
Abstract. The HSP90 molecular chaperone family is highly
conserved and expressed in various organisms ranging from
prokaryotes to eukaryotes. HSP90 proteins play essential
housekeeping functions, such as controlling the activity,
turnover and trafficking of various proteins, promoting cell
survival through maintaining the structural and functional
integrity of some client proteins which control cell survival,
proliferation and apoptosis, and play an important role in the
progression of malignant disease. HSP90 proteins are ATP-
dependent chaperones and the binding and hydrolysis of
ATP are coupled to conformation changes of HSP90, which
facilitate client protein folding and maturation. Many natural
and synthetic molecular compounds have been proposed as
promising cancer therapy via disrupting the formation of
complex ATP-HSP90-client proteins.
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1. Introduction

The HSP90 molecular chaperone family is highly conserved
and expressed in various organisms ranging from prokary-
otes to eukaryotes and even under normal conditions HSP90
proteins account for 1-2% of all cellular proteins in most
cells (1). The expression of HSP90 is elevated up to 10-fold
when exposed to physiologic stress including heat, heavy
metals, hypoxia and low pH (2,3). HSP90 proteins play
essential housekeeping functions, such as controlling the
activity, turnover and trafficking of various proteins,
promoting cell survival through maintaining the structural
and functional integrity of some client proteins which control
cell survival, proliferation and apoptosis (4,5). Many reports
have indicated that HSP90 proteins play an important role in
the progression of malignant disease and HSP90 expression
is 2- to 10-fold higher in tumor cells than in normal cells
(6-8). HSP90 sustains cancer cells through interacting
smoothly with client substrates which contain kinases,
hormone receptors and transcription factors directly involved
in evoking multi-step malignancies, and also with mutated
oncogenic proteins necessary for transformed phenotype (9).
Therefore, HSP90 has been proposed as a promising target
for therapy of various human cancers.

2. Structure and function

Researchers indicated that the HSP90 molecular chaperone
family is present in the cytosol, nucleoplasm, endoplasmic
reticulum (ER), mitochondria and chloroplasts (1,10,11).
Members of the human HSP90 chaperone family are listed in
Table I. There are four kinds of isoforms, including HSP90·
(90 kDa heat-shock protein), HSP90ß, Grp94 (94 kDa
glucose-regulated protein) and TRAP1 (tumor necrosis factor
receptor-associated protein 1) (1,12-14). HSP90· and HSP90ß
are cytosolic proteins and share 76% homology due to gene
duplication during evolution (1,15). Mainly Grp94 resides in
the endoplasmic reticulum (ER), while TRAP1 is a mito-
chondrial paralogue and connected with Eubacterial HtpG
(14,16,17). In addition, a novel member of the HSP90 family
called HSP90N was reported to be related with neoplastic
transformation (18).
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The crystal structures of HSP90 proteins from
Escherichia coli, yeast and human have shown that the basic
domain is conserved, although it become more complex with
multifunction from procaryote to eukaryote (19-24). Hsp90
chaperones exist as obligate homodimers, with each identical
subunit comprised of an N-terminal domain, a middle domain,
a non-conserved charged middle linker region which connects
the N-terminal domain with the middle domain, and a C-
terminal domain (19-24). There are two ATP binding sites,
one is on the N-terminus and the other is on the C-terminus
(25). The C-terminal domain contains a calmodulin binding
site and dimerization site associating with its partner domain
in the corresponding subunit to form dimer (1,18,26,27). A
conserved pentapeptide sequence (MEEVD) lies in the
extended C-terminal end of the eucaryotic protein, which
serves as the primary binding site for tetratricopeptide repeat
(TRP-a 34 amino acid sequence specifically binding to HSP90)
domain containing co-chaperones (28-30). The middle domin
of HSP90 exhibits a high affinity for co-chaperones and client
proteins and seems to discriminate between different sub-
strate types and to adjust the molecular chaperone for the
proper substrate activation (31-35).

