and 
chemotherapy for advanced stage disease. However, 
surgical resection remain ineffective due to the localized 
invasion of cancer cells to adjacent tissues or the develop-
ment of distant metastasis (49,50). Additionally, effects 
exerted by chemotherapy may be diminished due to tumor 
heterogeneity (51,52). Therefore, identifying novel candi-
date biomarkers for the prognostic prediction of TNBC is 

Figure 9. Continued. The eight‑gene signature constructed based on genes associated with energy metabolism is a more accurate prognostic indicator for 
TNBC compared with other clinicopathological features. (D) The forest plot constructed based on the risk score values and the clinical features. HR, hazard 
ratio; TNBC, triple negative breast cancer.

Figure 10. Functional analysis of the eight‑gene signature. (A) Visualization of the GSEA enrichment results, calculated based on the median values of the 
risk scores using the enrichment map software from Cytoscape. The red region represents the enriched pathways in the high‑risk group, whilst the blue region 
represents the enriched pathways in the low‑risk group. The sizes of the red/blue dots indicates the score of enrichment, the higher the score of enrichment, 
the larger the dot sizes.
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Figure 10. Continued. Functional analysis of the eight‑gene signature. Enrichment plots for (B) nucleotide excision pair, (C) proparoate metabolism, (D) MAPK 
signaling pathway, (E) ECM receptor interaction, (F) hedgehog signaling pathway and (G), hypertrophic cardiomyopathy. GSEA, gene set enrichment analysis; 
KEGG, Kyoto Encyclopedia of Genes and Genomes pathways; ECM, extracellular matrix.
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important for finding novel treatment targets for this disease 
and to accurately manage patients potentially developing 
complete response from adjuvant treatment. In the present 
study, a gene expression signature was explored as potential 
approach for the prognostic prediction of TNBC.

A number of previous studies have classified TNBC 
subtypes using genomic profiling, which allows for the 
specific classification and accurate prediction of TNBC 
outcomes. Using the TIMER method, it was found that the 
scores for the three immune cell types, specifically dendritic 
cells, macrophages and CD4 cells, were higher in the samples 
of the C2 subtype compared with those of other subtypes, 
suggesting that the immune microenvironment or the degree 
of immunocyte infiltration in TNBC was associated with 
patient prognosis. Several molecular markers, including 
O6-methylguanine DNA methyltransferase, isocitrate 
dehydrogenase, epidermal growth factor receptor and phos-
phatase and tensin homolog, were previous examined among 
patients with TNBC, facilitating targeted and personalized 
anti‑TNBC therapy. Fumagalli C et al (8) previously found 
that patients with TNBC carrying a silencing mutation in the 
O6-methylguanine DNA methyltransferase gene are asso-
ciated with an increase in the susceptibility for alkylating 
agents. Wang et al (10) found that epidermal growth factor 
induced the expression of Fascin-1 through the activation 
of MAPK, which lead to poorer relapse‑free survival and 
overall survival for patients with TNBC. However, since 
TNBC is associated with poor prognosis, identification of 
novel molecular biomarkers and development of treatment 

strategies are urgently sorted for unravelling the possible 
mechanisms of TNBC progression or improving patient 
prognosis.

Accumulating evidence suggested that the aberrant 
metabolism can serve as a hallmark for cancer cells. In recent 
years, significant research effort has been made on investi-
gating the difference in energy metabolism between tumor 
and normal cells (53‑55). Recent studies on TNBC revealed 
that a number of catabolic pathways can participate in energy 
metabolism, including fatty acid metabolism, OXPHOS and 
glycolysis (28,56,57). Consequently, it is of great significance 
to screen for new genes associated with energy metabolism 
that are specific to prognosis, to accurately predict the prog-
nosis for patients, develop therapeutic strategies and identify 
patients with a high risk of postoperative relapse. In the present 
study, tumor size (T), nodal status (N), age and TNM stages 
were applied as the prognostic predictors to select for genes 
associated with energy metabolism. For TNBC, these are 
classical prognostic predictors that are universally acknowl-
edged (58,59). Consistent with this, the present study found 
the differences in stage, N and T to be statistically significant 
in predicting prognosis, showing them to be good prognostic 
predictors.

In the present study, the relationship between energy 
metabolic state in the tumor microenvironment and the 
prognostic significance among patients with TNBC was 
determined based on RNA sequencing data. Use of profiling 
data of genes associated with energy metabolism allowed 
for the delineation of molecular and clinical characteristics 

Table VI. KEGG pathway of genes associated with the high‑risk groupand those associated with the low‑risk group.

