
Abstract. Angiogenesis is a key pathologic feature of glioblas-
toma, which is the most common and most lethal primary
brain tumor in adults. The degree of angiogenesis has been
shown to be inversely related to patient survival. However, the
molecular changes leading to angiogenesis in glioblastoma
remain poorly understood. In the present study, we found a
direct correlation between nuclear factor (NF)-κB activation
and angiogenesis in glioblastomas. Blockade of NF-κB
signaling significantly inhibited glioblastoma growth and
angiogenesis in nude mice. These effects were consistent
with significant inhibition of the expression of multiple
angiogenic molecules, including vascular endothelial growth
factor, and interleukin-8, in vitro and in vivo. Furthermore,
blockade of NF-κB signaling also significantly inhibited the
angiogenic potential of glioblastoma cells in vitro and
angiogenesis of brain tumors in mouse xenograft models.
Collectively, these results suggest that NF-κB activation
plays a critical role in the growth and progression of
glioblastoma and is a potential target for therapy for human
glioblastoma.

Introduction

Glioblastoma is the most common and most lethal primary
malignant brain tumor in adults. The average survival
duration in patients with glioblastoma is approximately 1 year
despite recent advances in both diagnostic modalities and
therapeutic strategies for this tumor (1-3). A key pathologic
feature that distinguishes glioblastoma from lower-grade
astrocytomas is angiogenesis, which is characterized by
increasing production of proangiogenic molecules by the

tumor cells and organ-specific environments (4). The level of
angiogenesis in glioblastomas is conversely correlated with the
degree of malignancy and patient prognosis (5). Thus, the
presence of angiogenesis in a glioblastoma could promote its
rapid growth and clinical progression. Indeed, recent studies
have indicated that of all clinical and patho-logic
characteristics of glioblastoma, angiogenesis has the greatest
prognostic value. When angiogenesis is extensively present
in a glioblastoma, the prognosis is consistently poor (6-8).
Based on the clinical implications of and potential for
therapeutic interventions for glioblastoma, the mechanisms
leading to angiogenesis in this tumor must be identified.

Early studies have demonstrated a complex molecular
interplay underlying angiogenesis (9-14). Vascular endo-
thelial growth factor (VEGF) (15), also known as vascular
permeability factor (VPF), has been shown to induce the
proliferation of endothelial cells, to increase vascular perme-
ability, to induce the production of plasminogen activator by
these cells, and to prolong their survival (11,12). Interleukin-8
(IL-8), a chemoattractant cytokine, has been shown to attract
and activate neutrophils in inflammatory regions and to be
angiogenic (13,14). Recent studies indicated that the
expression levels of VEGF and IL-8 in human glioma cells
directly correlated with the level of angiogenesis in glioma
(16,17).

Numerous studies have demonstrated that hypoxia and
Akt and Ras activation can lead to nuclear factor (NF)-κB
activation (18-25). Hypoxia causes the activation of NF-κB
through the phosphorylation of IκB· on tyrosine residues
(19). Akt stimulates the activation potential of the RelA/p65
subunit of NF-κB through the use of IκB kinase and acti-
vation of the mitogen-activated protein kinase p38 (20-22).
Conversely, PTEN blocks tumor necrosis factor and Her2/neu-
induced NF-κB activation (23). Because the above-described
molecular pathways that are involved in angiogenesis of
glioblastoma can activate NF-κB, NF-κB activation is likely
a common step leading to angiogenesis formation in glio-
blastomas. Indeed, NF-κB has been reported to be
constitutively activated in high-grade gliomas (24,25), and
the activation status of NF-κB has been significantly
correlated with glioma grade (25).

Recent studies from our and other laboratories demon-
strated that NF-κB activity regulates tumor progression and
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metastasis in a variety of tumors (26-29). However, whether
NF-κB activity is relevant to angiogenesis in human glio-
blastoma is unknown. In the present study, we show that
transfection of malignant glioma cancer cells with IκB·M, a
mutated form of IκB·, decreased the expression of VEGF
and IL-8 and, hence, angiogenesis and tumorigenicity.