The crystallization and three-dimensional structure analysis
of the N-terminal domain is a milestone in the scientific
exploration of the HSP90 molecular chaperone family
(21,23,36). Subsequently, the crystal structure of the HSP90-
geldanamycin binding domain was reported to be a pocket
which is also a likely binding site for the polypeptide sub-
strate. So geldanamycin inhibits the HSP-catalyzed confor-
mational reaction of these substrates via binding to the pocket
(23). Another researcher group reported a different complex
of crystal structures between the N-terminal domain of the
yeast HSP90 chaperone and ADP/ATP comprised of a specific
adenine nucleotide binding site homologous to the ATP-
binding site of DNA, suggesting that geldanamycin works by
blocking the binding of nucleotides to Hsp90 (21). A similar
model was proposed in which the HSP90-geldanamycin
binding domain is an ATP/ADP switch domain that regulates
HSP90 conformation and the GA binding to HSP90 locks the
chaperone into its ADP-dependent configuration (37). In
subsequent years, it was established that Hsp90 is an ATP-
dependent chaperone and the binding and hydrolysis of
ATP are coupled to conformation changes of HSP90, which
facilitate client protein folding and maturation and are disrupted
by geldanamycin (38-42).

In recent years, more complex and detailed mechanisms
of the ATP-driven chaperone cycle of HSP90 have been

intensively explored. A crystal structure of complex with full
length yeast HSP90 and an ATP analogue directly confirms
that the N-terminal dimerization is necessary for the ATP
hydrolysis which accompanies conformation change of client
proteins (22). They further indicated that upon the ATP-
bound state, the N-terminus and lid segment (residues 94-
125) of the N domain and the catalytic loop of the middle
segment together act as conformational switches to position
the two halves of the catalytic apparatus for ATP hydrolysis
(22). At the same time Buchner et al (2) proposed a model to
explain how ATP hydrolysis is regulated and linked to confor-
mational changes which is consistent with the crystal structure
of full length yeast HSP90 and ATP. i) The stable structure
of the first 24 amino acids and the lid region within the N-
terminal domain preclude N-terminal dimerization; ii) upon
binding of the ATP, this stable structure is opened, the dimer-
ization site becomes accessible, and the N-terminal strands
are exchanged with corresponding monomeric subunit to form
the ATPase-active state; iii) after N-terminal dimerization,
the positioning of the ATP-lid in its new orientation is required
for the ATP-hydrolyzing reaction in this domain; iv) the
association of the N-terminal domain with the middle domain
of HSP90 is necessary for efficient hydrolysis (43).

Shiau et al further proposed a unified structurally validated
mechanism model linking HSP90 ATPase activity and client
protein binding and release. They indicated that a distinct
set of lid segment conformation is responsible for coupling
the nucleotide binding and hydrolysis to a cycle of domain
rearrangements, which in turn regulate client-protein binding
and release (19). i) Without the binding of ATP, HSP90
presents multiple hydrophobic elements into the central cleft,
containing the hydrophobic patch formed by one face of the
lid segment which in an inactive state as well as helix H1.
The most hydrophobic surface area of the central cleft is
supposed to be the most optimal for client-protein binding. ii)
The ATP binding drives lid rearrangement and reorientation
of the N-terminal domain and the middle domain, to which
client proteins could be bound in the central cavity in this
ATP-containing intermediate state of HSP90. iii) After rear-
rangement, the lid stabilizes N-terminal domain dimerization
via interaction with N-terminal domain residues of the
partner protomer and this ATP-mediated closing of the inter-
protomer space could very well drive client-protein
remodeling. iv) With the dimerization of the N-terminal
domain of subunits, the ATP hydrolysis occurs and the lid
changes conformation accordingly, this new lid conformation
allows the interdigitation of the lid, the src loop, and the CTD
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Table I. Human HSP90 chaperone family.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Protein Subcellular location Gene Gene chromosomal localization
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
HSP90· Cytosolic HSP90AA Chromosomes 1,3,4,11,14 

HSP90ß Cytosolic HSP90AB Chromosomes 3,4,6,13,15

Grp94 Endoplasmic reticulum HSP90B Chromosomes 1,12,15

TNF receptor-associated protein Mitochondria TRAP Chromosome 16
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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H21, mutually masking their otherwise exposed hydrophobic
core, and finally assures complete release of client proteins
from HSP90 (19).

