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Abstract. In this review, the advances in the study of breast 
cancer molecular classifications and the molecular signatures 
of the luminal subtypes A and B of breast cancer were summa-
rized. Effective clinical outcomes depend mainly on successful 
preclinical diagnosis and therapeutic decisions. Over the last 
few years, the ever-expanding investigations focusing on breast 
cancer diagnosis and the clinical trials have provided accumu-
lating information on the molecular characteristics of breast 
cancer. Specifically, among the estrogen receptor (ER)-positive 
types of breast cancer, the luminal subtype A breast cancer 
has been shown to exhibit good clinical outcomes with endo-
crine therapy, whereas the luminal subtype B breast cancer 
represents the more complicated type, diagnostically as well 
as therapeutically. Furthermore, even in luminal subtype A 
breast cancer, the resistance to treatment has become the 
major limitation for endocrine-based therapy. Accumulating 
molecular data and further clinical trials may enable more 
accurate diagnostic and therapeutic decisions. The molecular 
signatures have emerged as a powerful tool for future diag-
nosis and therapeutic decisions, although currently available 
data are limited.

Contents

1. Introduction
2. Luminal A subtype breast cancer molecular signatures 
 and therapeutic potentials
3. Luminal B subtype breast cancer molecular signatures 
 and therapeutic potentials
4. Challenges and perspectives

1. Introduction

Breast cancer is one of the major causes of cancer-related 
morbidity and mortality among women worldwide (1). Breast 
cancers originate from the epithelial cells of the normal 
mammary gland. The ducts are lined with luminal epithelial 
cells, which give rise to the majority of breast cancers (2). 
As a heterogeneous disease, breast cancer encompasses a 
wide variety of pathological entities and this heterogeneity 
is reflected by the differences in cell type composition and 
proportions, the differences in the proliferation ability between 
glandular and myoepithelial cells, the proliferation of progen-
itor cells, the therapeutic responses and patient outcomes (3,4). 
Breast cancer patients with the same clinical diagnostic and 
prognostic profiles may exhibit markedly different clinical 
overall outcomes and treatment responses (5), which may 
be due to the current breast cancer taxonomies based on 
the morphological groups, dividing the disease into clinical 
classes (6). Therefore, the clinical behavior of cancer is not 
solely dependent on morphology and a molecular taxonomy 
based on ‘signature’ profiles may facilitate a more accurate 
prediction of response to therapy and prognosis (7).

The current molecular classifications of breast cancer 
molecular subtypes are generally based on the gene expression 
profiles according to i) luminal cell-related markers, such as cyto-
keratins (CKs); ii) hormone receptors, such as estrogen receptor 
(ER), progesterone receptor (PR) and androgen receptor (AR); 
iii) growth factor receptors, such as human epidermal growth 
factor receptor (HER); iv) anti-apoptosis markers, such as Bcl-2 
and p53; v) cell proliferation indicators, such as Ki-67 and 
survivin; vi) cell invasion-related factors, such as matrix metal-
loproteinases (MMPs) and integrins; vii) signal transduction 
pathway members, such as the PI3K̸AKT pathway members 
phosphatidylinositol‑3‑kinase (PI3K) and AKT; viii) cell cycle 
control members, such as cyclins and cyclin-dependent kinases 
(CDKs); ix) epithelial-to-mesenchymal transition-indicating 
factors and regulating factors, such as cadherins and zinc‑finger 
transcription factors Snail, Slug, Zeb1 and Twist; x) meta-
static control factors; and xi) blood vessel-forming control 
factors (8‑10). This spectrum also includes stem cell markers, 
tumor cell and microenvironment interacting factors and other 
small regulatory molecules, such as microRNAs or other 
non‑coding RNAs. The currently established molecular classi-
fication of breast cancers distinguishes breast cancer molecular 
subtypes into five intrinsic subtypes: i) luminal subtype A (ER+ 
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and̸or PR+, HER2- and CK8/18+); ii) luminal subtype B (ER+ 
and̸or PR+, HER2+ and CK8/18+); iii) HER2‑enriched subtype 
(ER- and/or PR- and HER2+); iv) basal-like subtype [ER- and/or 
PR-, HER2-, CK5/6+, CK14+, CK17+ and epithelial growth factor 
receptor (EGFR)+]; and v) normal breast‑like type (ER- and/or 
PR-, HER2-, CK5/6-, CK14-, CK17-, EGFR-) (11‑14) (Table I). 
Another subtype, referred to as the claudin-low subtype, was 
later described (15,16). Furthermore, a subpopulation of the 
luminal A subtype with a Ki‑67 proliferation index of >14% was 
designated as the luminal B subtype (17). As such, the breast 
cancer molecular subtypes were redefined as follows: luminal A 
(ER+ and/or PR+, HER2- and Ki‑67 ≤14%); luminal B (ER+ 
and/or PR+, HER2- and Ki‑67 >14%); luminal B HER2/neu+ 
(ER+ and/or PR+, HER2+ and any Ki‑67); HER2/neu subtype 
(ER- and PR-, HER2/neu+ and any Ki‑67); and triple-negative 
subtype (ER-, PR-, HER2- and any Ki‑67) (18‑20).

