Figure S1. Full-length of western blot images for Fig. 1A. For all experiments, the same membrane was re-probed with p-Smad2, t-Smad2, p-Smad3, t-Smad3, Smad4, p-ERK1/2, t-ERK/1/2, p-p38, t-p38 and GAPDH antibodies. (A-J) Full-length western blot analysis images [(A) p-Smad2, (B) t-Smad2 (C) p-Smad3, (D) t-Smad3, (E) Smad4, (F) p-ERK1/2, (G) t-ERK/1/2, (H) p-p38, (I) t-p38 and (J) GAPDH] were showing. p-, phosphorylated; t-, total; ERK, extracellular signal-regulated kinase; p38, p38 mitogen-activated protein kinase.


Figure S 2 . Effect of galunisertib on TGF- $\beta$ signaling in HepG2 cells. (A) Levels of p -Smad2 protein were evaluated by western blot analysis ( $\mathrm{n}=4$ ). Galunisertib treatment dose-dependently decreased p -Smad2 expression levels in HepG2 cells. (B-D) Complete western blot images for part A. TGF- $\beta$, transforming growth factor- $\beta$; p-, phosphorylated.


C


Figure S3. Liver images for all groups. Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Intact, no $\mathrm{CCl}_{4}$ or galunisertib treatment; Vehicle, $\mathrm{CCl}_{4}$-treated with no galunisertib treatment; Gal 50, livers from mice treated with low-dose galunisertib; Gal 150 , treatment with middle-dose galunisertib; Gal 300, treatment with high-dose galunisertib.


Figure S4. Expression levels of genes associated with fibrosis in livers from mice treated with $\mathrm{CCl}_{4}$ for 8 weeks. (A-C) Reverse transcription-quantitative PCR analysis of (A) Collal, (B) Fnl and (C) Acta2 mRNA expression demonstrated increases after 8 weeks of $\mathrm{CCl}_{4}$ treatment compared with those in the untreated liver group. The mRNA expression levels were similar to those for vehicle-treated mice at all galunisertib dosages. ${ }^{*} \mathrm{P}<0.05$. Error bars represent the means $\pm \mathrm{SEM}$. Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Intact, no $\mathrm{CCl}_{4}$ or galunisertib treatment; Vehicle, $\mathrm{CCl}_{4}$-treated with no galunisertib treatment; Gal 50, livers from mice treated with low-dose galunisertib; Gal 150, treatment with middle-dose galunisertib; Gal 300, treatment with high-dose galunisertib; n.s., not significant.


Figure S5. Full-length of western blot analysis and gelatin zymography images for MMP protein expression. For the western blot analysis, the same membrane was re-probed with (A) MMP-1, (B) MMP-13 and (C) GAPDH antibodies. (D) Full-length of gelatin zymography image is shown. MMP, matrix metalloproteinase; Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Intact, no $\mathrm{CCl}_{4}$ or galunisertib treatment; Vehicle, $\mathrm{CCl}_{4}$-treated with no galunisertib treatment; Gal 50 , livers from mice treated with low-dose galunisertib; Gal 150, treatment with middle-dose galunisertib; Gal 300, treatment with high-dose galunisertib.


Figure S6. Semi-quantitative analysis of MMP-1 and MMP-13 protein expression and RT-qPCR analysis of Timpl gene expression. (A and B) MMP-1 and MMP-13 expression levels in the livers from galunisertib-treated mice were similar to that observed in the vehicle-treated mice using semi-quantitative western blot analysis, in which two membranes were assessed (n=4/group). The samples were derived from the same experiment and the gels/blots were processed in parallel. (C) RT-qPCR analysis indicated that the Timpl gene expression level in the livers from galunisertib-treated mice was not significantly upregulated compared with the vehicle-treated mice. ${ }^{*} \mathrm{P}<0.05$. Error bars represent the means $\pm \mathrm{SEM}$. MMP, matrix metalloproteinase; Timpl, TIMP metalloproteinase inhibitor 1; RT-qPCR, reverse transcription-quantitative PCR; Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Intact, no $\mathrm{CCl}_{4}$ or galunisertib treatment; Vehicle, $\mathrm{CCl}_{4}$-treated with no galunisertib treatment; Gal 50 , livers from mice treated with low-dose galunisertib; Gal 150, treatment with middle-dose galunisertib; Gal 300, treatment with high-dose galunisertib; n.s., not significant.