Materials and methods

Cell lines and culture conditions. The human neuroglia cell
line H4, anaplastic astrocytoma (AA) cell lines SW1088 and
Hs683 and glioblastoma cell lines U-118 MG, U-87 MG and
T98G were obtained from the American Type Culture
Collection (Rockville, MD). The glioblastoma cell line HF
U-251 MG (30) was also used. All of the cell lines were
maintained as adherent monolayers in Dulbecco's modified
Eagle's medium supplemented with 10% fetal bovine serum,
sodium pyruvate, non-essential amino acids, L-glutamine and
a vitamin solution (Flow Laboratories, Rockville, MD).

Animals. Female athymic BALB/c nude mice were purchased
from the Animal Production Area of the National Cancer
Institute, Frederick Cancer Research Facility (Frederick,
MD). The mice were housed in laminar flow cabinets under
specific pathogen-free conditions and used at 6-8 weeks of
age. The animals were maintained according to institutional
regulations in facilities approved by the Association for
Assessment and Accreditation of Laboratory Animal Care
and in accordance with the current regulations and standards
of the U.S. Department of Agriculture, Department of Health
and Human Services, and National Institutes of Health.

Northern blot analysis. Cellular mRNA was extracted from
glioma cells by using the FastTrack mRNA isolation kit
(Invitrogen, Carlsbad, CA). mRNA was fractionated on a 1%
denaturing formaldehyde agarose gel, electrotransferred onto
a nylon membrane, and ultraviolet-crosslinked. Northern blot
hybridization was performed by using [32P]dCTP-radio-
labeled TF (American Type Culture Collection) cDNA probe.
Equal loading of mRNA was monitored by hybridizing the
same membrane with a ß-actin cDNA probe.

Stable transfection of glioma cells with IκB·M and a control
vector. U-87 MG and HF U-251 MG cells (1x106) were trans-
fected with a pLXSN-IκB·M expression vector (30) or control
pLXSN vector by using lipofectamine (Life Technologies,
Inc., Rockville, MD) or a control pLXSN vector. Cells were
selected with a standard medium containing 200 μg/ml
G418. Fourteen days later, neo-resistant colonies were
isolated by trypsinization and established as subcultures. The
expression of exogenous IκB·M was verified by using
Western blot analysis.

Western blot analysis. Whole-cell lysates were prepared from
glioma cells. Standard Western blotting was performed with
a polyclonal rabbit anti-human and anti-mouse IκB· (Santa
Cruz Biotechnology) to detect endogenous and mutant IκB·.
Standard Western blotting was also performed with a
polyclonal rabbit antibody against human VEGF (Santa Cruz
Biotechnology), and a second antibody (anti-rabbit IgG or

anti-mouse IgG; Amersham Life Sciences, Arlington Heights,
IL). The same membranes were stripped and blotted with an
anti-ß-actin antibody (Sigma Chemical Co., St. Louis, MO)
and used as loading controls. The probe proteins were
detected by using the Amersham enhanced chemilumines-
cence system according to the manufacturer's instructions.

Promoter reporters and dual luciferase assays. Luciferase
reporters driven by two-copy wild-type (2x NF-κB-Luc)
NF-κB responsive elements were used (26-28). Glioma cells
(1x105) growing in 6-well plates were transfected with the
indicated reporter plasmids with the use of lipofectamine. The
transfection efficiency was normalized by co-transfection
with a pß-actin-RL reporter containing a Renilla luciferase
gene under the control of a human ß-actin promoter (27).
Both the firefly luciferase and Renilla luciferase activity was
quantified by using a dual luciferase assay system (Promega,
Madison, WI).

Endothelial cell tube formation assay. The tube formation
assay was performed as described previously. Briefly, 250 μl
of growth-factor-reduced Matrigel (Collaborative Biomedical
Products, Bedford, MA) were pipetted into each well of a
24-well plate and polymerized for 30 min at 37˚C. Human
umbilical vein endothelial cells (HUVECs) were harvested
after trypsin treatment and suspended in a conditioned
medium from 1x106 glioblastoma cells. Next, 2x104 HUVECs
in 300 μl of a conditioned medium were added to each well
and incubated at 37˚C in 5% CO2 for 20 h. The cultures were
photographed under a bright-field microscopy by using a
Sony digital camera equipped with the Optimas software
program (version 6.2).