The luminal type of breast cancer tends to be morpho-
logically well differentiated and exhibits a relatively good 
prognosis, whereas the ER- tumors are poorly differentiated 
and exhibit a poor prognosis. The designation of the luminal 
type of breast cancer was derived from the finding that this 
type of breast cancer exhibits mRNA and protein expression 
of CKs 8/18 (14), which is typically associated with luminal 
epithelial cells, as opposed to basal cells, which express CKs 5/6. 
The luminal type of breast cancer was further subdivided into 
A and B subtypes, with the luminal B subtype exhibiting 
significant expression differences and worse outcomes (11). 
Thus, the luminal A and B subtypes are collectively referred 
to as the luminal type, which accounts for 65‑70% of breast 
cancers, whereas the HER2‑enriched subtype accounts for 
~10% of breast cancers and the basal-like subtype accounts 
for 10‑15% (14) or, according to other sources, 19% of breast 
cancers (2,5,6). Those molecular classification studies signifi-
cantly contributed to the better understanding of the complex 
properties of different breast cancer types, their response to 
systemic treatment and their clinical outcomes, including 
those that respond better to endocrine treatment.

Among the different molecular subtypes of breast 
cancer, ER+ breast cancer comprises ~75% of all breast 
cancers (14). Thus, the ER status has become the most impor-
tant discriminator of breast cancer molecular subtypes (6), 
resulting in primary treatment options through targeting the 
estrogen synthesis (aromatase inhibitors) or the ER functions 
(tamoxifen). The treatment effectiveness has been proven 
by the observation that ER+ tumors were associated with 
hormonal responsiveness, longer relapse‑free survival and 
overall survival compared to the ER- subtypes (21). However, 
resistance to hormonal therapy was reported in 30% of 
ER+ breast cancers, whereas hormonal responsiveness was 
observed in 5-15% of ER- breast cancers (22). Thus, in addition 
to the ER status, more detailed information associated with 
the molecular signature profiles and molecular networks is 
required for designing optimal therapeutic strategies.

2. Luminal A subtype breast cancer molecular signatures 
and therapeutic potentials

Luminal A subtype breast cancer molecular signatures. The 
luminal A subtype of breast cancer is characterized by the 
luminal-type conventional molecular signatures (ER, PR, Bcl‑2 

and CK8/18) and the luminal A subtype-specific signatures of 
ER+ and/or PR+, HER2- and Ki‑67 ≤14%, which distinguishes 
luminal A from luminal B subtype. The recognized luminal A 
subtype breast cancer molecular signatures include GATA 
binding protein 3 (GATA‑3), X‑box binding protein 1 (XBP‑1), 
forkhead box A1 (FOXA1) and ADH1B (23‑26). The 5-year 
survival rate of luminal type A breast cancer is 95%, which is 
the highest among the five types, with a p53 mutation rate of 
13% (11).

