1. Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol
    Xiuwen Wang et al, 2019, Brazilian Journal of Microbiology CrossRef
  2. Antischistosomal Properties of Sclareol and Its Heck-Coupled Derivatives: Design, Synthesis, Biological Evaluation, and Untargeted Metabolomics
    Alessandra Crusco et al, 2019, ACS Infectious Diseases CrossRef
  3. Sclareol-loaded hyaluronan-coated PLGA nanoparticles: Physico-chemical properties and in vitro anticancer features
    Donato Cosco et al, 2019, International Journal of Biological Macromolecules CrossRef
  4. Diterpenes and Their Derivatives as Potential Anticancer Agents
    Muhammad Torequl Islam, 2017, Phytotherapy Research CrossRef
  5. Sclareol induces cell cycle arrest and ROS‐mediated apoptosis and ferroptosis in lung adenocarcinoma cells
    Bilal Rah et al, 2024, Journal of Biochemical and Molecular Toxicology CrossRef
  6. The bioactivities of sclareol: A mini review
    Jianbo Zhou et al, 2022, Frontiers in Pharmacology CrossRef
  7. Role of Terpenoids as Anticancer Compounds: An Insight into Prevention and Treatment
    Bhawna Chopra et al, 2022, Key Heterocyclic Cores for Smart Anticancer Drug–Design Part I CrossRef
  8. Biosynthesis and regulation of diterpenoids in medicinal plants
    Junze REN et al, 2022, Chinese Journal of Natural Medicines CrossRef
  9. Sclareol inhibits cell proliferation and sensitizes cells to the antiproliferative effect of bortezomib via upregulating the tumor suppressor caveolin-1 in cervical cancer cells
    Ting Zhang et al, 2017, Molecular Medicine Reports CrossRef
  10. GC-MS/MS method for determination and pharmacokinetics of sclareol in rat plasma after intravenous administration
    Zheng Xiang et al, 2021, Journal of Chromatography B CrossRef
  11. Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx
    Hossein Hadavand Mirzaei et al, 2020, Journal of Receptors and Signal Transduction CrossRef
  12. Cytotoxic Potential of Rare Plant Salvia candidissima subsp. candidissima on Breast Cancer Cells
    Elif Erturk et al, 2023, Brazilian Archives of Biology and Technology CrossRef
  13. Sclareol: Isolation, Structural Modification, Biosynthesis, and Pharmacological Evaluation – A Review
    Salman Jameel et al, 2024, Pharmaceutical Chemistry Journal CrossRef
  14. Sclareol ameliorated ERCC1-mediated cisplatin resistance in A549 human lung adenocarcinoma cells and a murine xenograft tumor model by suppressing AKT-GSK3β-AP1/Snail and JNK-AP1 pathways
    Chun-Hsu Pan et al, 2020, Chemico-Biological Interactions CrossRef
  15. Sclareol attenuates angiotensin II‐induced cardiac remodeling and inflammation via inhibiting MAPK signaling
    Na Yang et al, 2023, Phytotherapy Research CrossRef
  16. Anti-Candida Potential of Sclareol in Inhibiting Growth, Biofilm Formation, and Yeast–Hyphal Transition
    Chaerim Kim et al, 2023, Journal of Fungi CrossRef
  17. Antifungal Activity and Potential Mechanism of N-Butylphthalide Alone and in Combination With Fluconazole Against Candida albicans
    Ying Gong et al, 2019, Frontiers in Microbiology CrossRef
  18. Terpenes of the Genus Salvia: Cytotoxicity and Antitumoral Effects
    Nimsi Campos-Xolalpa et al, 2018, Anticancer Plants: Natural Products and Biotechnological Implements CrossRef
  19. α-Hispanolol Induces Apoptosis and Suppresses Migration and Invasion of Glioblastoma Cells Likely via Downregulation of MMP-2/9 Expression and p38MAPK Attenuation
    Vanesa Sánchez-Martín et al, 2019, Frontiers in Pharmacology CrossRef
  20. Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol
    Xiuwen Wang et al, 2018, Brazilian Journal of Microbiology CrossRef
  21. Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells
    Pavle Stojković et al, 2023, Bioorganic Chemistry CrossRef