Name Size Esa Nes Nom P‑value FDR q‑value

KEGG_dilated_cardiomyopathy 90 0.473 1.816 0.003 0.475
KEGG_calcium_signaling_pathway 176 0.348 1.574 0.003 0.489
KEGG_hypertrophic_cardiomyopathy_hcm 83 0.448 1.735 0.008 0.318
KEGG_ecm_receptor_interaction 84 0.553 1.799 0.010 0.279
KEGG_notch_signaling_pathway 47 0.424 1.618 0.013 0.561
KEGG_vascular_smooth_muscle_contraction 115 0.379 1.586 0.023 0.546
KEGG_mapk_signaling_pathway 265 0.287 1.357 0.045 0.771
KEGG_protein_export 23 ‑0.661 ‑1.902 0.000 0.169
KEGG_biosynthesis_of_unsaturated_fatty_acids 22 ‑0.643 ‑1.866 0.002 0.123
KEGG_n_glycan_biosynthesis 46 ‑0.504 ‑1.764 0.006 0.180
KEGG_steroid_biosynthesis 16 ‑0.729 ‑1.804 0.007 0.163
KEGG_glyoxylate_and_dicarboxylate_metabolism 16 ‑0.627 ‑1.745 0.009 0.143
KEGG_one_carbon_pool_by_folate 17 ‑0.568 ‑1.603 0.012 0.338
KEGG_terpenoid_backbone_biosynthesis 15 ‑0.663 ‑1.714 0.013 0.163
KEGG_pentose_and_glucuronate_interconversions 27 ‑0.609 ‑1.593 0.026 0.325
KEGG_proteasome 44 ‑0.617 ‑1.747 0.034 0.168
KEGG_nucleotide_excision_repair 44 ‑0.480 ‑1.562 0.039 0.331
KEGG_pantothenate_and_coa_biosynthesis 16 ‑0.552 ‑1.556 0.040 0.317
KEGG_propanoate_metabolism 32 ‑0.511 ‑1.545 0.046 0.314
KEGG_citrate_cycle_TCA_cycle 30 ‑0.564 ‑1.578 0.049 0.325

aEs>0, high risk and Es<0, low risk. KEGG, Kyoto Encyclopedia of Genes and Genomes pathways; Es, enrichment score; Nes, normalized 
enrichment score; Nom, normalized; FDR, false discovery rate. 
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among patients with TNBC. In addition, a signature was 
developed for patient stratification into low‑risk or high‑risk 
groups for predicting poor prognosis. Univariate Cox model 
was considered to be insufficient in selecting the variables 
based on dimensional data. Therefore, it was applied to first 
screen for the genes associated with DFS, following which 
an elastic net Cox regression model was used for enhancing 
the prognostic prediction performance of the indices. 
The eight genes acquired exerted cumulative effects on 
predicting patient survival. This signature associated with 
energy metabolism could be used as an effective indicator 
for prognosis prediction and patient stratification for future 
treatments targeting energy metabolism.

Based on the present study, five of the eight genes in the 
signature had been previously recognized to participate in 
TNBC pathogenesis, immune microenvironment, progres-
sion and malignant transformation, which were interleukin-1 
receptor-like 2, carbonic anhydrase 3, phosphodiesterase 1B, 
secreted Ly‑6/uPAR‑related protein and aquaporin 7 (60‑63). 
These five genes showed marked correlation with the 
prognosis and survival of patients. These results suggested 
that the bioinformatic mining results were reliable and 
accurate. However, it remains unclear regarding the associa-
tion between the other genes and TNBC physiology, which 
require further study. Fibulin 7 has been previously reported 
to participate in the regulation of aberrant neovasculariza-
tion by modulating the angiopoietin‑1/angiopoietin‑2‑Tie2 
axis (64). A previous study has shown that the cartilage 
intermediate layer protein gene is differentially expressed in 
differentiated thyroid carcinomas in comparison with normal 
thyroid tissues (65). By contrast, tryptase‑β2 (TPSB) was 
documented as a major neutral protease present in mast cells 
that participate in tumor-associated immunity and can serve 
as a prognostic marker for several types of cancer (66,67). 
TPSB has also been demonstrated to upregulate vascular 
endothelial growth factor production in the tumor microenvi-
ronment via the protease‑activated receptors‑2, ERK1/2 and 
p38 MAPK signaling pathways (68).

In conclusion, the expression profiles of genes associated 
with energy metabolism and their prognostic significance in 
TNBC was revealed in the present study. A signature associ-
ated with energy metabolism was subsequently constructed, 
allowing for the classification of patients with TNBC into 
high‑risk or low‑risk groups in terms of survival. However, 
further study is required, since the predictive capacity of the 
eight-gene signature constructed in the present study need to 
be tested in a clinical setting. Results in the present study can 
shed new light on the relationship between the metabolic state 
and TNBC pathophysiology and potentially aid in the devel-
opment of novel TNBC treatment strategies targeting energy 
metabolism.
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