Studies of the crosstalk between estrogen receptor α (ERα), 
FOXA1 and GATA‑3 revealed that, in addition to the ER and 
PR status, FOXA1 and GATA‑3 are also correlated with the 
luminal A subtype (11,14,25,27). The interaction of FOXA1 
with the cis‑regulatory regions of heterochromatin enhances 
the binding of ERα to DNA (28) and is involved in control-
ling almost 50% of the estrogen receptor target genes (29,30). 
The expression of FOXA1 is significantly positively correlated 
with the markers of good prognosis or ER‑positivity (31) and 
FOXA1 was recently shown to be required for almost all the 
ER-binding events in breast cancer cells (32). The transcription 
factor GATA‑3 was recently identified as a key factor involved 
in luminal cell differentiation in the mammary gland (33). The 
majority of breast cancers arise from the luminal epithelial 
cells; therefore, GATA‑3 appears to regulate a set of genes 
involved in the differentiation and proliferation of breast cancer 
cells (33). Low GATA-3 expression is significantly associated 
with a higher histological grade, poor differentiation, positive 
lymph nodes, ER- and PR- status and HER2/neu overexpres-
sion, which are all indicators of poor prognosis (34). The 
expression of GATA‑3 is strongly associated with the expres-
sion of ERα in breast cancer and there is increasing evidence 
that GATA‑3 may be used as a clinical molecular signature to 
determine the response to hormonal therapy and to refine the 
prognosis of breast cancer patients (33,35,36). The prognosis 
of the luminal A subtype breast cancer is more favorable 
compared to that of other subtypes (2,6), which may be due 
to the fact that the luminal A subtype expresses high levels of 
GATA‑3 that confer a favorable prognosis. It was previously 
reported that GATA‑3 functions as a critical regulator of 
commitment and maturation of cancer cells in the luminal A 
epithelial lineage, i.e., the expression of GATA‑3 regulates 
luminal differentiation (37). The anti‑apoptotic marker Bcl-2 
has been proven to be an independent molecular signature, 
alone or in combination with Ki-67 as a marker pair, in the 
luminal type of breast cancer (38‑42).

The 70-gene signature (MammaPrint®) assay provides 
a powerful prognostic gene expression signature profile for 
the prediction of distant recurrence and survival of primary 
breast cancer, including luminal subtype A breast cancer (43). 
Other molecular profilings of clinically applicable gene 
expression‑based prognostic panels, such as the Oncotype 
DX platform, may add more characteristics regarding the 
prediction of recurrence and survival and the therapeutic 
options of luminal A type breast cancer (44,45). It was 
recently demonstrated that microRNA expression profiles 
may be a promising molecular signature for the classification 
of breast cancer subtypes (46). The prediction of ER+ cancer 
clinical relapse and the sensitivity to endocrine therapy with 
genomic signatures, such as the PAM50 intrinsic subtyping 
and risk of relapse (PAM50‑ROR) score, the 21‑gene assay 
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(Oncotype DX) recurrence score, the MammaPrint assay 
score and the Rotterdam 76-gene assay score, demonstrated 
that low‑risk tumors (>90% distal recurrence-free survival at 
8.5 years) were identified mostly as luminal A tumors (47).

Luminal A subtype breast cancer therapeutic potentials. 
Estrogen is a steroid hormone that is crucial for growth, devel-
opment and reproduction (48). Estrogens have been shown to 
play an important role in human breast cancer development 
and ~1/3 of breast cancers are stimulated by estradiol (49). 
Estrogens exert their effects through the action of the estrogen 
receptors α and β (ERα and ERβ), which belong to the steroid 
hormone superfamily of nuclear receptors (NRs) (50,51). ERs 
are members of the large NR family of transcription factors 
that are typically activated upon binding to small lipophilic 
molecules (52). The activities of steroid receptors, particularly 
ERs, have been associated with the regulation of breast epithe-
lial cell cycle transition from the G0 into the S phase (53,54). 
Since ~75% of breast cancers express ERα, the significance of 
ERα in breast cancer is well‑established (55,56).

Since luminal subtype A and B breast cancer cells are 
ER+ and/or PR+, patients with these two types of breast cancer 
are always subjected to endocrine therapy with tamoxifen, to 
inhibit the functions of ER (57), and aromatase inhibitors or 
inactivators (58), to block estrogen production or to inactivate 
ERs, or even to inhibit the dimerization and downregulate 
ERs (59‑61). The therapeutic strategies that may interrupt the 
estrogen signaling pathway have been proven effective for 

the ER+ subtype of breast cancer (62) and are currently the 
first‑line clinical treatment option (63,64) (Fig. 1).

