1. Stereochemical Structure Activity Relationship Studies (S-SAR) of Tetrahydrolipstatin
    Xiaofan Liu et al, 2018, ACS Medicinal Chemistry Letters CrossRef
  2. Enhancing Apoptosome Assembly via Mito‐Biomimetic Lipid Nanocarrier for Cancer Therapy
    Huijie Han et al, 2023, Advanced Functional Materials CrossRef
  3. Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy
    Diana Cervantes-Madrid et al, 2015, BioMed Research International CrossRef
  4. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy
    Alejandro Schcolnik-Cabrera et al, 2018, Expert Opinion on Investigational Drugs CrossRef
  5. Cancer metabolism
    Tomas Koltai et al, 2020, An Innovative Approach to Understanding and Treating Cancer: Targeting pH CrossRef
  6. Glutor, a Glucose Transporter Inhibitor, Exerts Antineoplastic Action on Tumor Cells of Thymic Origin: Implication of Modulated Metabolism, Survival, Oxidative Stress, Mitochondrial Membrane Potential, pH Homeostasis, and Chemosensitivity
    Mithlesh Kumar Temre et al, 2022, Frontiers in Oncology CrossRef
  7. The combination of orlistat, lonidamine and 6‑diazo‑5‑oxo‑L‑norleucine induces a quiescent energetic phenotype and limits substrate flexibility in colon cancer cells
    Alejandro Schcolnik‑Cabrera et al, 2020, Oncology Letters CrossRef
  8. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis
    Xing Zhang et al, 2018, Journal of Experimental & Clinical Cancer Research CrossRef
  9. Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer
    Hang Yang et al, 2019, Oncotarget CrossRef
  10. Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy
    Alejandro Schcolnik-Cabrera et al, 2021, Scientific Reports CrossRef
  11. Host cell glutamine metabolism as a potential antiviral target
    Sandro Massao Hirabara et al, 2021, Clinical Science CrossRef
  12. Fatty acid synthase inhibitor orlistat impairs cell growth and down-regulates PD-L1 expression of a human T-cell leukemia line
    Giorgia Cioccoloni et al, 2020, Journal of Chemotherapy CrossRef
  13. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics
    Sara N. Garcia et al, 2020, Current Medicinal Chemistry CrossRef
  14. How pH deregulation favors the hallmarks of cancer
    Tomas Koltai et al, 2023, pH Deregulation as the Eleventh Hallmark of Cancer CrossRef
  15. A combination of inhibitors of glycolysis, glutaminolysis and de�novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells
    Alejandro Schcolnik‑Cabrera et al, 2019, Oncology Letters CrossRef
  16. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer
    Diana Cervantes-Madrid et al, 2017, Oncology Letters CrossRef
  17. Hyperosmolarity Triggers the Warburg Effect in Chinese Hamster Ovary Cells and Reveals a Reduced Mitochondria Horsepower
    Jorgelindo da Veiga Moreira et al, 2021, Metabolites CrossRef
  18. BAPST. A Combo of Common Use Drugs as Metabolic Therapy for Cancer: A Theoretical Proposal
    Adriana Romo-Perez et al, 2022, Current Molecular Pharmacology CrossRef
  19. Mitochondria-targeting monofunctional platinum(ii)–lonidamine conjugates for cancer cell de-energization
    Nafees Muhammad et al, 2020, Inorganic Chemistry Frontiers CrossRef
  20. The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment
    Yaxin Huang et al, 2020, Cancers CrossRef
  21. Mechanism of antineoplastic activity of lonidamine
    Kavindra Nath et al, 2016, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer CrossRef
  22. Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications
    Alfonso Duenas-Gonzalez et al, 2022, Current Cancer Drug Targets CrossRef