
Abstract. Previous studies have demonstrated the tremendous
tropism of mesenchymal stem cells (MSCs) for malignant
gliomas, making these cells a potential vehicle for delivery of
therapeutic genes to disseminated glioma cells. However, the
mechanisms underlying the tropism of MSCs for gliomas
remain poorly defined. It has been suggested that malignant
gliomas secrete a variety of chemokines, including macrophage
chemoattractant protein-1 (MCP-1) and stromal cell-derived
factor-1· (SDF-1·). We isolated and cultured MSCs from
rat bone marrow and found that these cells express CCR2
and CXCR4, the respective receptors for MCP-1 and SDF-1·.
In vitro analysis revealed that MCP-1 and SDF-1· induce the
migration of MSCs. Futhermore, neutralization data suggest
that MCP-1 and SDF-1· play a role in the mediation of MSC
migration toward gliomas. These results highlight the potential
of these cells as a tumor targeting strategy for glioma gene
therapy.

Introduction

Malignant gliomas are the most prevalent type of primary
brain tumor. Despite extensive surgical excision and adjuvant
radio- and chemotherapy, the prognoses of patients with
malignant gliomas, such as glioblastoma multiforme (GBM)
or anaplastic astrocytoma, remain extremely poor (1-3). The
median survival is 1 year or less for patients diagnosed with

GBM and ~3 years for those diagnosed with anaplastic
astrocytoma (4). This treatment resistance arises, in part,
from tumor infiltration of and invasion into the surrounding
brain architecture. Surgical tumor resection is almost always
followed by regrowth of tumor cells residing in adjacent
regions of normal brain tissue because it is impossible to
eliminate successfully all tumor cells using current tech-
nologies (5-7). Single tumor cells deeply infiltrate the
surrounding tissue, and are thought to be responsible for
tumor relapse. New therapies should target these single tumor
cells, especially those that have escaped the main tumor mass
(8-10).

Neural stem cells (NSCs) possess extensive tropism for
experimental gliomas when administered intracranially
(11,12). This characteristic of NSCs has been exploited as a
tumor targeting strategy for glioma gene therapy (11-20).
Unfortunately, the acquisition of sufficient therapeutic NSCs
is challenging technically, and their practical application is
problematic due to ethical concerns and immunological
rejection. Previously, it has been suggested that mesenchymal
stem cells (MSCs) may represent an alternative source of
therapeutic stem cells (21,22). In experimental brain glioma
models, intracranially implanted or intravenously injected
MSCs can migrate away from the injection site toward tumor
beds (23-27). Additionally, gene modification of MSCs with
therapeutic cytokines clearly prolongs the survival of tumor-
bearing animals (23,25,28,29).

A better understanding of the molecular events that govern
MSC homing is necessary for the development of a clinically-
applicable tumor targeting strategy for glioma gene therapy.
Certain chemokines and growth factors, such as vascular
endothelial cell growth factor (VEGF), interleukin-8 (IL-8),
transforming growth factor-ß (TGF-ß), and neurotrophin-3
(NT-3), released from glioma cells have been reported to
mediate the tropism of MSCs for gliomas (30-32). In addition
to IL-8, several other chemokines are secreted by glioma
cells, including macrophage chemoattractant protein-1
(MCP-1) (33,34) and stromal cell-derived factor-1· (SDF-1·)
(35-37). Therefore, in this study we analyzed the chemotactic
effect of MCP-1 and SDF-1· on MSCs. In addition, we
investigated the role of these chemokines in mediating the
migration of MSCs toward gliomas.
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Materials and methods

MSC preparation. According to institutional guidelines and
an approved protocol, bone marrow aspirates from Fischer
344 rats (9 weeks old, male) were plated and cultured in
Dulbecco's minimal essential medium (DMEM; Gibco/BRL,
Rockville, MD, USA) supplemented with 10% fetal bovine
serum (FBS; Gibco/BRL), 100 U/ml penicillin, 100 μg/ml
streptomycin, and 2 mM L-glutamine (Gibco/BRL) as
described previously (25). Rat MSCs (rMSCs) were adherent,
elongated, and spindle-shaped in the primary culture after
24 h of plating. After 24 h, non-adherent cells were removed
by changing the medium; thereafter, the medium was changed
twice a week. rMSCs reached 80% confluence after 12-14
days. Cells were harvested by trypsinization and passaged for
expansion purposes. rMSCs were used at passage 2 in all
experiments (flow cytometry analysis, RT-PCR, and migration
assays). 