However, in ER+ patients, the clinical therapeutic prac-
tices with endocrine therapy to antagonize ER signaling 
were proven to be 30% effective (65). Hormonal therapy 
with tamoxifen may only be beneficial for tumors exhibiting 
nuclear ER expression, since membrane ERs may activate 
EGFR and/or HER2 signaling, which may then stimulate 
tumor growth (66) (Fig. 2). Other signaling pathways may also 
be involved, such as the insulin‑like growth factor 1 (IGF‑1) 
or the vascular endothelial growth factor (VEGF) signaling 
pathways (67,68) (Fig. 2). Thus, for ER+ breast cancers, 
different molecular subtypes have been further described, 
such as the five-biomarker panel (69) signatured by ER, 
PR, HER2, CK 5/6 and EGFR. The primary considerations 
regarding treatment options are the gene signature profiles, 
including the Ki-67 status (17) that distinguishes luminal A 
from luminal B subtype; the nuclear ER signaling pathway 
components that distinguish luminal A from other subtypes; 
the HER2 signaling pathway components that distinguish 
the ER+/PR+ with HER2+ from the HER2- subtype; and the 
EGFR, or IGF‑1, VEGF and PI3K/AKT signaling pathway 
components. To overcome the ineffectiveness of tamoxifen 
treatment, luminal type breast cancers are also subjected 
to other therapeutic strategies, such as treatment with the 
anti‑VEGF antibody bevacizumab combined with paclitaxel, 
which has also been proven effective (70). Treatment with 
motesanib (which is a novel, highly selective inhibitor of 

Figure 1. The estrogen receptor (ER) pathway includes the canonical and the non-canonical ER pathways. In the canonical pathway, the cytoplasmic estrogens 
bind directly to the nuclear membrane estrogen receptor and activate signaling. In the non‑canonical pathway, the extracellular estrogens bind to the plasma 
membrane receptors and activate the phosphatidylinositol‑3‑kinase (PI3K) or Ras signaling pathway. Alternatively, the estrogens first penetrate through the 
cell membrane and then bind to the estrogen receptor monomer, which is then dimerized and transported into the nucleus to activate signaling. Treatment with 
tamoxifen blocks the binding of estrogen and, thus, inhibits the estrogen-activated signaling. Treatment with fulvestrant inhibits the cytoplasmic dimerization 
of estrogen. Treatment with aromatase inhibitors, such as letrozole, anastrozole and exemestane blocks estrogen production. Another characteristic correlated 
to the ER pathway is the progesterone receptor (PR) signaling, which is also involved in the regulation of luminal type breast cancer development. CoR, coregu-
lators; RE, response element; TFs, transcription factors; mER, membrane ER; HER, human epidermal growth factor receptor; MAPK, mitogen‑activated 
protein kinase; ERE, estrogen response element; PRE, progesterone response element.
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VEGFR1, VEGFR2, VEGFR3, KIT and platelet-derived 
growth factor receptor) in combination with the ER modu-
lator tamoxifen also resulted in a significant reduction in 
tumor volume (71). Of note, inhibition of the PI3K pathway 
signaling in endocrine treatment-resistant breast cancer cell 
lines was shown to reduce cell survival and improve the 
treatment response to endocrine agents, providing further 
scientific rationale to target both ERs and the PI3K pathway 
in order to improve the outcome of ER+ breast cancer (72).

Based on the molecular signatures of luminal A subtype 
breast cancer, the luminal A subtype signature genes, such as 
GATA‑3 and FOXA1, also appear to be promising therapeutic 
targets. Among these, the expression of FOXA1 was positively 
correlated with ER-positivity, particularly luminal A type 
ER‑positivity, and negatively correlated with tumor size, 
tumor grade, nodal status, the expression of Ki-67 and HER2 
and basal-like subtype of breast cancer (31). A previous study 
reported that the expression of FOXA1 was positively corre-
lated with ER+ and PR+ status, but inversely correlated with 
nuclear grade and the Ki-67 index, suggesting the therapeutic 
potentials of FOXA1 targeting (73). Moreover, the forkhead 

box O3a (FOXO3a) transcription factor was identified as an 
intracellular mediator of ERα expression and an important 
downstream target of the PI3K/AKT pathway, thus repre-
senting a potential therapeutic target in ER+ breast cancer (74).

An alternative way for the therapeutic considerations in 
luminal A subtype of breast cancer is targeting other members 
that are coexpressed with ER in the superfamily of steroid 
receptors, including estrogen‑related receptors, PRs (Fig. 1), 
ARs, glucocorticoid and mineralocorticoid receptors. The 
PR A and B isoforms were demonstrated to play different roles 
in breast cancer cell growth and have thus been considered as 
therapeutic targets of antiprogestin (75). PR has been clinically 
used for evaluating ER activity (64) and the loss of PR in ER+ 
tumors is considered to be predictive of the lack of response to 
hormone therapy (76). However, the estrogen response element 
(ERE) transcriptional activity remains a better readout of ER 
function, as PR is just one of the numerous ER target genes 
and is regulated by several other transcription factors, such 
as Sp1 or AP‑1 (77,78). High ERE‑activity is correlated with 
the luminal A type of breast cancer and low ERE-activity is 
correlated with the malignancy biomarker Ki-67 (79).

