(-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells

  • Authors:
    • Munawwar Ali Khan
    • Arif Hussain
    • Madhumitha Kedhari Sundaram
    • Usama Alalami
    • Dian Gunasekera
    • Laveena Ramesh
    • Amina Hamza
    • Uzma Quraishi
  • View Affiliations

  • Published online on: February 13, 2015     https://doi.org/10.3892/or.2015.3802
  • Pages: 1976-1984
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

There has been increasing evidence that numerous bioactive dietary agents can hamper the process of carcinogenesis by targeting epigenetic alterations including DNA methylation. This therapeutic approach is considered as a significant goal for cancer therapy due to the reversible nature of epigenetic-mediated gene silencing and warrants further attention. One such dietary agent, green tea catechin, (-)-epigallocatechin-3-gallate (EGCG) has been shown to modulate many cancer-related pathways. Thus, the present study was designed to investigate the role of EGCG as an epigenetic modifier in HeLa cells. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition assays were conducted, and the transcription levels of DNMT3B and HDAC1 were assessed by enzymatic activity assay and RT-PCR, respectively. Furthermore, we studied the binding interaction of EGCG with DNMT3B and HDAC1 by molecular modeling as well as promoter DNA methylation and expression of retinoic acid receptor-β (RARβ), cadherin 1 (CDH1) and death-associated protein kinase-1 (DAPK1) in EGCG-treated HeLa cells by RT-PCR and MS-PCR. In the present study, time-dependent EGCG-treated HeLa cells were found to have a significant reduction in the enzymatic activity of DNMT and HDAC. However, the expression of DNMT3B was significantly decreased in a time-dependent manner whereas there was no significant change in HDAC1 expression. Molecular modeling data also supported the EGCG-mediated DNMT3B and HDAC1 activity inhibition. Furthermore, time-dependent exposure to EGCG resulted in reactivation of known tumor-suppressor genes (TSGs) in HeLa cells due to marked changes in the methylation of the promoter regions of these genes. Overall, the present study suggests that EGCG may have a significant impact on the development of novel epigenetic-based therapy.
View Figures
View References

Related Articles

Journal Cover

April-2015
Volume 33 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Khan MA, Hussain A, Sundaram MK, Alalami U, Gunasekera D, Ramesh L, Hamza A and Quraishi U: (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 33: 1976-1984, 2015
APA
Khan, M.A., Hussain, A., Sundaram, M.K., Alalami, U., Gunasekera, D., Ramesh, L. ... Quraishi, U. (2015). (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncology Reports, 33, 1976-1984. https://doi.org/10.3892/or.2015.3802
MLA
Khan, M. A., Hussain, A., Sundaram, M. K., Alalami, U., Gunasekera, D., Ramesh, L., Hamza, A., Quraishi, U."(-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells". Oncology Reports 33.4 (2015): 1976-1984.
Chicago
Khan, M. A., Hussain, A., Sundaram, M. K., Alalami, U., Gunasekera, D., Ramesh, L., Hamza, A., Quraishi, U."(-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells". Oncology Reports 33, no. 4 (2015): 1976-1984. https://doi.org/10.3892/or.2015.3802