Glioma cell conditioned medium. Rat glioma C6 cells
(American Type Culture Collection, Rockville, MD) were
cultured in 45% DMEM, 45% Ham's F-12 medium, and 10%
FBS with an antibiotic supplement in 75 cm2 culture flasks.
Confluent cultures were washed with medium without the
addition of FBS and incubated with serum-free medium for 4
days. After conditioning, the medium was aspirated from the
cells, centrifuged at 1,000 x g for 5 min, and filtered through
0.22 μm-diameter pore Millipore filters. Aliquots of the
conditioned medium (CM) were stored frozen until required.

Flow cytometry analysis. rMSCs were treated with 0.25%
trypsin-EDTA, harvested, and washed twice with DMEM.
Before staining, cells were allowed 2 h in suspension to
recover expression of surface markers. Cell staining was
performed using primary antibodies followed by fluorescein
isothiocyanate (FITC)-conjugated rabbit anti-goat IgG or
FITC-conjugated goat anti-mouse secondary antibodies
(Sigma). The following primary antibodies were used in this
study: goat polyclonal CCR2 and CXCR4 (Santa Cruz
Biotechnology, CA, USA), mouse anti-rat CD11b (Serotec,
Oxford, UK), mouse anti-rat CD45, CD44, and CD73 and
isotype-specific mouse IgG (Pharmingen, San Diego, CA).

Stained cells were analyzed using a FACScan flow cytometer
(Becton-Dickinson, Mountain View, CA).

RT-PCR. Total RNA was extracted from C6 glioma cells and
rMSCs using TRIzol (Invitrogen, Carlsbad, CA) according to
the manufacturer's instructions. The RNAs were reverse
transcribed using the SuperScript III First-Strand synthesis
system (Invitrogen) with oligo(dT) as primers. PCR reactions
were performed in a DNA Thermal Cycler 480 (PerkinElmer
Life Sciences, Boston, MA) and the amplifications were
carried out in a volume of 12.5 μl containing 1 μg cDNA,
10 mM Tris-HCl, 50 mM KCl, 0.2 mM of each dNTP, 1.5 mM
MgCl2, 10 pmol of each primer, and 0.1 U Taq polymerase,
for 5 min at 94˚C for initial denaturing, followed by 32 cycles
of 94˚C for 30 sec, 60˚C for 30 sec and 72˚C for 30 sec, and
a final incubation at 72˚C for 7 min. PCR products were
sized fractioned by electrophoreis on 2% agarose gels and
visualized with ethidium bromide. The specific primers used
are shown in Table I.

Migration assays. rMSC migration was performed in
Transwell dishes (Costar) 6.5-mm in diameter, with 8-μm pore
filters. rMSCs (4x105/ml) in 200 μl of serum-free DMEM were
added to the upper chamber and 600 μl of tested samples
containing chemokines, glioma cell CM, or CM supplemented
with specific neutralized antibodies were placed in the lower
chambers. Recombinant rat MCP-1 (rrMCP-1; Perprotech,
NJ, USA) and recombinant human SDF-1· (rhSDF-1·; R&D
Systems, Wiesbaden, Germany) were diluted in serum-free
DMEM to different concentrations ranging from 4 ng/ml to
500 ng/ml. Medium incubated in the absence of cells served
as a negative control. After overnight incubation in 5% CO2

at 37˚C, cells remaining on the upper face of the filters were
removed with a cotton wool swab. Chambers were fixed for
20 min at room temperature with 4% formaldehyde in PBS,
stained in 0.5% cresyl violet for 20 min, and rinsed in water.
Cells that had migrated through the pores and adhered to the
lower surface of the membrane were analyzed under high-
power (x400) light microscopy and counted in five random
high-power fields. For neutralization studies, glioma cell
CM was incubated with rabbit anti-rat MCP-1 antibody
(Cedarlane Laboratories Ltd., Ontario, Canada) or rMSCs
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Table I. Gene specific primers for PCR.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene GenBank accession no. Oligonucleotide (5'➝3') Size (bp)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
MCP-1 NM_031530.1 Forward: TGTCACGCTTCTGGGCCTGTTG 407

Reverse: CAGAAGTGCTTGAGGTGGTTGTGGAA

SDF-1· AF189724.1 Forward: CTGTGCTGGCCCTGGTGCTG 203
Reverse: CGGGTCAATGCACACTTGTCTGTTGT

CCR2 NM_021866.1 Forward: TGATCCTGCCCCTACTTGTCATGG 403
Reverse: GAGCTCACTCGGTCTGCTGTCTCC

CXCR4 NM_022205.3 Forward: AGCCAGGGGGACGGCAGGTA 413
Reverse: TGCTGCGCGGAGCTCTTGAA

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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were incubated with anti-CXCR4 polyclonal antibody (MBL,
Nagoya, Japan).

Statistical methods. Each experiment was performed a
minimum of 3 times. For migration assays, data are expressed
as the mean number of cells per high-power field (cells/HPF)
± standard error (SE). Statistical analysis was performed
using Student's t-tests. Statistical significance was set at
p<0.05.