Intracranial human glioma xenograft model. Glioma cells
(1x106) were injected intracranially into nude mice as
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Figure 1. Constitutive NF-κB activity level in glioblastoma cells. The neuro-
glioma cell line H4, AA cell lines SW1088, and Hs683, together with four
glioblastoma cell lines U-118 MG, U-87 MG, T98G and HF U-251 MG
were transiently transfected with 2xNF-κB-Luc (containing two-copy wild-
type NF-κB responsive elements) or 2xNF-κB mut-Luc (containing two-
copy mutant-NF-κB responsive elements), respectively. The transfection
efficiency was normalized by co-transfection with a pß-actin-RL reporter.
Forty-eight hours post transfection, the relative luciferase activity was
measured. Values are mean ± SD for triplicate samples from a representative
experiment.
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described previously (31). Two independent experiments
with five mice per group were performed. Animals showing
general or local symptoms were sacrificed; the remaining
animals were sacrificed 45 days after glioma-cell injection.
Each mouse's brain was harvested, fixed in 4% formaldehyde
and embedded in paraffin. Tumor formation and the angio-
genesis markers were examined with the use of histologic
analysis of immunohistochemistry staining.

Immunohistochemistry. Sections (5 μm thick) of formalin-
fixed, paraffin-embedded experimental glioma samples were
stained with anti-NF-κB/p65 antibody (Boehringer Mannheim,
Indianapolis, IN) (32). The level of expression of CD34,
VEGF and IL-8 was determined by using our standard immu-
nohistochemical staining method with anti-CD34 (Pharmingen,
San Diego, CA), anti-VEGF (Santa Cruz Biotechnology) and
anti-IL-8 (Biosource International, Camarillo, CA). Tissue
sections immunostained with non-specific IgG were used as
negative controls.

Statistical analysis. The significance of the in vitro results
was determined by using Student's t-test (two-tailed),
whereas the significance of the in vivo data was determined
by using the Mann-Whitney U test. P values of ≤0.05 were
deemed statistically significant.

Results

Glioblastoma cells had high level of constitutive NF-κB
activity. We examined the constitutive NF-κB activity in the
four glioblastoma (U-118 MG, U-87 MG, T98G and HF
U-251 MG), two AA (SW1088 and Hs683) and a neuro-
glioma (H4) cell lines by using dual luciferase assays. As
shown in Fig. 1, all of the glioblastoma cell lines had NF-κB
luciferase reporter activity. SW1088, Hs683 and H4 also had
NF-κB luciferase activity, but the levels were significantly
lower than that in the glioblastoma cell lines. These results
indicated that glioblastoma cells had high level of constitutive
NF-κB activity.

Downregulation of constitutive NF-κB activity in glioma
cells by transfection of IκB·M. To inhibit the NF-κB activity
in U-87 MG and HFU-251 MG cells, we stably transfected
them with IκB·M, which encodes a mutated IκB· with
mutations at S32 and S36 of the NH2 terminus and a COOH-
terminal PEST sequence mutation (25-29). We analyzed the
NF-κB luciferase activity in 3 independent stable colonies of
each cell line as well as vector-transfected and parental cells.
As shown in Fig. 2A, NF-κB reporter activity was decreased
~7-9 fold in IκB·M-transfected (IκB·M-1, IκB·M-2 and
IκB·M-3) U-87 MG and HF U-251 MG cells, respectively,
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Figure 2. Downregulation of constitutive NF-κB activity and VEGF, IL-8 mRNA expression in glioma cells by transfection of IκB·M. (A) NF-κB activity in
U-87MG and HFU-251 glioblastoma cells were stably transfected with IκB·M 3 independent colonies of each cell line (IκB·M-1, IκB·M-2, and IκB·M-3),
together with parental and pLXSN-transfected (neo), were transiently co-transfected with 2xNF-κB-Luc and pß-actin-RL reporter. Luciferase activity was
measured 48 h posttransfection. (B) Northern blot analysis of VEGF, IL-8 mRNA expression of IκB·M-1-transfected (IκB·M-1, IκB·M-1-2, and IκB·M-1-3),
pLXSN-transfected (neo), and U-87 MG and HFU-251 MG cells. mRNA of each cells were extracted and Northern blot was performed according to our
standard protocol. Equal loading of mRNA was monitored by hybridizing the same membrane with a ß-actin cDNA probe.
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compare with parental and pLXSN-transfected (neo) groups.
While there were no significant changes after NF-κB mutant
reporter transfection (data not shown). Therefore, we showed
that these cells had a constitutive level of NF-κB activity,
which could be inhibited by transfection of the IκB·M
expression vector.

