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Serum protein profiling for diagnosis of breast cancer
using SELDI-TOF MS
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Abstract. In search for novel markers for breast cancer, we
aimed to identify and validate novel serum protein profiles
specific for breast cancer, and assess the influence of clinical
(subjects age) and pre-analytical (sample storage duration)
variables on the constructed classifiers. To this end, sera of
breast cancer patients (n=152) and healthy controls (n=129),
randomly divided into a training and test set, were analysed by
surface-enhanced laser desorption/ionisation time-of-flight
mass spectrometry (SELDI-TOF MS). In the training set, 14
peak clusters were found to differ significantly in expression
between cases and controls. None of the peak clusters were
influenced by subjects age and sample storage duration. Ten
peak clusters were also found significantly discriminative
in the test set. Peak clusters were structurally identified as
C3a des-arginine anaphylatoxin, (tentative) inter-a-trypsin
inhibitor heavy chain 4 fragments and a fibrinogen fragment.
Logistic regression analyses on the training set yielded a
classification model with a moderate performance on the test
set, corresponding to those reported in previously performed
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validation studies. Most likely originating from the highly
heterogeneous nature of breast cancer, selection of breast
cancer subgroups for comparison with healthy controls is
expected to improve results of future diagnostic SELDI-TOF
MS studies.

Introduction

The American Cancer Society has estimated that breast cancer
will be the most commonly diagnosed cancer among women
in the USA in 2008, as it is expected to account for 26% of all
new cancer cases among women (1). Following lung cancer,
breast cancer currently is the second leading cause of cancer
deaths in women (1). As the 5-year survival rate decreases
from 98% for localised disease to 26% for distant stage disease
(2), early detection is of paramount importance in reducing
breast cancer related mortality. The diagnosis of breast
cancer is, however, hampered by a lack of adequate detection
methods, resulting in detection of only 63% of breast cancers
at an early stage (1). Although mammography currently is the
most widely applied imaging test today, its predictive value
is lower in women with dense breast tissue and smaller lesions.
Moreover, no molecular markers are recommended for the
(early) detection of breast cancer hitherto. Currently used
serum tumour markers in breast cancer, e.g., Cancer Antigen
15.3, lack adequate sensitivity and specificity to be applicable
in early detection, and are therefore approved by the FDA
only for monitoring therapy of advanced breast cancer or
recurrence (3).

The application of a single biomarker in the detection of
breast cancer may, however, not be feasible, as a single
marker is unlikely to cover the high heterogeneity of breast
cancer. Instead, a panel of markers is expected to better reflect
breast cancer complexity, yielding improved sensitivity and
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specificity. With cancer being, for a large part, a genetic
disease, researchers initially searched for biomarkers by
employing genomic and transcriptomic approaches. Although
this has greatly expanded our insight into the genetic basis
of cancer, it is currently understood that the functional ‘end-
units’ of the genome, the proteins, cannot be predicted by
genetic and transcriptomic data alone. Due to amongst other
post-transcriptional mRNA modifications (e.g., alternative
splicing) and post-translational protein modifications, one
gene can encode multiple proteins, reflecting both the intrinsic
genetic programme of the cell and the impact of its immediate
environment (4). As such, the proteome provides a more
realistic and detailed view of the biological status, offering a
richer source of potential biomarkers.

One of the techniques currently applied in proteomics
research of breast cancer is surface-enhanced laser desorption/
ionisation time-of-flight mass spectrometry (SELDI-TOF MS).
Until now, eleven studies have been published in which the
SELDI-TOF MS platform was applied with varying success
in the identification and validation of serum markers for
diagnosis (5-12), prognosis (13), or monitoring of therapy-
efficacy (14) or -toxicity (15) in breast cancer. However, issues
have been raised concerning the robustness and validity of
alleged markers discovered by SELDI-TOF MS. A potential
drawback of analysing high-dimensional proteomic (SELDI-
TOF MS) data for disease associated biomarkers is the
propensity to discover patterns among variables that are the
result of pre-analytical artefacts in a given sample set, rather
than of the pathology of interest (16). Several lines of evidence
indicate that pre-analytical variables, e.g., sample collection,
processing and storage, can exert profound effects on protein
profiles, regardless of true biological variation. In addition,
clinical characteristics, such as patients age, could also
introduce bias (17). Despite these concerns, only few studies
investigating the serum proteome for discovery of breast
cancer specific biomarkers investigate the possible influence
of pre-analytical and patient-related variables on the expression
of potential biomarkers.