Figure 2. Crosstalk of signaling pathways in breast cancer and the potential clinical therapeutic targets. The receptors of extracellular small molecules shown 
here include: epidermal growth factor (EGF), transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF), fibroblast growth factor 
(FGF), insulin‑like growth factor (IGF)‑1, insulin and estrogen, which activate their corresponding receptors and further transduce the signals mainly through 
the phosphatidylinositol-3‑kinase (PI3K)/AKT pathway or the Ras/MEK pathway. A number of PI3K/AKT and Ras/MEK signaling pathway inhibitors have 
been developed, some of which may be used in combination (details also summarized in Table II). Pg, progesterone; ER, estrogen receptor; PR, progesterone 
receptor; ERK, extracellular signal‑regulated kinase; RSK, ribosomal S6 kinase; IP, inositol phosphate; PKC, protein kinase C; PTEN, phosphatase and tensin 
homolog; PDK, phosphoinositide‑dependent kinase; mTOR, mammalian target of rapamycin; MAPK, mitogen‑activated protein kinase.
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3. Luminal B subtype breast cancer molecular signatures 
and therapeutic potentials

Luminal B subtype breast cancer molecular signatures. The 
major molecular distinctions between luminal type A and 
B tumors are that luminal type A tumors exhibit a higher 
expression of ER‑related genes and luminal type B tumors 
exhibit a higher expression of proliferation-related genes, 
such as CCNB1, MKI67 and myeloblastosis oncogene‑like 2 
(MYBL2) (2,11,23,57,80). In contrast to the luminal A subtype, 
the 5-year survival rate of luminal B breast cancer is 50%, 
with a p53 mutation rate of 40% (11), indicating the simi-
larities between luminal B subtype and p53-mutated tumors. 
Badve et al (24) suggested that the better prognosis of luminal A 
compared to that of luminal B breast cancer may be due to the 
different function of ER in luminal A and B cancers and the 
effect of additional factors, such as coactivators, corepressors 
and transcription factors that modulate ERα activity.

In addition to sharing similar signatures with luminal 
subtype A, such as ER and Bcl-2, luminal subtype B tumors 
also share similar signatures with the basal‑like subtype 
tumors, including the proliferation markers Ki‑67, survivin 
and CCNB1, as well as similar signatures with the HER2 
subtype, such as the overexpression of HER2 (4). The Ki‑67 
proliferation index was previously used as a potential unidi-
mensional proliferation marker to distinguish luminal B from 
luminal A tumors (17). Thus, the Ki‑67 index is the most 
useful signature that distinguishes high‑risk luminal B from 
low‑risk luminal A tumors (81). In addition to the differ-
ences in ER-related and proliferation-related gene expression, 
emerging evidence demonstrated the amplification of growth 
receptor signaling genes in luminal type B tumors, such as the 
overexpression of fibroblast growth factor receptor 1 (FGFR1) 
in luminal type B cancer patients (82), which may contribute 
to the poor prognosis of luminal B compared to luminal A 
cancer patients (2,11), despite their clinical ER+ status (83). 
Thus, the typical signature genes in luminal subtype B tumors 
include FGFR1, HER1, cyclin E1 and Ki‑67 (2,11,12,17,82). 
Using the luminal A subtype as a reference, according to the 
multivariate analysis of untreated early‑stage breast cancer, 
the relapse-free survival of luminal B breast cancer exhibited a 
hazard ratio of 2.43 (P<0.0001), similar to ErbB2/HER2 ampli-
fied tumors with a hazard ratio of 2.53 (P=0.00012) (23,84). 
The immunohistochemical analysis further demonstrated 
that ~20% of luminal B cancers were HER2+ and ~30% of 
HER2‑expressing tumors were of the luminal B subtype (85). 
Clinically, the luminal (A and B) type breast cancers are often 
grade I; however, the luminal B breast cancers are often of 
the HER2+ genotype and are more likely to be high-grade 
compared to luminal A cancers (6,11,57). More comprehensive 
gene signature profiles of the luminal type breast cancers have 
been provided by assays based on the platforms of the 21-gene 
signature assay Oncotype DX (Genomic Health, Redwood 
City, CA, USA) and the 70-gene signature-based MammaPrint 
assay (Agendia, Amsterdam, The Netherlands), as well as 
others (8,86).