Blockade of NF-κB activation suppresses the expression of
VEGF and IL-8 in glioblastoma cells in vitro. The effect of
NF-κB inhibition on the expression of VEGF and IL-8 was
also studied in IκB·M-transfected U-87MG and HF-
U251MG cells in vitro. First, the mRNA levels of VEGF and
IL-8 genes in IκB·M-transfected cells were analyzed in
IκB·M-transfected and control cells. Cellular mRNA was
extracted from glioblastoma cells and Northern blot analysis
was performed. As shown in Fig. 2B, there was a significant
decrease in VEGF and IL-8 mRNA expression in IκB·M-
transfected cells compared to parental and neo cells for both
U87 and HF-U251MG cell lines.

The expression of VEGF and IL-8 in IκB·M-transfected
cells was further determined at protein level. Consistently,
the protein level of VEGF in IκB·M-transfected cells signifi-
cantly decreased as determined by Western blot analysis
(Fig. 3A). The protein level of IL-8 in IκB·M-transfected
cells significantly decreased as determined by quantitative
IL-8 ELISA (Fig. 3B).

To further investigate the mechanism of how NF-κB
regulates VEGF and IL-8 expression, we performed the
promoter assay by using the VEGF and IL-8 promoters in
U87MG, U87MG neo, U87MG IκB·M-transfected cells.

As shown in Fig. 4A, we found that in IκB·M-transfected
U87MG cells, the promoter activity of VEGF and IL-8
downregulated significantly compared with parental and neo
cells. Similar results were observed in HFU-251 and IκB·M-
tansfected cells (Fig. 4B).

Blockade of NF-κB activation suppresses the angiogenic
potential of glioblastoma cells. VEGF as well as IL-8 have
also been shown to be strong regulators of human glioma
angiogenesis. Thus, we determined whether decreased NF-κB/
RelA activity and the subsequent decrease in VEGF and IL-8
production led to suppression of angiogenic activity in
glioma cells in vitro. The conditioned media of U-87MG-
neo, U87MG IκB·M-transfected, HFU-251MG-neo and
HFU-251MG IκB·M-transfected were collected and the
ability of each of the conditioned media to induce endo-
thelial cell tube formation was determined. As shown in Fig. 5,
the conditioned media from IκB·M-transfected U-87MG and
HFU-251MG cells appeared to be less angiogenic than that
from control cells as determined by an endothelial cell tube
formation assay.

Blockade of NF-κB activation suppresses angiogenesis and
tumor growth of human glioblastoma cells. To evaluate
whether NF-κB activity regulates angiogenesis of glioblas-
toma cells, we used an orthotopic xenograft model of human
glioma by intracranially injecting glioma cells into nude
mice. Intracranially implanted HFU251 MG and HFU251
MG-neo cells (1x106 cells/mouse) produced brain tumors in
all of the mice injected with these cells (Fig. 6A). In contrast,
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Figure 3. Inhibition of activation of NF-κB and decreased expression of VEGF and IL-8 protein level in IκB·M transfectant glioblastoma cells. (A) Down-
regulation of VEGF protein expression by IκB·M transfection. VEGF protein expression in IκB·M-transfected (IκB·M-1, IκB·M-2 and IκB·M-3), pLXSN-
transfected (neo) U-87 MG and HF U-251 MG cells were analyzed by Western blotting. (B) Downregulation of IL-8 secretion by IκB·M transfection. IL-8
protein secretion in IκB·M-transfected (IκB·M-1, IκB·M-2 and IκB·M-3), pLXSN-transfected (neo) and U-87 MG and HF U-251 MG cells were analyzed
by ELISA.
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HFU251MG-IκB·M-1 and HFU251MG-IκB·M-2 cells
produced smaller tumors, and obtained longer survival time
compared with previous groups (Fig. 6A).