Results

Before performing specific studies, we verified that the
cultured cells were negative for CD11b and CD45 surface
markers and positive for CD44 and CD73 surface markers
(Fig. 1). We also confirmed that the cultured cells demon-
strated multipotentiality by giving rise to osteoblasts and
adipocytes when exposed to adequate differentiating conditions
(data not shown).

C6 glioma cells produce MCP-1 and SDF-1·. It has been
shown that MCP-1 and SDF-1· are produced by glioma cells
in vitro and in vivo (33-37). We hypothesized that these
chemokines released by glioma cells may be potential
mediators of MSC migration. To test this hypothesis, we
examined their expression in C6 glioma cells. Using RT-PCR,
we observed that C6 glioma cells express the transcripts for
MCP-1 and SDF-1· (Fig. 2A).

MSCs express the chemokine receptors CCR2 and CXCR4.
To study the role of chemokine receptors in cell migration

toward gliomas, we then examined the expression of CCR2 and
CXCR4 (the receptors for MCP-1 and SDF-1·, respectively) in
rMSCs. Considering of non-migratory properties of fibroblasts
toward glioma cells in vitro (27), we used fibroblasts as
control cells in RT-PCR assays. It showed that CCR2 and
CXCR4 mRNA were expressed in rMSCs, but not in fibro-
blasts (Fig. 2B).

To confirm RT-PCR data, we further examined protein
expression of CCR2 and CXCR4 in rMSCs by flurescence-
activated cell sorter (FACS) analysis. It demonstrated that a
small percentage of rMSCs (14.85%) react with the anti-
CXCR4 antibody and a high percentage of rMSCs (32.15%)
react with the anti-CCR2 antibody (Fig. 3).

MSCs migrate in response to MCP-1 and SDF-1·. In light of
the observation that rMSCs express CCR2 and CXCR4, an
in vitro chemotaxis assay was performed using rrMCP-1 and
rhSDF-1·. We found a significant increase in rMSCs migration
with rrMCP-1 at concentrations of 4 and 20 ng/ml (p<0.01)
(Fig. 4A). Interestingly, higher concentrations of rrMCP-1
(100 and 500 ng/ml) did not result in significant rMSCs
migration. However, rhSDF-1· induced migration of rMSCs
in a dose-dependent manner; the maximum migration of
rMSCs was observed at 100 ng/ml of rhSDF-1· (Fig. 4B).
Pretreatment of rMSCs with a blocking anti-MCP-1 antibody
(10 μg/ml) or with anti-CXCR4 antibody (10 μg/ml) abrogated
cell migration in response to rrMCP-1 and rhSDF-1·,
respectively, confirming the specificity of the migration (data
not shown).

MCP-1 and SDF-1· play a role in mediating MSC migration
toward gliomas. To determine whether glioma-secreted
chemokines contribute to MSCs chemotaxis, we incubated
C6 glioma cell CM with anti-MCP-1 antibody (10 μg/ml), or/
and incubated rMSCs with anti-CXCR4 antibody (10 μg/ml).
Whereas C6 glioma cell CM resulted in a significant increase
in rMSC migration, addition of the anti-MCP-1 neutralizing
antibody significantly attenuated the migration of rMSCs
(Fig. 5). Similarly, following incubation with an anti-CXCR4
blocking antibody, a significant decrease was found in rMSC
migration toward C6 glioma cell CM. Importantly, this
inhibition was even more pronounced when both antibodies
were added. These results suggest that MCP-1 and SDF-1·
are important for the mediation of MSC migration toward
gliomas.
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Figure 1. Graphs summarize FACS analysis of rMSC expression of cell
surface markers. (A) rMSCs (0.24%) reacted with the anti-CD11b antibody;
(B) 0.61% of rMSCs reacted with the anti-CD45 antibody; (C) 67.27% of
rMSCs reacted with the anti-CD44 antibody; (D) 89.66% of rMSCs reacted
with the anti-CD73 antibody.

Figure 2. RT-PCR analysis of MCP-1, SDF-1·, CCR2, and CXCR4 mRNA
levels. (A) MCP-1 and SDF-1· mRNA were expressed in rat C6 glioma
cells. (B) CCR2 and CXCR4 mRNA were expressed in rMSCs, but not
in fibroblasts (non-migratory cells as control). Lane 1: fibroblasts; lane 2:
rMSCs.
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Discussion

The robust tropism of stem cells for intracranial gliomas
makes them highly attractive as vehicles for the delivery of a
wide variety of therapeutic gene products directly to tumor
cells. Understanding the mechanisms underlying the migration
of stem cells toward malignant gliomas is crucial to the success
of clinical implementation of a tumor-targeting strategy

involving MSCs. Herein, we demonstrate that specific chemo-
kines such as MCP-1 and SDF-1· mediate the migration of
MSCs toward gliomas in vitro.