Figure S7. Full-length of western blot images for PNCA protein expression. In all experiments, the same membrane was re-probed with (A) PCNA and (B) GAPDH antibodies. PCNA, proliferating cell nuclear antigen; Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Intact, no $\mathrm{CCl}_{4}$ or galunisertib treatment; Vehicle, $\mathrm{CCl}_{4}$-treated with no galunisertib treatment; Gal 50 , livers from mice treated with low-dose galunisertib; Gal 150, treatment with middle-dose galunisertib; Gal 300, treatment with high-dose galunisertib.


Figure S8. Immunohistochemical detection of cleaved caspase-3 in apoptotic hepatocytes in mouse liver. (A) The number of hepatocytes that were positive for cleaved caspase-3-positive (arrowhead) in tissue from galunisertib-treated mice was similar to that for vehicle-treated mice. Scale bar=200 $\mu \mathrm{m}$. (B) For semi-quantitative analyses, hepatocytes that were positive for cleaved caspase- 3 were counted using image analysis software. No significant difference was identified in the number of cleaved caspase-3-positive hepatocytes from galunisertib-treated mice compared with that of the vehicle-treated mice. ${ }^{*} \mathrm{P}<0.05$. Error bars represent the means $\pm \mathrm{SEM}$. Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Vehicle, $\mathrm{CCl}_{4}$-treated without galunisertib treatment; Gal 50, low-dose galunisertib treatment; Gal 150, middle-dose galunisertib treatment; Gal 300, high-dose galunisertib treatment; n.s., not significant.


Figure S9. RT-qPCR analysis for verification of RT $^{2}$ profiler PCR array. RT-qPCR analysis revealed that mRNA expression levels of (A) $F g f 7$, (B) $E g f$ and (C) $H g f$ in liver tissue from mice treated with high-dose galunisertib were similar to those from the vehicle-treated group. ${ }^{*} \mathrm{P}<0.05$. Error bars represent the means $\pm$ SEM. RT-qPCR, reverse transcription-quantitative PCR; Fgf7, fibroblast growth factor-7; Egf, epithelial growth factor; $H g f$, hepatocyte growth factor; n.s., not significant; Gal, galunisertib; $\mathrm{CCl}_{4}$, carbon tetrachloride; Vehicle, $\mathrm{CCl}_{4}$-treated without galunisertib treatment; Gal 50 , low-dose galunisertib treatment; Gal 150, middle-dose galunisertib treatment; Gal 300, high-dose galunisertib treatment.




Table SI. Primers used for reverse transcription-quantitative PCR.

| Target gene | Assay ID | Species |
| :--- | :--- | :--- |
| TaqMan COL1a1 | Hs00164004_m1 | Human |
| TaqMan MMP1 | Hs00899658_m1 | Human |
| TaqMan GAPDH | Hs02758991_g1 | Human |
| TaqMan Acta2 | Mm00725412_s1 | Mouse |
| TaqMan Collal | Mm00801666_g1 | Mouse |
| TaqMan Egf | Mm00438696_m1 | Mouse |
| TaqMan Ereg | Mm00514794_m1 | Mouse |
| TaqMan Fgf7 | Mm00433291_m1 | Mouse |
| TaqMan Fn1 | Mm01256744_m1 | Mouse |
| TaqMan Hgf | Mm01135193_m1 | Mouse |
| TaqMan Igf1 | Mm00439560_m1 | Mouse |
| TaqMan Il6 | Mm00446190_m1 | Mouse |
| TaqMan Mmpla | Mm00473485_m1 | Mouse |
| TaqMan Mmplb | Mm00473493_g1 | Mouse |
| TaqMan Mmp2 | Mm00439498_m1 | Mouse |
| TaqMan Mmp9 | Mm00442991_m1 | Mouse |
| TaqMan Mmp13 | Mm00439491_m1 | Mouse |
| TaqMan Tgfa | Mm00446232_m1 | Mouse |
| TaqMan Timp1 | Mm01341361_m1 | Mouse |
| TaqMan Gapdh | Mm99999915_g1 | Mouse |