Next, tumor-associated neovascularization (as indicated
by MVD) was determined by IHC using anti-CD34 antibodies.

As shown in Fig. 6B, tumors formed by HFU251MG neo-
transfected cells were highly vascularized, whereas the
tumors formed by IκB·M-transfected IκB·M cells had a
significantly decreased vascular density. These studies
indicated that tumor-associated neovascularization correlated
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Figure 4. Blockade of NF-κB activation suppresses VEGF and IL-8 promoter activity in glioblastoma cells. IκB·M-transfected (IκB·M-1, IκB·M-2 and
IκB·M-3), pLXSN-transfected (neo) U-87 MG and HF U-251 MG cells were transfected with VEGF promoter and IL-8 promoter, respectively. The
transfection efficiency was normalized by co-transfection with a pß-actin-RL reporter. Forty-eight hours post transfection, the relative luciferase activity was
measured. Values are mean ± SD for triplicate samples from a representative experiment.

Figure 5. Effects of altered activation of NF-κB by IκB·M transfection on angiogenic potential of glioma cells. Conditioned media were prepared from 1x106

pLXSN (neo)-transfected and pLXSN-IκB·M-transfected U-87 MG or HFU-251 MG cells. HUVECs were harvested after trypsin treatment and suspended in
a conditioned medium from 1x106 glioblastoma cells. HUVECs (2x104) in 300 μl of a conditioned medium were then plated on growth factor-reduced
Matrigel to form a capillary tube. Capillary tube formation in each group was photographed. This is a representative experiment of two. Capillary tube
formation in each group was photographed a representative of two experiments is shown.
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directly with NF-κB activity, and tumorigenicity of human
glioma cells. To rule out the possibility that difference in
neovascular formation was mainly due to difference in tumor
size, we produced small control tumors similar in size to
IκB·M-transfected tumors. We found frequent neovascu-
larization in those small tumors, but not in IκB·M-transfected
tumors of similar size, suggesting that tumor size might not
be the major cause of differential neovascularization. There-
fore, inhibition of NF-κB activity by IκB·M transfection
suppressed both neovascularization and tumorigenicity in
glioblastomas.

Inhibition of activation of NF-κB and decreased expression
of VEGF and IL-8 in IκB·M transfectant tumors. To provide
direct evidence of the contribution of NF-κB activation to the
regulation of angiogenesis molecules, we studied the effect
of altered NF-κB activity on the orthotopic xenograft model
of human glioma in vivo. First, we sought to determine
whether IκB·M transfection suppresses NF-κB activity in vivo.
We performed immunohistochemical analysis of HFU-
251MG-neo and HFU-251MG-IκB·M brain tumor specimens
with the use of an antibody that recognizes the nuclear
localization sequence of the activated form of NF-κB p65.
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Figure 6. Effect of IκB·M transfection on glioma growth in the brain of nude mice. (A) Glioma cells (1x106) were implanted intracranially into nude mice.
Mice were euthanized when animals showed general or local symptoms and the survival days were statistically analyzed. (B) The brain of each mouse was
harvested, fixed in 4% formaldehyde and embedded in paraffin. Tumor formation and the necrosis phenotype were examined with the use of histologic
analysis and immunohistochemistry staining with the indicated antibodies.
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There was an inhibition of activated NF-κB in the HFU-
251MG- IκB·M tumors (Fig. 6B). Similar results were
obtained with the use of U-87MG-neo and U-87MG-IκB·M
tumors (data not shown).

We also evaluated the expression of VEGF and IL-8
protein in vivo by using immunohistochemistry. As shown in
Fig. 6B, we observed staining for VEGF and IL-8 in HFU-
251MG neo tumors; we observed significantly decreased
staining in IκB·M transfectant tumors. Thus, expression of
IκB·M in glioblastoma cells inhibited constitutive activation
of NF-κB and subsequently suppressed expression of the
angiogenesis gene in vivo.