MCP-1, a member of the CC chemokine family with
chemoattractant activity for major inflammatory cells, is
produced by malignant gliomas in vitro as well as in vivo
(33,34). MCP-1 expression is associated with a higher
astrocytoma tumor grade (34,38). Moreover, MCP-1 can play
a role in macrophage recruitment into gliomas in vivo
(38,39). Previously it has been suggested that MCP-1 might
be responsible for MSC migration toward ischemic cerebral
tissue (40). In our study, we demonstrate MCP-1 receptor
CCR2 expression in rMSCs, and the chemotaxis of rMSCs in
response to MCP-1. Furthermore, addition of the anti-MCP-1
neutralizing antibody significantly attenuated the migration
of MSCs toward gliomas. Therefore, MCP-1 might play an
important role in MSC migration toward gliomas. This is
consistent with a recent study demonstrating that MCP-1
secreted by primary breast tumors stimulates migration of
MSCs (41). Interestingly, MCP-1 was found to be upregulated
in rat MSCs exposed to tumor environment (42). However,
there are conflicting reports showing that human MSCs do
not migrate in response to MCP-1 (43). These contradictory
findings may be explained by varying culture homogeneity.

The CXC chemokine SDF-1·, which binds to its receptor
CXCR4, plays an important and unique role in regulation of
stem/progenitor cell trafficking (44). Previous studies have
demonstrated that high-grade gliomas secrete significant
levels of SDF-1·, and that the expression of this protein and
the CXCR4 receptor correlates with the histological grade
and invasive capacity of these tumors, as well as tumor
cell survival (35-37). SDF-1· expression by tumor-derived
endothelium serves to attract the migration of NSCs (45,46).
Ehtesam et al (47) demonstrated that SDF-1·/CXCR4
interactions play a functional role in gliomatropic migration
of NSCs. Tabatabai et al (48) also documented that SDF-
1·/CXCR4 interactions appear to be essential for the
gliomatropism of circulating adult haematopoietic progenitor
cells. Similarly, we found that SDF-1· induces the migration of
CXCR4-expressing MSCs in vitro. Moreover, neutralization
data suggest that SDF-1· might be involved in the migration
of MSCs toward gliomas.

In conclusion, we demonstrated that MSCs express the
chemokine receptors CCR2 and CXCR4, and consistent with
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Figure 4. Graphs summarize chemokine-mediated migration of MSCs in vitro.
(A) Effect of rrMCP-1 on MSC migration. A significant increase in the
number of migrated MSCs was found at rrMCP-1 concentrations of 4 and
20 ng/ml (*p<0.01), when compared with control. (B) Effect of rhSDF-1· on
MSC migration. The number of migrated MSCs increased dose-dependently
at rhSDF-1· concentrations of 4-500 ng/ml (*p<0.01), when compared with
control. The maximum effect of rhSDF-1· was observed at a concentration
of 100 ng/ml.

Figure 3. Graphs summarize FACS analysis of rMSC expression of CCR2 and CXCR4. (A) rMSCs (1.05%) reacted with the isotype-specific Ig and FITC-
labeled secondary antibody; (B) 32.15% of rMSCs reacted with the anti-CCR2 antibody; (C) 14.85% of rMSCs reacted with the anti-CXCR4 antibody.
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this they migrate in response to the chemokines MCP-1 and
SDF-1·. Moreover, we have shown that MCP-1 and SDF-1·
mediate the migration of MSCs toward gliomas. However,

the in vitro migration assay employed in this study may not
directly mimic the in vivo conditions necessary for migration
of MSCs from the vasculature to the tumor. Further elucidation
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Figure 5. Panel A, photographs of cresyl violet-stained membranes. (a) MSC migration toward normal unconditioned medium. (b) MSC migration toward
glioma cell CM. (c) MSC migration toward glioma cell CM after addition of anti-CXCR4 blocking antibody. (d) MSCs migration toward glioma cell CM
after addition of anti-MCP-1 neutralizing antibody. (e) MSCs migration toward glioma cell CM after combination of antibodies. Panel B, graph summarizes
migration of MSCs toward gliomas after neutralization. Results indicated that C6 glioma cell CM significantly induced the migration of MSCs compared with
normal unconditioned medium. Glioma cell CM was incubated with 10 μg/ml anti-MCP-1, rMSCs were preincubated with 10 μg/ml anti-CXCR4, or both
conditions were observed. (*p<0.01).
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of the mechanisms underlying the migration of MSCs toward
gliomas may provide insights into methods for increasing the
effectiveness of cell engraftment.
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