The raised issues on the validity and robustness of alleged
biomarkers can, however, also be addressed by validation
and structural identification (16). Nonetheless, thus far, in
breast cancer, only two panels of biomarkers discovered by
SELDI-TOF MS have been validated by analysis of
independent sample sets, resulting in partial (10,11) or no
validation (18). Moreover, only few biomarkers discovered
by SELDI-TOF MS breast cancer research have been
structurally identified.

In the current study, we aimed to discover and validate
novel serum protein profiles specific for breast cancer. To
this end, archival sera of breast cancer patients and healthy
controls were analysed using SELDI-TOF MS. Spectral data
were merged in one file, after which they were randomly and
evenly split into a training and test set. In the training set, we
detected 14 discriminating peak clusters, one cluster of which
was structurally identified. Furthermore, the relationship
between the intensity of the classifier peak clusters and breast
cancer status was adjusted for demographic and pre-
analytical variables (i.e., subjects age and sample storage
duration). Finally, the samples in the test set were applied for
validation purposes.
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Materials and methods

Study population. Archival sera of 152 breast cancer patients
(BC) and 129 female healthy controls (HC), collected between
January 2003 and July 2005, were analysed on different
occasions in our laboratory using standardised analytical
procedures. All sera were collected prior to any therapy, with
individuals informed consent after approval by the institutional
review boards. All sera originate from the Netherlands Cancer
Institute serum bank, where they had been collected and stored
for 3-50 months at -30°C according to standard procedures.

Chemicals. All used chemicals were obtained from Sigma,
St. Louis, MO, USA, unless stated otherwise.

SELDI-TOF MS protein profiling. Serum protein profiling
was performed using the ProteinChip SELDI (PBSIIc) reader
(Bio-Rad Labs, Hercules, CA, USA). Various chip chemistries,
binding and washing procedures and sample pretreatments
were initially evaluated to determine which affinity chemistry
and sample pretreatment procedure provided the best serum
profiles in terms of number and resolution of proteins.
Immobilised metal affinity capture (IMAC30) arrays were
selected for further analysis. Samples were analysed in three
batches (Batch 1: BC: n=40, HC: n=40; Batch 2: BC: n=43,
HC: n=46; Batch 3: BC: n=69, HC: n=43). The samples in
Batch 1 were analysed in singlicate, while the samples in
Batch 2 and 3 were analysed in duplicate. Throughout the
assay, arrays were assembled in a 96-well bioprocessor,
which was shaken on a platform shaker at 300 rpm.

Arrays were charged twice with 50 u1 of 100 mM nickel
sulphate (Merck, Darmstadt, Germany) for 15 min, followed
by three rinses with deionised water (Braun, Emmenbriicke,
Germany) and two equilibrations with 200 ul phosphate-
buffered saline (PBS; 0.01 M) pH 7.4/0.5 M sodium chloride/
0.1% TritonX-100 (binding buffer; sodium chloride from
Merck) for 5 min. Unfractionated serum samples were
thawed on ice and denatured by 1:10 dilution in 9 M urea/2%
3-[(3-cholamidopropyl)dimethylammonio-]- 1-propanesulfonic
acid (CHAPS). Pretreated samples were diluted 1:10 in
binding buffer and randomly applied to the arrays. After a
30 min incubation, the arrays were washed twice with binding
buffer and twice with PBS pH 7.4/0.5 M sodium chloride for
5 min. Following a quick rinse with deionised water, arrays
were air-dried. A 50% sinapinic acid (Bio-Rad Labs)
solution in 50% acetonitrile (Biosolve, Valkenswaard, The
Netherlands)/0.5% trifluoroacetic acid (Merck) was applied
twice (1.0 ul) to the arrays as the matrix. Following air-
drying, the arrays were analysed using the ProteinChip
SELDI (PBS Ilc) reader. As the three batches were analysed
on different occasions (with PBS Ilc reader maintenance in
between), data acquisition was optimised for each sample set
separately (data not shown), to obtain similar spectra. For
mass accuracy, the instrument was calibrated on each day of
measurements with All-in-One peptide standard (Bio-Rad
Labs).