Discussion

In the present study, we found that glioblastoma cells have
high NF-κB activity playing an important role in angio-
genesis of glioblastomas. Our present data demonstrate that
U-87MG parental, U-87MG neo, HFU-251 parental and
HFU-251 neo cells (high expression level of VEGF/VPF and
IL-8) expressed significantly higher levels of NF-κB/RelA
activity than the IκB·M-transfected cells (low expression
level of VEGF/VPF and IL-8). In our animal model, blockade
of NF-κB activation by IκB·M transfection suppressed
angiogenesis and tumor growth by human glioblastoma cells.
Furthermore, altered NF-κB activity significantly affected
expression of the major angiogenesis molecules VEGF and
IL-8 in vitro and in vivo in glioblastoma cells. Therefore, we
provide mechanistic evidence that constitutively activated
NF-κB plays an important role in angiogenesis in human
glioblastomas.

The regulation of both VEGF and IL-8 expression during
tumor progression may involve diverse mechanisms. In this
study, we sought to determine whether NF-κB regulates
VEGF and IL-8 expressions in glioblastoma cells. IκB·M
transfection, which blocks NF-κB activation (25-29),
suppressed the production of both IL-8 and VEGF under in
vitro and in vivo conditions. The significant decrease in
VEGF and IL-8 promoter activities found in the IκB·M-
transfected cells suggested that the regulation of VEGF by
NF-κB occurred at the transcriptional level.

NF-κB is an inducible dimeric transcription factor that
belongs to the Rel/NF-κB family of transcription factors,
whose prototype in most non-lymphoid cells is a heterodimer
consisting of the RelA (p65) and NF-κB1 (p50) subunits
(33,34). NF-κB complexes are typically retained in the
cytoplasm by inhibitory IκB proteins, including IκB·. Upon
stimulation, IκB· is rapidly phosphorylated and degraded via
the ubiquitin-proteasome pathway, permitting activation and
nuclear import of NF-κB. Dominant-negative mutant forms
of IκB· that cannot be phosphorylated and degraded and thus
prevent the activation of NF-κB have been engineered.
Indeed, we found that NF-κB activation was suppressed
when we transfected a dominant-negative mutant form of
IκB·-IκB·M into the glioblastoma cells. Additionally,
blockade of NF-κB activity in glioblastoma cells suppressed
the angogenesis of glioblastoma cells in vitro and the
formation of brain tumors in nude mice. Blockade of NF-κB
activity also inhibited the expression of the angiogenic
molecule VEGF, IL-8 in glioblastoma cells, suggesting that

increased NF-κB activity may contribute to the over-activity
of angiogenesis in human glioblastomas.

NF-κB activation can protect tumor cells from apoptosis;
thus, suppression of tumor growth by blocking NF-κB acti-
vity could have been due to increased apoptosis (34,35).
Previous reports showing that stable inhibition of NF-κB in
cancer cells by stable transfection of IκB·M does not inhibit
cell growth in vitro (36,37). Thus, the inhibition of tumori-
genicity by suppression of NF-κB activity had to occur by
other mechanisms, such as inhibition of cell adhesion (37),
inhibition of proinflammatory cytokine production (38), or
inhibition of plasminogen activator and matrix metallo-
proteinase (39), which contribute to neoplastic angiogenesis,
growth and metastasis. NF-κB has also been shown to play a
role in retinal neovascularization (40) and in oxidative stress-
induced tubular morphogenesis of endothelial cells (41). Our
data showing that NF-κB activity in glioblastoma cells
regulates the expressions of VEGF and IL-8 support the role
that NF-κB may play in angiogenesis, as an essential feature
of glioma growth.

In summary, we show that human glioblastoma cells with
high-malignant potential express high levels of constitutive
NF-κB activity. Suppression of NF-κB activity through
expression of a phosphorylation mutant IκB·M decreased
angiogenesis, retarded tumor growth, in part through down-
regulation of the angiogenic molecules VEGF and IL-8.
These data provide the first direct evidence for the essential
role of NF-κB/RelA in angiogenesis, tumor growth, and
formation of malignant glioblastoma. Targeting NF-κB may
therefore be a potential approach in controlling angiogenesis
and growth of human glioblastoma.
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