3. HSP90 inhibitors

Considering the extremely important function of HSP90 in
organisms, especially in the occurrence and development of
various tumors, targeting HSP90 is considered to have bright
future. Through knowledge of the ATP-driven chaperone
cycle of Hsp90, it might be possible to identify and design
small molecule compounds which selectively affect the dif-
ferent stages of the cycle, thus providing more selective and
effective therapeutics. In fact the exploring function of HSP90
is accompanied by the development of small inhibitors
targeting HSP90, so far many kinds of HSP90 inhibitors have
been identified which are listed in Table II and many of them
have already exhibited good antitumor effects and have entered
into clinical trials. The following will introduce the various
kinds of natural and synthetic HSP90 inhibitors.

Geldanamycin. Geldanamycin (GA) is a kind of benzoquinone
ansamycin antibiotic. As early as 1994, researchers proposed
the ability of GA to revert the transformed phenotype of
v-src-transformed cells via binding to HSP90 and disrupting
its chaperone function (44). Subsequently, the identification
of the ADP/ATP binding site in the N-terminal of HSP90 has
driven the understanding of the inhibition mechanism of GA
for cancer cells (21,23,36). GA competitively binds to the
N-terminal ATP binding site of HSP90, which prevents ATP
binding and disrupts the ATP-dependent conformational
cycling reactions of a wide range of client proteins involved
in signal transduction, cell cycle regulation and hormone
responsiveness (21,23,38). Although GA exhibits potent
antitumor effects, it also showed high hepatotoxicity and
poor solubility in preclinical studies in animals, which has
driven the development of geldanamycin analogues (45).
One possible reason of the toxicity is the C-17 methoxy
group, which is reactive toward nucleophiles usually present
in biological molecules. Replacement of the methoxy moiety
at C-17 of GA with alkylamino groups are less reactive to
nucleophiles and possess excellent biological activity and
reduced hepatotoxicity (46).

The tolerance at the 17-position for diverse substituents
does not affect the formation of HSP90 and geldanamycin or
its derivatives (47). So 17-(allylamino)-17-demethoxy-
geldanamycin (17-AAG), the 17-position derivate of GA,
was developed and has shown to have lower in vivo toxicity
than GA with even less HSP90 affinity than GA (48). 17-AAG
has promising anticancer effects in vitro and in vivo and has
completed phase I clinical trials and is in phase II trials for
several malignancies including metastatic melanoma, breast
and ovarian cancer (49-52). However, poor water solubility
makes formulation a barrier for its clinical application (53-55).
Additional organic excipients such as dimethylsulfoxide
(DMSO), polyoxylcastoroil (Cremophor) and egg phospho-
lipida have been used as vehicles (53,56). However, these
excipients may confuse the true maximum tolerated dose of
17-AAG and identificiation of the optional dosing regimen in
patients due to their own toxicities. With low doses of 17-AAG

in DMSO, researchers did not get objective antitumor responses
in several phase II trials including melanoma, hormone-
refractory prostate cancer and renal cell carcinoma (52,57).
In addition, several characteristics of the chemical structure
of 17-AAG have restricted fulfilling the maximal potential of
its target in tumor cells (58). A benzoquinone moiety of the
molecule has been related to the observed elevation of liver
enzymes and liver toxicity in clinical trials. On the other hand,
the expression of (P-gp) or loss or mutation of the NQO1 gene,
which is necessary for the bio-reduction of 17-AAG, to the
more potent hydroquinone have been proposed as mechanisms
of de novo or acquired resistance to 17-AAG (58).