Statistics and bioinformatics. Spectra were processed per batch
by the ProteinChip Software v3.1 (Bio-Rad Labs). Spectra
were baseline subtracted, followed by normalisation to the
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Table I. Patient and sample characteristics of the study
population.

Parameter Breast cancer Healthy control
N 152 129
Age (years), 61.1 520
median [IQR] [50.3-67.0] [42.0-57.7]
Stage® NA

0 7

1 30

2A/2B 68/28

3A/3C 13/6
Diagnosis?® NA

DCIS 6

IDC 116

ILC 16

IDC and ILC 5

Other 9
Sample storage time (months), 26.0 20.1
median [IQR] [14.1-36.7] [12.6-31.9]

Sample collection interval Apr '03-Jul '05 Jan '03-Jul '05

DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma;
ILC, invasive lobular carcinoma; IQR, interquartile range; NA, not
applicable. *Pathologically determined stage and diagnosis.

total ion current. Spectra with normalisation factors >2 or
<0.5 were excluded from further analysis. The Biomarker
Wizard (BMW) software package was applied for peak
detection. BMW settings were optimised for each batch
separately (data not shown), to ascertain correct detection of
real peaks (instead of peaks that merely represent noise).
Peak information was subsequently exported as spreadsheet
files, and peak intensities from the duplicate analyses in
Batch 2 and 3 were averaged. The three batches were analysed
on three separate occasions, a parameter known to influence
spectral data (19,20). As such, merging peak intensity data of
the three batches could lead to spurious results. To this end,
first, the intensities of peaks occurring across all three batches
were log transformed to obtain normal distributions. Next,
the log transformed peak intensities were converted to standard
Z-values per batch, by subtracting the mean and dividing by
the standard deviation. The log-Z transformed data of the
three batches were merged in one file. After this, cases and
controls were randomly divided over a training (BC: n=76,
HC: n=65) and test (BC: n=76, HC: n=64) set. In the training
set, the parametric T-test was applied for the comparison of
the mean log-Z transformed peak intensities between cases
and controls. Resulting p-values were corrected for multiple
testing by the Bonferroni method, by multiplying p-values
with the number of peak clusters detected and tested.

To estimate the influence of subjects age and storage
duration on the relationship between the 14 discriminating
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peak clusters and breast cancer status, logistic regression
analyses were performed on the training set. We calculated a
crude odds ratio per peak cluster, using a univariate model
(i.e., by inclusion of only one peak cluster as continuous
variable). Next, multivariate odds ratios adjusted for subject's
age (categorized according to tertiles: <51.3 years, 51.3-61.4
years, >61.4 years), and storage duration (categorized
according to tertiles: <14.5 months, 14.5-31.7 months, >31.7
months) were calculated. Both parameters were considered
confounders if the adjusted odds ratio was 10% different
from the crude odds ratio.

To investigate the relationship between a combination of
the log-Z transformed peak intensities and the presence of
breast cancer, crude odds ratios for each of the peak intensities
(as continuous variables) were estimated in a logistic
regression model with the inclusion of all peak clusters
detected based on forward entry (p<0.05). Again, to investigate
whether the relationship between peak intensities and the
presence of breast cancer could be explained by the age of
the subjects and/or sample storage duration, the odds ratios
were adjusted for these parameters.