Table SII. Expression changes of upregulated growth factors in a liver sample from the high-dose galunisertib-treated group compared with liver tissue from the vehicle-treated group ( $n=1$ ), as measured by the $\mathrm{RT}^{2}$ Profiler PCR Array analysis.

| Reference number | Gene name | Fold change |
| :---: | :---: | :---: |
| NM_008742 | Neurotrophin 3 | 315.4715 |
| NM_010275 | Glial cell line derived neurotrophic factor | 12.3961 |
| NM_010556 | Interleukin 3 | 10.1239 |
| NM_008004 | Fibroblast growth factor 17 | 10.0161 |
| NM_007558 | Bone morphogenetic protein 8a | 9.1085 |
| NM_008109 | Growth differentiation factor 5 | 9.0554 |
| NM_007445 | Anti-Mullerian hormone | 6.1883 |
| NM_009971 | Colony stimulating factor 3 (granulocyte) | 4.9012 |
| NM_008002 | Fibroblast growth factor 10 | 4.3734 |
| NM_001314054 | Interleukin 6 | 3.5619 |
| NM_007950 | Epiregulin | 3.141 |
| NM_008381 | Inhibin beta-B | 2.8123 |
| NM_010834 | Myostatin | 2.2234 |
| NM_008493 | Leptin | 2.1067 |
| NM_008350 | Interleukin 11 | 2.0795 |
| NM_021704 | Chemokine (C-X-C motif) ligand 12 | 1.9672 |
| NM_008005 | Fibroblast growth factor 18 | 1.8276 |
| NM_008008 | Fibroblast growth factor 7 | 1.7178 |
| NM_013518 | Fibroblast growth factor 9 | 1.6473 |
| NM_008501 | Leukemia inhibitory factor | 1.5602 |
| NM_008351 | Interleukin 12A | 1.5 |
| NM_011313 | S100 calcium binding protein A6 (calcyclin) | 1.4769 |
| NM_013611 | Nodal | 1.4502 |
| NM_010197 | Fibroblast growth factor 1 | 1.4227 |
| NM_008380 | Inhibin beta-A | 1.4099 |
| NM_023304 | Fibroblast growth factor 22 | 1.409 |
| NM_198190 | Neurotrophin 5 | 1.3165 |
| NM_010554 | Interleukin 1 alpha | 1.2833 |
| NM_008808 | Platelet derived growth factor alpha | 1.28 |
| NM_008003 | Fibroblast growth factor 15 | 1.2641 |
| NM_021283 | Interleukin 4 | 1.2424 |
| NM_010113 | Epidermal growth factor | 1.2218 |
| NM_007557 | Bone morphogenetic protein 7 | 1.2192 |
| NM_009969 | Colony stimulating factor 2 (granulocyte-macrophage) | 1.1791 |
| NM_009756 | Bone morphogenetic protein 10 | 1.1775 |
| NM_009263 | Secreted phosphoprotein 1 | 1.1749 |
| NM_010784 | Midkine | 1.15 |
| NM_007553 | Bone morphogenetic protein 2 | 1.1405 |
| NM_009368 | Transforming growth factor, beta 3 | 1.1373 |
| NM_010427 | Hepatocyte growth factor | 1.1368 |
| NM_011577 | Transforming growth factor, beta 1 | 1.1349 |
| NM_010200 | Fibroblast growth factor 13 | 1.1323 |
| NM_013598 | Kit ligand | 1.1262 |
| NM_008827 | Placental growth factor | 1.1038 |
| NM_010203 | Fibroblast growth factor 5 | 1.0682 |
| NM_008361 | Fibroblast growth factor 2 | 1.0433 |
| NM_008361 | Interleukin 1 beta | 1.0368 |
| NM_010094 | Left right determination factor 1 | 1.0131 |
| NM_010216 | C-fos induced growth factor | 1.0047 |