The difference between the 17-AAG and 17-DMAG is in
the side chain at position 17 of the ansa ring (59). 17-Dimethyl-
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Table II. HSP90 inhibitors.
–––––––––––––––––––––––––––––––––––––––––––––––––
Geldanamycin series

Geldanamycin Natural
17-AAG Semisynthetic
17-DMAG Semisynthetic
IPI-504 Synthetic
C-11 Synthetic

Radicicol series
Radicicol Natural
Radicicol oxmie derivates Semisynthetic
PochoninA-F Natural

Radamide
Radamide Synthetic

Novobiocin series
Novobiocin Natural
Novobiocin derivates Semisynthetic

(-)-EGCG
(-)-EGCG Natural

Derrubone
Derrubone Natural

Gedunin and celastrol
Gedunin Natural
Celastrol Natural

Purine scaffold
Pu3 Synthetic
BIIB021 Synthetic

Pyrazole scaffold
CCTO18159 Synthetic
NVP-AUY922 Synthetic

SNX-2112
SNX-2112 Synthetic

STA9090
STA9090 Synthetic

–––––––––––––––––––––––––––––––––––––––––––––––––
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aminoethylamino-17-demethoxygeldanamycin hydrochloride
(17-DMAG, NSC 707545) is a more potent, more water soluble
derivative of 17-AAG and has potent inhibitory effects on
cell proliferation in cultured tumor cell lines and in vivo xeno-
grafts, and is currently in phase I clinical trials (60,61).
17-DMAG can be administered orally, which possibly makes
it a more feasible long-term therapeutic agent for treating
disease (62). 17-DMAG is stable for at least 2 months at room
temperature, less bound to plasma proteins compared to
17-AAG, and undergoes limited metabolism (53,62-64).
Also, the limited metabolism of 17-DMAG compared to
17-AAG in prelinical models may reduce drug clearance
and interindividual pharmacokinetic variability in humans
(62,65).

IPI-504 is a highly soluble hydroquinone hydrochloride
and novel analogue of 17-allylamino-17-demethoxygel-
danamycin, which has >200 mg/ml solubility, thereby facili-
tating formulation for parenteral administration (55,66). The
free base of IPI-504 is a potent inhibitor of Hsp90, which
exists in a dynamic intracellular equilibrium with 17-AAG
(55,66). The half-life of IPI-504 is ~6 h in vivo, though signi-
ficant accumulation occurs within tumor cells (66). Phase I
trials of IPI-504 in patients with multiple myeloma (MM)
and gastrointestinal stromal tumor (GIST) exhibited that the
agent was well tolerated at doses up to 300 mg/m2 (67).

Researchers have also synthesized other series of GA or
17-AAG by modification at the various positions. The C-11
modified analogues of GA and 17-AAG were identified with
slightly improved cytotoxicity over 17-AAG against several
cancer cell lines. The in vitro efficacy and pharmacological
profiles of these compounds need further investigation to
determine whether these compounds hold any advantages
over 17-AAG (68).

Radicicol. Radicicol is a 14-membered macrolide originally
isolated from Monosporium bonorden as an anti-fungal anti-
bioticin in 1953 (69). Researchers found that radicicol has
the ability to reverse the transformed phenotype in v-src, ras,
mos, raf, fos and SV40-transformed cell lines to the normal
one and inhibits the expression of mitogen-inducible cyclo-
oxygenase in macrophages (70-73). Radicicol causes cell
cycle arrest in the G1 and G2 phase and inhibits angiogenesis
in vivo (74). Crystal structure analysis has demonstrated that
radicicol acts as a nucleotide mimic, inserting itself into the
ATP/ADP-binding pocket of HSP90 (75). Other research
groups also indicated that radicicol could bind to the N-
terminal GA binding site of HSP90 protein with 50-fold
greater affinity and thus destabilize its client proteins (76-78).
Radicicol was found to show potent in vitro anti-proliferative
activity against a wide variety of human tumor cell lines, but
was inactive when tested against in vivo antitumor models
(79).

Radicicol lacks in vivo antitumor activity because the
inhibitory effect of radicicol against tyrosine kinases is
abolished by reducing agents such as DTT, thus many novel
series of derivatives of radicicol have been generated with
better stability and biologic activity (71,80,81).