The classification performance of the logistic regression
model was evaluated by estimation of the area under the
receiver operating characteristic (ROC) curve (AUC) and
accompanying 95% confidence interval. The model was
subsequently applied to the test set for validation purposes.
All statistical analyses were performed using SPSS statistical
software, version 13.0 (SPSS Inc., Chicago, IL, USA).

Peptide purification and identification. Structural identifi-
cation of potential biomarkers was performed previously
(Gast et al, unpublished data). Briefly, potential markers were
purified from serum using anion-exchange chromatographic,
size exclusion, and gel-electrophoresis techniques, followed
by trypsin digestion. The peptide map of the digest, acquired
on the ProteinChip SELDI (PBS Ilc) Reader, was investigated
with the NCBI database using the ProFound search engine
at http://prowl.rockefeller.edu/prowl-cgi/profound.exe.
Confirmation of protein identity was provided by sequencing
tryptic digest peptides by quadrupole-TOF (Q-TOF) MS
(Applied Biosystems/MSD Sciex, Foster City, CA, USA) fitted
with a ProteinChip Interface (PCI-1000). Fragment ion spectra
were taken to search the SwissProt 44.2 database (Homo
Sapiens: 11072 sequences) using the MASCOT search engine
at www.matrixscience.com (Matrix Science Ltd., London,
UK). Protein identity was further confirmed by immunoassay
on ProteinA beads (Gast et al, unpublished data).

Results

Study population. Patient and sample characteristics are
summarized in Table I. The healthy controls were significantly
younger than the breast cancer patients at time of sample
procurement [Mann-Whitney U test (MWU); p<0.001]. The
majority of breast cancer patients had invasive ductal
carcinoma (76%) and was diagnosed with Stage 2 (63%)
disease. The median sample storage duration was slightly
longer for breast cancer sera (median: 26.0 months) than for
the healthy control sera (median: 20.1 months) (MWU;
p=0.018).
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Figure 1. Representative example of protein profiles obtained from a healthy control (HC) and a breast cancer patient (BC).

Table II. Characteristics of the 14 clusters that differ significantly in expression between breast cancer and healthy control in

the training set.

Cluster T-test Logistic regression analyses
Training set Test set Training set? Training set® (adjusted) Test set?

(m/z) p-value® p-value* OR (95% CI) OR (95% CI) OR (95% CI)
2733 0011 0.047 045 (0.28-0.70) 0.50 (0.31-0.81) 0.52 (0.34-0.79)
3166 <0.001 0.013 040 (0.26-0.62) 041 (0.25-0.67) 0.50 (0.34-0.74)
3282 <0.001 0.005 041 (0.26-0.64) 044 (0.28-0.70) 0.49 (0.34-0.72)
3299 <0.001 <0.001 042 (0.27-0.64) 041 (0.26-0.66) 040 (0.26-0.61)
3691 <0.001 NS 0.37 (0.23-0.59) 0.37 (0.22-0.63) 0.58 (0.40-0.85)
3782 0.004 0.004 044 (0.28-0.68) 0.48 (0.30-0.75) 0.49 (0.33-0.71)
3965 0.005 0.004 045 (0.29-0.69) 0.52 (0.33-0.81) 0.49 (0.33-0.71)
3980 0.007 NS 047 (0.31-0.71) 049 (0.31-0.77) 0.65 (0.45-0.94)
3997 0.003 NS 044 (0.29-0.67) 044 (0.27-0.70) 0.62 (0.44-0.87)
4219 0.046 NS 1.86 (1.27-2.72) 2.40 (1.51-3.80) 1.80 (1.23-2.64)
4292 0.002 0.028 0.39 (0.24-0.65) 042 (0.25-0.71) 0.50 (0.33-0.76)
4309 <0.001 0.007 0.32 (0.20-0.54) 0.32 (0.18-0.56) 048 (0.32-0.72)
8940 <0.001 0.004 0.37 (0.24-0.57) 0.35 (0.22-0.58) 048 (0.33-0.71)
11745 0.003 0.008 221 (1.46-3.33) 2.22 (1.39-3.56) 2.18 (1.43-3.34)

95% CI, 95% confidence interval; NS, not significant; OR, odds ratio. *Crude logistic regression analyses, by inclusion of one peak cluster
(continuous), Padjusted logistic regression analyses (training set only), by inclusion of one peak cluster (continuous), subject's age
(categorical), and sample storage duration (categorical), “Bonferroni corrected p-values.