Although luminal B cancers are ER+, they do not appear 
to exhibit a corresponding expression of estrogen‑regulated 
genes and may therefore depend on alternative pathways for 
growth. Candidate pathways that may be targeted in luminal B 

cancer cells include those involving growth factor receptors, 
such as HER2 and EGFR, as well as the PI3K/AKT/mTOR 
pathway. The standards for distinguishing luminal A from 
luminal B cancers are the Ki‑67 index (cut-off value, 14%), 
clinicopathological factors, such as age at diagnosis, intensity 
score of ER and PR, histological grade, Bcl‑2 (cut-off value, 
33%) and disease‑free survival (DFS).

Luminal B subtype breast cancer therapeutic potentials. 
Similar to luminal A, luminal B breast cancer is currently 
treated as an ER+, hormone‑sensitive disease (20,86). However, 
luminal B breast cancer is often considered as a more aggres-
sive form of the luminal (ER+) type of breast cancer. The 
PAM50 assay results demonstrated that, although luminal 
subtype B breast cancers share some gene expression patterns 
with luminal subtype A breast cancers (e.g., ER genes ESR1, 
FOXA1 and Bcl-2), they also share some gene expression 
patterns with basal‑like breast cancers (e.g., Ki‑67 gene MKI67, 
survivin gene BIRC5 and cyclin B1 gene CCNB1) (87).

A major characteristic of luminal type B breast cancer 
cells is the expression of the HER2 gene (4,88). The immu-
nohistochemical results demonstrated that 30% of HER2+ 
breast cancer cells are luminal type B and in this type of 
cell the PI3K/AKT, Ras/mitogen‑activated protein kinase 
(MAPK) and phospholipase Cγ (PLCγ)̸protein kinase C 
(PKC) signaling pathways are also involved (84) (Fig. 2 and 
Table II). Thus, recent clinical trials considered targeting of 
alternative pathways in luminal B cancer, such as using the 
drug gefitinib to target EGFR (89) and everolimus to target 
PI3K/AKT/mTOR (90). Numerous small-molecule inhibitors 
or antibodies targeting these signaling pathway elements have 
been designed and investigated, such as BMS‑754807, cixu-
tumumab, MK‑0646, dalotuzumab, OSI‑906 and CP‑758171. 
Other examples include targeting the IGF‑1R pathway with 
TKI‑258 and AZD‑4547 and targeting the PI3K/AKT pathway 
with MK‑2206, XL‑147 and XL‑765 (84).

Another characteristic of luminal B tumors is the high 
expression levels of Ki-67 combined with HER2 expression, 
exhibiting high scores in the Oncotype DX gene expres-
sion profile. Thus, for patients with HER2+ and ER+ tumors, 
combination treatment with endocrine and anti‑HER2 therapy 
may achieve therapeutic benefits (91). In addition, the Ki‑67 
and p53 signatured subtypes mainly belong to the luminal B 
subtype (92,93), preconditioning for endocrine resistance (94). 
Moreover, previous studies demonstrated that, following 
neoadjuvant endocrine treatment, changes in the expression 
of Ki-67 may predict long‑term outcome (95,96). Among the 
prognostic factors, ER <10%, Ki-67 >14% and HER2 overex-
pression are considered as risk factors (97).

In luminal B‑type tumors, the high expression levels of 
Ki-67 combined with HER2 expression exhibit high scores in 
the Oncotype DX gene expression profile; thus, for patients 
with HER2+ and ER+ tumors, the combination of endocrine 
and anti‑HER2 therapy may achieve therapeutic benefits (91). 
However, in ER+̸PR- luminal breast tumors, aggressive 
behavior and tamoxifen resistance are characteristic, despite 
the ER+ status (98). This subtype of luminal type breast 
cancers was classified as luminal B tumors, with greater 
genomic instability and a higher proliferation rate, as well 
as elevated growth factor signaling and membranous ER 
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activity (98). Luminal subtype B cancer patients also exhibit a 
higher expression of HER1 and HER2 and active gowth factor 
signaling mediated by the PI3K̸AKT̸mTOR pathway (98) 
(Fig. 2 and Table II). Thus, the optimal treatment approach 

for this subset of patients may be the combination of aroma-
tase inhibitors, fulvestrant and chemotherapy. It was also 
demonstrated that PR- luminal B tumors that were treated with 
neoadjuvant chemotherapy (adriamycin/cyclophosphamide) 

Table II. Inhibitors or antibodies for signaling pathway elements in breast cancer.