Oxime derivatives were developed and shown to be stable
in the presence of thiol (81) such as KF25706, KF29518 and
KF58333 were designed and synthesized and were found to

show more potent anti-proliferative activities than radicicol
and significant in vivo antitumor activities in several human
tumor xenograft models (79,82). Researchers reported that
KF25706 destabilized HSP90-associated molecules via
binding to the HSP90 as radicicol in vitro and exhibited
potent antitumor effects in vivo (79). KF58333, also a novel
derivative of radicicol, was reported to bind to the Hsp90
chaperone machinery, deplete p210Bcr-Abl and Raf-1 proteins
followed by induction of erythroid differentiation and G1
phase accumulation, and to induce apoptosis in human CML
cells (80).

A new family of resocyclic macrolides was isolated from
the fermentation of Pochonia chlamydosporia and named
pochonin A-F (83). Pochonin A is closely related to radicicol
and was shown to be a 90-nm inhibitor of HSP90 (83).
Pochonin C is also closely related to radicicol and can convert
into radicicol (84).

Radamide. Based on the knowledge of co-crystal structures
of the HSP90 N-terminal ATP-binding site with radicicol and
GA, a chimeric inhibitor, radanamycin amide (radamide), was
designed and synthesized via incorporating the key binding
interactions provided by the resorcinol ring of radicicol and the
quinone moiety of GA into a single molecule (75,85).
Radamide exhibited low micromolar inhibition of HSP90 as
measured by Her2 degradation in MCF-7 breast cancer cells
(85). Chimeric compounds composed of radicicol's resorcinol
ring and GA's quinone ring produce potent HSP90 inhibitors
and further derivates are likely to afford analogues with
increased activity and perhaps useful alternatives to the
geldanamycin derivatives in clinical trials (86,87).

Novobiocin. Novobiocin is a type of coumarin antibiotic iso-
lated from streptomyces spheroids, which binds to the ATP-
binding pocket of DNA gyrase thus eliciting antimicrobial
activity via inhibition of ATP hydrolysis (88-91). Some studies
indicated that the HSP90 N-terminal binding domain of GA
and radicicol share homology to the bacterial DNA gyrase B
protein adenosine triphosphate (ATP)-binding domain of
novobiocin (21,23,37,77,92,93). Researchers began paying
attention to the interaction of novobiocin and HSP90. Subse-
quently, Neckers et al reported that novobiocin binds to a site
on HSP90 which is different from the GA/radicicol binding
site and shows antitumor activity by reducing HSP90 client
protein expression levels, such as p185erbB2, mutated p53,
and Raf-1 in a dose-dependent fashion. They further proposed
that the novobiocin binding domain is in the carboxy-terminal
portion of HSP90 by using HSP90 deletion mutants (94).
Ratajczak et al proposed that novobiocin antagonizes HSP90
function by inducing a conformation favoring separation
of the C-terminal domains and release of substrate (95).
However, the inhibitory effect was very poor within 500-
800 μM in SKBR3 breast cancer cells (94). Thereafter,
analogues of novobiocin with more potent inhibitory activity
were developed.

In 2005, Blagg et al prepared a library of novobiocin
analogues, which included shortening of the amide side chain
and removal of the 4-hydroxy substituent, removal of both
the 4-hydroxy and amide linker, steric replacements of both
the 4-hydroxy and benzamide ring, and 1,2-positional isomers
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of the noviosyl linkage. Among them, A4, which contains an
N-acetyl side chain in lieu of the benzamide, lacks the 4-
hydroxyl of the coumarin moiety, and has an unmodified
diol, had a dramatic effect on the concentrations of the
mutant androgen receptor, AKT, and Hif-1R at a concentration
of around 1 μM in the LNCaP cell line and drastically reduced
levels of the androgen receptor at lower concentrations in a
wild-type androgen receptor prostate cancer cell line (LAPC-4).
A4 was identified to be a potent inhibitor of the HSP90
protein-folding process (96). They further explored the
structure-activity relationships (SAR) for novobiocin and
HSP90 and determined what modifications are necessary to
convert a well-established, clinically used DNA gyrase
inhibitor, novobiocin, into a selective inhibitor of HSP90. The
4-hydroxyl and the 3-carbamate were found to be detrimental
for HSP90 inhibitory activity, but are critical for DNA gyrase
inhibitory activity. According the SAR, they prepared the
natural product derivatives, DHN1 and DHN2, which were
selective for HSP90 and not DNA gyrase (97). The set-up of
structure activity relationships for novobiocin and HSP90
are essential for exploring new coumermycin analogues with
better inhibitory activity and less toxicity.