SELDI-TOF MS protein profiling. Representative SELDI-
TOF MS spectra are presented in Fig. 1. Following spectrum
pre-processing and normalisation, 73 (BC: n=36; HC:
n=37), 89 (BC: n=43; HC: n=46), and 111 samples (BC:
n=68; HC: n=43) were left for analysis in Batch 1, 2, and 3,
respectively. The Biomarker Wizard detected 57 peak clusters
across all three batches. In the training set, 14 peak clusters
were found significantly different in expression between

breast cancer and control (T-test; Bonferroni corrected p<0.05,
Table II). Except for the m/z 4219 and m/z 11745 peak
clusters, intensities were found decreased in breast cancer
compared to control (Table II: logistic regression, odds
ratio <1). Following correction for subject's age and sample
storage duration, the adjusted odds ratios of three peak
clusters (m/z 2733, 3965, and 4219) differed by >10% from
the crude odds ratios. All three peaks remain, however,
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Table III. Multivariate logistic regression analyses in the training set, by forward entry inclusion of all peak clusters detected,

before and after adjustment for subjects age and sample storage duration.

Multivariate model

Multivariate model, adjusted

Variable OR (95% CI) p-value OR (95% CI) p-value
m/z 4219 1.94 (1.24-3.04) 0.004 2.78 (1.59-4.86) <0.001
m/z 4309 0.26 (0.14-0.48) <0.001 0.26 (0.13-0.52) <0.001
m/z 5350 0.62 (0.39-0.97) 0.035 0.60 (0.36-1.01) 0.054
m/z 28183 0.53 (0.33-0.83) 0.006 0.49 (0.29-0.85) 0011
Performance Multivariate model
ROC AUC
Training set 0.813 (0.742-0.884)
Test set 0.713 (0.626-0.800)
Training set
Sensitivity 74.3%
Specificity 71.9%
Test set
Sensitivity 72.6%
Specificity 61.3%

AUC, area under the receiver operating characteristic (ROC) curve; 95% CI, 95% confidence interval; OR, odds ratio; ROC, receiver

operating characteristics curve.

significantly related to breast cancer status. Ten of these 14
peak clusters were found significantly different in peak
expression between breast cancer and control in the test set
as well.

Next, multivariate logistic regression analyses were
performed on the training set. Following forward entry
inclusion of all peak clusters detected spectrum-wide, four peak
clusters (m/z 4219, 4309, 5350, and 29183) were incorporated
in the model, resulting in a ROC AUC of 0.813 (85% CI:
0.742-0.884) (Table III). Two peak clusters (m/z 4219 and
4309) were already found significantly different in peak
expression between breast cancer and healthy control. Of
the four peak clusters included in this model, only m/z 4219
had an adjusted odds ratio that differed >10% from the crude
odds ratio. Similar to the univariate analyses, however,
after adjustment this peak cluster was even more strongly
related to breast cancer status. The multivariate model
classified the samples in the training set with a sensitivity and
specificity of 74.3 and 71.9%, respectively. Model performance
was lower following validation on the test set [ROC AUC:
0.713 (95% CI: 0.626-0.800); sensitivity: 72.6%, specificity:
61.3%].

Peptide purification and identification. One of the 14 peak
clusters found significantly different between breast cancer
and control was m/z 8940, which we previously identified as
complement component 3 precursor by peptide mapping
(ProFound; estimated Z-score 1.57, 4% sequence coverage)

(Gast et al, unpublished data). Amino acid sequencing of
6 peptides in the tryptic digest by tandem MS on a Q-TOF
identified the marker as C3a des-arginine anaphylatoxin
(C3a4enry» 61% sequence coverage), a 76 amino acid protein
with theoretical mass 8939.46 Da and pl 9.54. This identity
was confirmed by an immunoassay, for which ProteinA
beads were loaded with a C3a polyclonal antibody (Abcam
Ltd., Cambridge, UK) (Gast et al, unpublished data).

