1. Role of microRNAs in inflammatory upper airway diseases
    Valeria Tubita et al, 2021, Allergy CrossRef
  2. miRNA profiles change during grass pollen immunotherapy irrespective of clinical outcome
    Krzysztof Specjalski et al, 2022, Immunotherapy CrossRef
  3. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders
    Sunil Kumar et al, 2019, International Journal of Molecular Sciences CrossRef
  4. MicroRNA-466a-3p attenuates allergic nasal inflammation in mice by targeting GATA3
    Z Chen et al, 2019, Clinical and Experimental Immunology CrossRef
  5. The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets
    Shenghao Cheng et al, 2022, Mediators of Inflammation CrossRef
  6. Emerging role of non-coding RNAs in allergic disorders
    Soudeh Ghafouri-Fard et al, 2020, Biomedicine & Pharmacotherapy CrossRef
  7. microRNA and Allergy
    Ana Rebane, 2015, microRNA: Medical Evidence CrossRef
  8. Long Non Coding RNA FOXD3‑AS1 Alleviates Allergic Rhinitis by Elevating the Th1/Th2 Ratio via the Regulation of Dendritic Cells
    Hao Zhang et al, 2023, Immunological Investigations CrossRef
  9. Intranasal Administration of Lentiviral miR-135a Regulates Mast Cell and Allergen-Induced Inflammation by Targeting GATA-3
    Yu-Qin Deng et al, 2015, PLOS ONE CrossRef
  10. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis
    Honglin Jia et al, 2022, Cellular Signalling CrossRef
  11. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases?
    Krzysztof Specjalski et al, 2019, Archivum Immunologiae et Therapiae Experimentalis CrossRef
  12. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway
    Ge Zheng et al, 2017, International Immunopharmacology CrossRef
  13. Luteolin ameliorates inflammation and Th1/Th2 imbalance via regulating the TLR4/NF-κB pathway in allergic rhinitis rats
    Jinhui Dong et al, 2021, Immunopharmacology and Immunotoxicology CrossRef
  14. Epigenetics and precision medicine in allergic diseases
    Jörg Tost, 2022, Epigenetics in Precision Medicine CrossRef
  15. Epigenetic changes: An emerging potential pharmacological target in allergic rhinitis
    Jingpu Yang et al, 2019, International Immunopharmacology CrossRef
  16. Pulmonary Delivery for miRs: Present and Future Potential
    Archana Shrestha et al, 2023, Processes CrossRef
  17. MiR-135b Alleviates Airway Inflammation in Asthmatic Children and Experimental Mice with Asthma via Regulating CXCL12
    Ying Liu et al, 2022, Immunological Investigations CrossRef
  18. MicroRNA‑let‑7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway
    Lihua Li et al, 2018, Experimental and Therapeutic Medicine CrossRef
  19. Protective effect of miR‐138‐5p inhibition modified human mesenchymal stem cell on ovalbumin‐induced allergic rhinitis and asthma syndrome
    Huaping Tang et al, 2021, Journal of Cellular and Molecular Medicine CrossRef
  20. Retracted: Downregulated microRNA‐135a ameliorates rheumatoid arthritis by inactivation of the phosphatidylinositol 3‐kinase/AKT signaling pathway via phosphatidylinositol 3‐kinase regulatory subunit 2
    Yuan Qu et al, 2019, Journal of Cellular Physiology CrossRef
  21. Chinese Society of Allergy Guidelines for Diagnosis and Treatment of Allergic Rhinitis
    Lei Cheng et al, 2018, Allergy, Asthma & Immunology Research CrossRef
  22. Modulation of Immune Response to Chlamydia muridarum by Host miR-135a
    Jonathon Keck et al, 2021, Frontiers in Cellular and Infection Microbiology CrossRef