No. Target Target agents Refs.

  1 HER2 Trastuzumab (Herceptin); pertuzumab (Omnitarg); (113,118‑120)
  CP‑724,714; TAK165; CI‑1033; 2C4; AG1478; ARRY‑380
 EGFR/HER2 Lapatinib (Tykerb); AEE‑788; BMS‑599626; ARRY‑334543; (113,121‑128)
  BIBW2992; HKI‑272; MP‑412; CI‑1033 (canertinib);
  neratinib (HKI‑272); CUDC‑101; AZD8931; BMS‑599626;
  ARRY-334543; dacomitinib (PF‑00299804); TAK‑285
 EGFR Gefitinib (ZD‑1839, Iressa); CPI‑358,774; cetuximab; (118, 129, 130)
  OSI‑774; PD153035; erlotinib
 VEGFRs Regorafenib (BAY 73‑4506)a; BAY 43‑9006; OSI‑930; (71,131‑144)
  SU11248b; axitinib (AG‑013736); cediranib (AZD2171);
  vandetanib (Zactima, ZD6474); motesanib diphosphate (AMG‑706);
  E7080 (lenvatinib); ENMD‑2076; telatinib (BAY 57‑9352);
  linifanib (ABT‑869); apatinib (YN968D1)c;
  cabozantinib (XL184); RAF265 (CHIR‑265)
 EGFR/VEGFRs AEE‑788; EXEL‑7647 (XL647) (113,145)

  2 FGF 1A6; FP‑1039; palifermin (Kepivance) (146)

  3 FGFRs SU5402; PD173074; TKI‑258; BIBF 1120; (84,139,146,147)
  BMS‑582,664 (brivanib); E7080; TSU‑68; IMC‑A1;
  PRO‑001; R3Mab; AZD‑4547; ENMD‑2076; AZD4547

  4 IGF‑1R BMS‑754807; NVP‑AEW541 (84,148)
 IGF‑1R/IR Cixutumumab; MK‑0646; dalotuzumab; CP‑758171; (84,125,149‑152)
  BMS‑554417; BMS‑536924; GSK1904529A;
  OSI‑906 (linsitinib); AG‑1024 (Tyrphostin); GSK1838705A

  5 ER ICI 182,780; tamoxifen; Casodex; fulvestrant; letrozole; (60,153,154)
  anastrozole; exemestane

  6 PI3K Wortmannin; BKM120; LY294002; XL‑147; GDC‑0941; (60,84,111,129,153,
  PX‑866; ZSTK474; SF1126; IC486068; fused heteroaryl and 155‑157)
  imidazopyridine‑based inhibitors; WAY‑266176;
  WAY‑266175; PIK75
 PI3K/mTOR BEZ235; XL‑765; GSK2126458; PKI‑402; GDC‑0980; (60,84,158‑161)
  PF‑05212384 (PKI‑587)

  7 AKT MK‑2206; PX‑316; perifosine (KYX‑0401); UCN‑01; (84,129,162‑165)
  GSK690693; AT7867; PHT‑427; triciribine

  8 PDK1 OSU‑03012; PHT‑427; BX‑795; BX‑912; BX‑320; (129,164,166)

  9 mTORC1 Everolimus; rapamycin; RAD-001; temsirolimus (CCI‑779); (60,167‑170)
  ridaforolimus (AP23573; MK‑8669); PF‑04691502;
 mTORC1/2 OXA‑01; OSI‑027; AZD8055; WYE‑125132 (WYE‑132); (133,158,171‑176)
  GSK2126458; GDC‑0980; WAY‑600; WYE‑687; WYE‑354;
  AZD2104; IKK‑128; XL388