Fig. 2 depicts the correlation matrix presenting the
(absolute) Pearson's correlation coefficients calculated
between the peak intensities of the 14 peaks found signifi-
cantly different in expression between breast cancer and
healthy control. To preclude bias by group, all Pearson's
correlation analyses were performed in the healthy controls
of the total study population. As 11 peak clusters were found
highly correlated to each other (Pearson's R>0.63, Fig. 2), we
hypothesize these clusters to represent multiple fragments of
one founder protein. Using data from previous publications,
we suggest this founder protein to be inter-a-trypsin inhibitor
heavy chain 4 (ITIH4). Eight of the alleged ITIH4 peak
clusters had an observed mass corresponding to the theoretical
mass of the different ITIH4 fragments described in the
literature (Table IV). The peak clusters at m/z 4219 and
11745 were not correlated to any of the significantly different
peak clusters. The m/z 4219 and m/z 5350 peak clusters,
selected in the multivariable logistic regression analysis,
were previously identified as (putative) fibrinogen fragments
by our group.
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Figure 2. Peak intensity correlation matrix for the 14 peaks found significantly different in expression between breast cancer and healthy control in the
training set (for clarity, Pearson's correlation coefficients were converted into absolute values).

Table I'V. Stuctural identities of eight alleged I'TTH4 peak clusters that significantly differ in expression between breast cancer
and healthy control in the training set.

Mr (obs) Mr (calc) Putative structural identity

(m/z) (Da) Start - End Amino acid sequence Ref.
2733 272506  662-688 R.PGVLSSRQLGLPGPPDVPDHAAYHPF.R (43-45)
3166 315758  617-644 R.NVHSGSTFFKYYLQGAKIPKPEASFSPR.R (44-46)
3282 327372  658-688 R.MNFRPGVLSSRQLGLPGPPDVPDHAAYHPF.R (43-45)
3299 3289.72  658-688 R.MNFRPGVLSSRQLGLPGPPDVPDHAAYHPF R, Met-Ox

3965 395746  654-690 A.AGSRMNFRPGVLSSRQLGLPGPPDVPDHAAYHPFRR.L (43.,46)
3980 397346  654-690 A.AGSRMNFRPGVLSSRQLGLPGPPDVPDHAAYHPFRR L, Met-Ox (43,46)
4292 428483  650-690 R.QAGAAGSRMNFRPGVLSSRQLGLPGPPDVPDHAAYHPFRR.L (46)

4309 430083  650-690 R.QAGAAGSRMNFRPGVLSSRQLGLPGPPDVPDHAAYHPFRR.L, Met-Ox  (46)

ITIH4, inter-a-trypsin inhibitor heavy chain 4; Mr (obs), observed mass-to-charge ratio; Mr (calc), calculated mass from the matched peptide
sequence.

Discussion SELDI-TOF MS technology. Spectra were divided into a

training and test set, and 14 peak clusters were found to differ
In the current study, sera of breast cancer patients (n=152) significantly in peak expression between breast cancer and
and healthy controls (n=129) were analysed using the healthy control in the training set. Ten of these 14 peak
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clusters could also be validated in the test set. We previously
identified one peak cluster as C3ag,,, While 12 other peak
clusters were tentatively identified as ITIH4 fragments and a
fibrinogen fragment, respectively. A classification model was
subsequently generated by multivariate logistic regression
analysis on the training set. Its performance on the test
set was similar to those reported by previously performed
independent validation studies (10,11,18,21). Hence, our split-
sample approach yielded reliable estimates of performance.
Nonetheless, the diagnostic performances reported thus far
are moderate. The identification of a general diagnostic
biomarker is, however, seriously challenged by the molecular
characteristics of breast cancer, which are highly heterogeneous
(22-24). As such, selection of breast cancer subgroups for
comparison with healthy controls is expected to improve
results of future diagnostic SELDI-TOF MS studies.