In 2006, Blagg et al developed dimeric variants of A4
exhibiting more inhibitory effective of dimeric natural product
against Hsp90 protein folding machinery (98,99). A series of
A4 analogues were prepared via linking A4 dimers by meta-
and para-phthalic acid and utilizing the cross-metathesis of
olefins to generate a series of compounds that contained
various methylene spacers in the tether (99). They found the
more flexible derivative 33 dimers containing the olefinic
linkers proved to be most active, which caused the degradation
of HSP90-dependent substrates in a concentration-dependent
manner without additional affect to the non-HSP90-dependent
proteins. Further, they proposed that the geometry of the
olefin responsible for dimerization is critical for inhibitory
activity (99). Considering the structure-activity relationships
(SAR), many other monomeric compound based on the A4
scaffold and the natural product novobiocin were developed
(100). Two small molecule libraries were prepared and
evaluated for anti-proliferative activity against several cancer
cell lines. The first library explored optimization of benzamide
containing a p-methoxy and a m-phenyl substituent and the
second focused on the incorporation of heterocycles into the
benzamide region in order to investigate hydrogen bond
donor/acceptor interactions. Especially, 2-indoleamide-46
was identified as the most potent inhibitor which inhibited
cancer cell growth via inducing degradation of HSP90-
dependent client proteins including Her2, Raf and Akt in a
concentration-dependent manner (100).

In 2007, a parallel library of noviosylated coumarin
analogues was envisioned according to the SAR, which
aimed at HSP90 inhibition. Fifty-six noviosylated coumarin
analogues were synthesized, omitting 4-hydroxyl and 3-
carbamate and providing additional hydrophobic and hydrogen
bonding interactions by the incorporation of additional
functionalities. Biological studies with these compounds
are currently under investigation and the results from such
studies will promote the development of optimized deri-
vatives of coumarin with better inhibitory effects for HSP90
(101).

Another research group developed novel novobiocin
analogues which lack the noviose moiety including those that
connect the substituted coumarin ring to the aryl moiety
through amide, retroamide, and alkyne linkage. The analogues
labeled 6e and 6f were found to be more potent than novo-
biocin in the biological assay, such as by inhibiting of E2-
induced and basal transactivation capacity of ERR, inducing
a proteasome-mediated degradation of ERR, HER2, Raf-1 and
cdk4, inhibiting the cell cycle, and promoting apoptosis and
improving growth inhibition potential (102). Subsequently,
they prepared the denoviose analogues bearing a tosyl group
on the 4-position, with the removal of C7/C8 substituents,
which exhibited increased inhibitory activity against the HSP90
protein folding process (103).

(-)-EGCG. Green tea is one of the most widely consumed
beverages in the world. The (-)-epigallocatechin-3-gallate
[(-)-EGCG] is an abundant catechin in green tea and a potent
chemoprevention and anticancer component (104). (-)-EGCG
was reported to inhibit the transcriptional activity of the aryl
hydrocarbon receptor (AhR) via direct binding to the C-
terminal region of HSP90 (105). Recent studies have
indicated that the binding of (-)-EGCG to HSP90 affects the
association of HSP90 with its co-chaperones including Akt,
Cdk4, Raf-1, Her-2 and pERK, thus inducing degradation of
these client proteins, resulting in anti-proliferating effects in
pancreatic cancer cells (106).

