Data S1. Supplementary Materials and methods

Confirmation of transgenic mouse model. DNA was extracted from ear tissue (~10 mg for each mouse). The ear tissue was cut and shredded, and then 100 μ l EDTA-NaOH solution was added. After boiling in a 95°C water bath for 1 h, 100 μ l of Tris HCl solution was added. After swirling, the required DNA was obtained by centrifugation (17,000 g for 10 min at 4°C). Using DNA polymerase and the PCR Kit (Beyotime, D7237), the plate DNA from each mouse was amplificated using primer (forward, 5'-GTTTTGAATCTTGCCTTGTTT C-3' and reverse, 5'-TATGTCATCAACTTTTCAGGTTAC-3') to obtain a 335-bp DNA fragment. Thermal cycle conditions: STEP1 (initial denaturation): 94°C for 3 min, STEP2 (denaturation): 94°C for 30 s, STEP3 (annealing): 55°C for 30 s, STEP4 (extension): 72°C for 2 min, STEP5 (Cycle): Go to STEP2 for 30 cycles, STEP6 (final extension): 72°C for 10 min. Following amplification, DNA electrophoresis was performed on 1.5% agarose gel, and bands were visualized with ethidium bromide (Beyotime, D0139).

Phosphoproteome analysis. The proteomic data were analyzed by MaxQuant (Version 1.6.6.0). Proteins were identified by searching MS and MS/MS data of peptides against a decoy version of Mus musculus-reviewed Uniprot (June 2018, uniprot.org/help/downloads) with the criteria of false discovery rate <0.01. At least two unique and razor peptides were required for the quantification. Digestion mode was trypsin/P; fixed modifications were phosphorylation (STY), oxidation (M), and Carbamidomethyl (C). First, search peptide tolerance was 4.5 ppm. MSstatsTMT package in the RStudio software, was used for quality inspection and statistical analysis of the phosphorylated proteome.

Figure S1. Sequence in the F2 generation mice. (A) F2 generation mouse DNA samples were amplified using primers [forward, 5'-GTTTGAATCTTGCCTTGTGTTTC-3' and reverse, 5'-TATGTCATCAACTTTCAGGTTAC-3') to obtain a 335 bp DNA fragment. (B) DNA sequencing using 5'-TATGTCATCAACTTTCAGGTTAC-3' primers. (C) Sequence map. Upper panel is the heterozygote, the black arrows show the corresponding sites T/G, T/A heterozygous; lower panel is the homozygote, the red arrows show corresponding sites are all the substitutions of the bases G/G, A/A. WT, wild-type; M, marker.

Figure S2. Original western blots. SO, sham operation; MI, myocardial ischemia; S, stable; SCD, sudden cardiac death; MT, MitoTEMPO; TG, transgenic; ox-CaMKII, oxidized-Ca²⁺/calmodulin-dependent protein kinase.

A, MI-S	
Mouse no.	Time, min
MI-S1	70
MI-S2	70
MI-S3	70
MI-S4	70
MI-S5	70
MI-S6	70
MI-S7	70
MI-S8	70
MI-S8	70
MI-S9	70
MI-S10	70
MI-S11	70
MI-S12	70
MI-S13	70
MI-S14	70
MI-S15	70
MI-S16	70
MI-S17	70
MI-S18	70
MI-S19	70
MI-S20	70
MI-S21	70
MI-S22	70
MI-S23	70
MI-S24	70
MI-825	70

Table SI. Time to MI following coronary ligation in experimental mice.

MI-S26	70	
MI-S27	70	
MI-S28	70	
MI-S29	70	
MI-S30	70	
MI-S31	70	
MI-S32	70	
MI-S33	70	
MI-S34	70	
MI-S35	70	
B, MI-SCD		
Mouse no.	Time, min	
MI-SCD1	7	
MI-SCD2	9	
MI-SCD3	10	
MI-SCD4	13	
MI-SCD5	14	
MI-SCD6	16	
MI-SCD7	16	
MI-SCD8	19	
MI-SCD9	19	
MI-SCD10	20	
MI-SCD11	20	
MI-SCD12	20	
MI-SCD13	22	
MI-SCD14	23	
MI-SCD15	23	
MI-SCD16	24	
MI-SCD17	25	

MI-SCD18	26	
MI-SCD19	28	
MI-SCD21	33	
MI-SCD22	36	
MI-SCD23	40	
MI-SCD24	41	
MI-SCD25	44	
MI-SCD26	45	
MI-SCD27	48	
C, MT-MI		
Mouse no.	Time, min	
MT-MI1	18	
MT-MI2	25	
MT-MI3	25	
MT-MI4	27	
MT-MI5	37	
MT-MI6	37	
MT-MI7	70	
MT-MI8	70	
MT-MI9	70	
MT-MI10	70	
MT-MI11	70	
MT-MI12	70	
MT-MI13	70	
MT-MI14	70	
MT-MI15	70	
MT-MI16	70	
MT-MI17	70	
MT-MI18	70	

MT-MI19	70	
MT-MI20	70	
MT-MI21	70	
MT-MI22	70	
MT-MI23	70	
MT-MI24	70	
MT-MI25	70	
MT-MI26	70	
D, TG-MI		
Mouse no.	Time, min	
TG-MI1	17	
TG-MI2	17	
TG-MI3	21	
TG-MI4	22	
TG-MI5	25	
TG-MI6	30	
TG-MI7	53	
TG-MI8	70	
TG-MI9	70	
TG-MI10	70	
TG-MI11	70	
TG-MI12	70	
TG-MI13	70	
TG-MI14	70	
TG-MI15	70	
TG-MI16	70	
TG-MI17	70	
TG-MI18	70	
TG-MI19	70	

TG-MI20	70
TG-MI21	70
TG-MI22	70
TG-MI23	70
TG-MI24	70
TG-MI25	70
TG-MI26	70
TG-MI27	70
TG-MI28	70
TG-MI29	70
TG-MI30	70
TG-MI31	70
TG-MI32	70

MI, myocardial ischemia; S, stable; SCD, sudden cardiac death; MT, MitoTEMPO; TG, Transgenic..

Table SII. Ratio of oxidized to total Ca²⁺/calmodulin-dependent protein kinases (CaMKII, normalized to sham operation group, SO).

MI-S	MI-SCD	MT-MI	TG-MI
1.447	3.252	1.545	0.917
1.433	1.476	1.714	1.197
1.081	1.657	0.761	0.738
0.625	3.299	0.473	1.244
1.246	2.256	1.226	1.024

MI, myocardial ischemia; S, stable; SCD, sudden cardiac death; MT, MitoTEMPO; TG, transgenic. Each

row represents one sample.

 Table SIII. Ratio of phosphorylated to total ryanodine receptor 2 -S2814 (normalized to sham operation

group, SO).

MI-S	MI-SCD	MT-MI	TG-MI
1.637	1.898	2.005	0.433
1.745	2.189	0.543	0.407
0.819	2.240	0.533	0.334
0.654	2.222	1.368	0.304
1.402	1.245	1.514	0.365

MI, myocardial ischemia; S, stable; SCD, sudden cardiac death; MT, MitoTEMPO; TG, transgenic. Each row represents data from one sample.