Complement C3ay,,,,. We discovered the expression of the
serum m/z 8940 C3ag,,, peak to be significantly decreased
in breast cancer compared to controls in both the training and
test set. Complement C3 is the most abundant (1.2 mg/ml)
complement protein in serum (25), supporting the activation
of all three pathways of complement activation (the classic,
alternative, and lectin pathway) (26,27). Produced mainly in
the liver and adipocytes, C3a is formed by cleavage of C3
(185 kDa) by C3-convertases into C3b (176 kDa) and C3a
(8.9 kDa) (28). The anaphylatoxin C3a is only short lived in
serum as carboxypeptidases cleave the C-terminal arginine
residue, creating the more stable, but biologically inactive
C3aesnr (8.9 kDa) (27-29).

As C3 is a positive acute phase reactant (30), elevated
serum levels of C3 [and hence, C3a g, in cancer compared
to control are anticipated. Indeed, elevated serum C3 levels
have been described in various cancer types, including
neuroblastoma (31), lung cancer (32), and cancer of the
digestive tract (33). Likewise, increased serum C3ages,,
levels, determined by SELDI-TOF MS, have been reported
in breast (9,10), hepatocellular (34), and colorectal cancer
(35,36), and chronic lymphoid malignancies (37). We, on the
other hand, observed decreased C3aga,, levels in breast cancer
in the current study population, as well as in a subset thereof,
which we analysed for validation of the 8.9 kDa marker
reported by Li et al (21). Other studies have described
decreased 8.9 kDa peak intensities in breast (7,38), and lung
cancer (39). Moreover, Li et al observed decreased SELDI-
TOF MS C3ay,,, peak intensities in sera of metastatic breast
cancer patients (10). Their finding is corroborated by the
decreased serum C3 levels reported in patients with
metastatic breast, gastric, and colorectal cancer (33) and
brain tumours (31). Hence, complement activation seems an
early event during tumourigenesis. This, however, can not
explain the results of the current study, as we included only
sera of patients with locally invasive breast cancer.

An other possible explanation for the observed incon-
sistensies in 8.9 kDa C3ay,,, regulation can be the in vitro
complement activation, caused by coagulation induced platelet
activation (40). Banks et al (41) reported the intensity of an
IMAC3 m/z 8939 peak (not structurally identified though) to
significantly increase with prolonged coagulation times.
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Coagulation time is, however, an unlikely confounder, as
studies generally apply standardised collection protocols for
both cancer and control samples. C3a,, levels can also be
affected by sample storage time. In a previous study, we found
the m/z 8939 C3ag.,, peak intensity positively correlated to
sample storage time during the first three years of storage,
after which intensities remained stable. Although in the current
study, the breast cancer sera were stored for a slightly longer
period than the control sera, storage time of both sample groups
was less than three years. Moreover, as the m/z 8939 peak
performance was not influenced by adjustment for sample
storage duration, this parameter is unlikely to have confounded
results of the current study.

ITIH4 fragments. Of the 14 peaks we found significantly
different in expression between breast cancer and healthy
controls, 11 were identified as putative ITIH4 fragments. The
peak intensities of all putative ITIH4 fragments were
decreased in breast cancer compared to control. ITIH4, a
120 kDa plasma glycoprotein expressed mainly in the liver,
acts as a positive acute phase reactant and is extensively
proteolytically processed (42). Plasma kallikrein readily
cleaves ITIH4 into an N-terminal 85 kDa and C-terminal
35 kDa fragment, after which the 85 kDa fragment is further
cleaved into an N-terminal 57 kDa and a putative 28 kDa
fragment. The latter fragment has not been detected in its
entirety hitherto, as it is rapidly cleaved into subsequent
smaller fragments (42). Changes in the abundance of different
fragments have been found associated with various types
of cancer (e.g., prostate, breast, ovarian, colorectal and
pancreatic cancer) (42-44), indicating cancer-type specific
proteolytic processing of ITIH4. Three of the 11 putative
ITIH4 fragments (i.e., m/z 2733, m/z 3282, and m/z 4292)
have been reported as potential markers for breast cancer
(42). Unlike our results, however, this study found increased
peak intensities of the three fragments in cancer compared to
control (42).