Gedunin and celastrol. Gedunin is a tetranortriterpenoid
isolated from the Indian neem tree, which exhibits anti-
malarial, insecticidal and anticancer activity (107-109).
Celastrol (tripterine) is a triterpenoid from the celastracae
family and is extracted from Tripterygium wilfordii Hook F,
and has shown anti-inflammatory and anti-proliferation effects
in various cancer cells such as leukemia, gliomas and prostate
(110-113). Gedunin and celastrol were identified to be HSP90
inhibitors via a connectivity map, a gene expression-based
strategy (114,115). Gedunin and celastrol decrease the levels
of a range of HSP90 client proteins and inhibit HSP90 activity
itself in a cellular context directly or indirectly. Notably,
gedunin and celastrol were found to inhibit HSP90 function
by a different mechanism than existing N-terminal HSP90
inhibitors, thus they might act synergistically with existing
modes of HSP90 ATP-binding site inhibition to inhibit HSP90
client signaling and viability in a cellular context (115). Sub-
sequent studies reported that celastrol disrupted the protein-
protein interaction of HSP90-Cdc3, resulting in the induction
of HSP90 client protein degradation, which provides a novel
mechanism for HSP90 inhibition against pancreatic cancer
cells (116). Recently Sreeramulu et al proposed that celastrol
inactivates Cdc37 by covalently binding to it or by forming
either an intra- or intermolecular protein disulfide and the
binding of celastrol induces large changes in conformation of
the N-terminal kinase-binding domain and also the middle
HSP90N-binding domain of Cdc37, thereby disrupting the
Cdc37-Hsp90N complex which is crucial for stabilizing
oncogenic kinases in various cancers (117).

Derrubone. The natural product derrubone was found to be a
new HSP90 inhibitor by screening a large library of known
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drugs, experimental bioactives and pure natural products
(118). Derrubone inhibits HSP90-dependent refolding of
luciferase, exhibits potent anti-proliferation and Her2 degra-
dation in human breast cancer cell lines and down-regulates
numerous HSP90 client proteins in a concentration-dependent
manner (118). Subsequent biological evaluation of derrubone
and its analogues identified several compounds which exhibit
low micromolar inhibitory activity against breast and colon
cancer cell lines (119).

Purine scaffold HSP90 inhibitors. Due to the disadvantages
of established inhibitors, the identification of new HSP90
inhibitors with improved structural characteristics and better
pharmacological profiles became a priority in the field. Thus
purine scaffold HSP90 inhibitors were developed.

In 2001, Chiosis et al designed a novel compound that
interacts with the HSP90-nucleotide binding pocket by using
the structure of the co-crystals of HSP90 and its ligands (GA,
RD and adenine nucleotides). The designed compound PU3
competes with GA to bind to HSP90A with a relative affinity
of 15-20 μM. PU3 causes the degradation of HER kinases,
estrogen receptor and Raf kinase, and growth inhibition and
differentiation of human cancer cells, whose effects were
similar to those induced by GA and RD (120). Also, PU3 is
soluble, easily synthesized, and may be less toxic and adapt-
able to oral administration. Although PU3 is less potent, it is
a first generation lead compound and the structural skeleton
of PU3 allows for extensive chemical modifications in the
pursuit of derivatives with increased binding affinity, activity,
solubility and therapeutic effects (120). Just as expected, the
same research group developed a small library of derivatives
of PU3 that resulted in a compound with 30-times better
cellular effects than PU3 and display a relative binding affinity
for HSP90 of 0.55 μM which is similar to 17-AAG. Especially
compound 71 caused growth arrest and degradation of the
oncogenic Her2 tyrosine kinase at low micromolar
(IC50=2 mM) concentrations. Compound 71 is also water
soluble at the tested concentrations and is amenable for oral
administration (121). Another compound of this library,
PU24FCL exhibits antitumor activities in both in vitro and
in vivo models of cancer (122). Subsequently, several 8-
arylsulfanyl, -sulfoxyl and -sulfonyl adenine derivatives of
the PU-class were synthesized and retain the activity of the
methylene linker compounds (X3=CH2) and are also chemi-
cally flexible which allows for extensive SAR studies (123).
Recently, two research groups disclosed the 8-(phenylsulfanyl)
purine series with ionizable groups appended at the end of
the N(9) substituents, which showed improved oral bio-
availability and measurable antitumor activity (124,125).

BIIB021(CNF2024) is the first synthetic HSP90 inhibitor
to enter Phase I clinical trials, and was developed based on
purine-scaffolds (126). BIIB021 has shown potent antitumor
activity both in vivo and in vitro research of many kinds of
tumors (127-129). BIIB021 is currently undergoing phase I/II
clinical trials and exhibits superior pharmaceutical properties
and bioavailability (130).