The m/z 4292 ITIH4 fragment has also been described
by Li et al (9,10). They initially observed a 4.3 kDa ITIH4
fragment to be downregulated in breast cancer (9), but found
this peak upregulated upon validation (10). In their original
discovery study, the cancer sera were collected during a
(non-specified) longer time interval than the control sera,
whereas in the validation study, sera of both cases and controls
were collected within a two-year time interval. Combined
with the postulated instability of the ITIH4 fragment (causing
further truncation during prolonged storage), this could
indeed explain their discrepant results. Nonetheless, following
analysis of prospectively collected sera, Mathelin et al (11)
also observed a decreased expression of the m/z 4292 ITIH4
peak intensity in breast cancer. This decrease was also
observed following analysis of a subset of the current study
population for validation of the markers reported by Li et al
(21). However, the decrease of m/z 4292 observed in the
breast cancer cases of the current study could not be explained
by the difference in storage duration between the cancer and
control sera, as correction for this parameter by logistic
regression analyses did not affect the performance of the m/z
4292 peak. In addition, evidence for the alleged 4.3 kDa
ITIH4 fragment instability is only limited. Peak intensities of
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this fragment were found to be both increased (45) and
decreased by different (pre-) analytical parameters (42,43),
though the fragmentation pattern was not altered (42,43).
Perhaps the discrepant results of the various studies are
caused by differences between the patient populations
investigated in the various studies.

Other markers. Of the 14 peak clusters found significantly
different in expression between breast cancer and healthy
controls, both m/z 4219 and m/z 11745 were not correlated to
any of the other peak clusters. While we previously identified
m/z 4219 as a putative fibrinogen fragment, the identity of
m/z 11745 peak is yet unknown. The m/z 5350 peak cluster,
included in the logistic regression model, was identified
earlier as a fibrinogen fragment as well (i.e., fibrinogen a-E
fragment FGAy;4,5). The multivariate classification model
furthermore designated the m/z 28183 peak cluster as a
potential marker, in combination with m/z 4219, 4309, and
5350. Although peak intensities of both m/z 5350 and m/z
28183 were not significantly different in expression between
breast cancer and healthy control, combination with other
markers evidently improved their diagnostic performance.
The m/z 5350 peak cluster, though not structurally identified,
has been reported earlier as significantly increased in sera of
patients with lung cancer (39) and hypopharyngeal squamous
cell carcinoma (46). Based on the observed mass, we hypo-
thesise the m/z 28183 peak cluster to represent apolipoprotein
A-I. This protein was previously identified by our group as a
potential marker for colorectal cancer by serum SELDI-TOF
MS analyses (47). Synthesised both in the liver and small
intestine, apolipoprotein A-I constitutes the major component
of high-density lipoproteins (48). It is a negative acute phase
reactant (49), explaining the decreased expression we observed
in cancer vs. healthy control (Table II, crude odds ratio <1).
Its decreased expression in cancer is confirmed by other
studies investigating breast (48), ovarian (50), colorectal
(47), and hepatocellular cancer (51).

In conclusion, using SELDI-TOF MS, we discovered
and validated 10 peak clusters that significantly differ in
expression between sera of breast cancer patients and healthy
controls. These peak clusters were structurally identified as
the high abundant C3ag,,, anaphylatoxin, and putative
ITIH4 and fibrinogen fragments. Logistic regression analyses
in the training set yielded a classification model with a
performance comparable to those reported in previously
performed independent validation studies. As these moderate
performances most likely originate from the highly hetero-
geneous nature of breast cancer, selection of breast cancer
subgroups for comparison with healthy controls is expected
to improve results of future diagnostic SELDI-TOF MS
studies.
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