Pyrazole scaffold inhibitors. The diaryl pyrazole resorcinols
were identified by high throughput screening as a new class
of HSP90 inhibitors (131-133). The novel synthetic 3,4-

diaryl pyrazole resorcinol inhibitor, CCT018159, was identified
and showed potent antitumor activity in vitro (132,134). The
structure-based design of CCT018159 generated a series of
active pyrazole scaffold analogues, that display inhibition of
cell proliferation similar to clinically evaluated 17-AAG. The
crystal structure of the most potent new compound (VER-
49009) bound to the target enzyme was determined and con-
firmed by experiment. VER-49009 binds to the ATP binding
site of HSP90 with an IC50 of 25 nM in a fluorescence
polarization (FP) assay and has anti-proliferative activity
against HCT116 colon cancer cells, with a GI50 of 260 nM
(135).

Subsequent structure-based design generated the signi-
ficantly improved isoxazole resorcinol NVP-AUY922, which
is currently under phase I/II clinical trials in cancer patients
(136). NVP-AUY922 has excellent potency against HSP90
in an FP binding assay (IC50=21 nM), inhibits proliferation
in a wide range of human cancer cell lines with an average
GI50 of 9 nM and shows excellent efficacy in a range of
subcutaneous and orthotopic human tumor xenograft models
covering major cancer types and diverse oncogenic profiles.
In addition, it is retained in HCT116 xenograft tumors at
concentrations well above the GI50, with a half-life of 9.5 h
following i.p. administration at 50 mg/kg qd (136). During
its early clinical phases, it was considered that PET bio-
markers could aid in the optimization of dosing and dose
schedule (137).

SNX-2112. SNX-2112 is a newly developed HSP90 inhibitor
that is unrelated to any previously known scaffold. The
SNX-2112 scaffold was identified by screening the purine-
binding proteome for non-quinone and non-purine-containing
scaffolds that bind selectively to HSP90 and it is pan-
selective for the HSP90 family in that it binds to Hsp90a,
HSP90B, Grp94 and Trap-1. A water-soluble prodrugs of
SNX-2112, SNX-5542, was developed and showed improved
solubility and pharmacologic properties due to the variable
oral bioavailability of SNX-2112 (138). SNX-2112 and its
prodrug SNX-5542 showed similar activity as 17-AAG, such
as the degradation of HER2, mutant epidermal growth factor
receptor and other client proteins; the inhibition of extracellular
signal regulated kinase and Akt activation, and the induction
of an Rb-dependent G1 arrest with subsequent apoptosis
(138). Further study exhibited that SNX-2112 is highly potent
against hematologic tumor cells via abrogating signaling
which is dependent on Akt and Erk and induces tumor growth
inhibition and prolongs survival in a murine xenograft model
of human multiple myeloma (139,140). SNX-2112 is now in
multiple phase I clinical trials.

STA9090. STA9090 developed by Synta Pharmaceuticals
Corp. is a novel resorcinol containing a triazole compound
unrelated to geldanamycin and acts as a potent HSP90
inhibitor (141). STA-9090 causes the degradation of multiple
HSP90 client proteins, the killing of a wide variety of human
cancer cell lines at low nano molar concentrations in vitro,
and has shown potent anticancer activity in human xenograft
tumor models (142). STA9090 is currently undergoing phase I
or phase I/II trials (http://www.gistsupport.org/treatments/
emerging-treatments/HSP90-inhibitors/sta-9090.php).
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4. Conclusions

The HSP90 molecular chaperone family is highly conserved
and expressed in various organisms ranging from prokaryotes
to eukaryotes. HSP90 proteins play essential housekeeping
functions and play an important role in the progression of
malignant disease. HSP90 proteins are ATP-dependent
chaperones and the binding and hydrolysis of ATP is coupled
to conformation changes of HSP90, which facilitates client
protein folding and maturation. Many natural and synthetic
molecular compounds have been proposed as promising cancer
therapies via disrupting the formation of complex ATP-
HSP90-client proteins.
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