10 Raf Regorafenib (BAY 73‑4506)b; sorafenib (BAY 43‑9006, Nexavar); (131,132,144)
  RAF265

11 MEK1/2(MAPK) UO126; PD98059; CI‑1040 (PD184352); UCN‑01; PD318088 (119,153,156,177,178)

aRegorafenib (BAY 73‑4506) is an oral multikinase inhibitor of of VEGFR1/2/3, PDGFRβ, KIT, RET and Raf‑1 (131). bSU11248, an oral multitargeted TKI 
with antiangiogenic and antitumor activity, inhibits VEGF, PDGF, KIT and FLT3 receptor TKs (70). cApatinib (YN968D1) is a small‑molecule TKI that inhibits 
VEGFR2 (Flk‑1/KDR), RET (rearranged during transfection), c‑Kit (stem cell factor receptor) and c‑Src tyrosine kinases (142). HER, human epidermal growth 
factor receptor; ER, estrogen receptor; EGFR, epidermal growth factor receptor; VEGFR, vascular endothelial growth factor receptor; FGF, fibroblast growth 
factor receptor; IGF, insulin‑like growth factor; PI3K, phosphatidylinositol‑3‑kinase; mTOR, mammalian target of rapamycin; PDK, phosphoinositide‑dependent 
kinase; MAPK, mitogen‑activated protein kinase; PDGFR, platelet‑derived growth factor receptor; FLT, FMS‑like tyrosine kinase; TKI, tyrosine kinase inhibitor.
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exhibited a significantly improved response compared to other 
types of tumors (99).

Higher PI3K signature scores have been observed in ER+ 
tumors and the cell lines of the more aggressive luminal B 
compared to those of the less aggressive luminal A molecular 
subtype, suggesting that targeting PI3K in these tumors may 
reverse the loss of ER expression and signaling and restore 
hormonal sensitivity (100). Inhibition of PI3K pathway signaling 
in endocrine-resistant luminal B subtype breast cancer cells 
reduces cell survival and improves treatment response to 
endocrine agents (72), providing further potential therapeutic 
strategies by targeting both the ER and the PI3K pathway, 
in order to improve the outcome of ER+ breast cancer. In the 
ER+̸PR- luminal B subtype breast cancer cells, the binding 
of estrogen or tamoxifen to the ER on the plasma membrane 
activates EGFR and HER2 and their downstream signaling 
pathways, including MAPK and PI3K/AKT̸mTOR pathway, 
leading to tamoxifen resistance (76,101,102). The corresponding 
strategies for this type of breast cancer are aromatase inhibitors, 
fulvestrant and chemotherapy, plus targeted therapies, such as 
gefitinib, to overcome tamoxifen resistance (103).

Charafe-Jauffret et al (104) demonstrated that ErbB2 
is mainly overexpressed in luminal breast cancer cell lines, 
rather than in basal-like breast cancer cell lines. Additional 
characteristics of the luminal type B breast cancer cells 
include the expression of CCNB1, MKI67, MYBL2, FGFR1 
and ZNF703 genes that are associated with resistance to 
tamoxifen and poor treatment outcome (25,105,106). Thus, the 
treatment effectiveness of tamoxifen for luminal subtype B 
is lower compared to that for luminal type A breast cancers. 
Other luminal subtype B breast cancer signature genes, such 
as ZNF703, identified in luminal subtype B breast cancer, 
were shown to modulate luminal B cancer stem cells (106). 
The NHERF1 gene, expressed in luminal B subtype breast 
cancer, was associated with a worse survival in ER+ breast 
cancer and the low NHERF1 expression genotype may 
benefit from endocrine therapy (107). The P‑Rex1 gene, a 
Rac‑specific guanine nucleotide exchanging factor, is highly 
overexpressed in ErbB2+ and ER+ double-positive luminal type 
breast cancers, thus suggesting the possibility of targeting the 
P‑Rex1̸Rac signaling pathway for luminal subtype B breast 
cancer therapy (98). Bergamaschi et al (108) demonstrated 
that the elevated 14-3-3ζ expression promoted resistance to 
endocrine therapy with tamoxifen in luminal B cancer patients 
and corresponding to the elevated 14‑3‑3ζ expression were 
genes such as aurora kinase B, polo-like kinase 1, CDC25B, 
BIRC5̸survivin and FOXM1, providing a wider target selec-
tion base for luminal B subtype breast cancers. In a previous 
study of a 96‑patient cohort, Glynn et al (109) reported that 
retinoic acid receptor α levels were significantly higher in 
HER2̸neu+ and ER+ patients compared to HER2̸neu+ and 
ER- patients, adding another gene expression signature to the 
therapeutic options for HER2/neu+ and ER+ luminal subtype B 
breast cancer.

4. Challenges and perspectives

The present molecular classifications assigned ER+ breast 
cancer into two categories: the luminal subtype A, character-
ized by ER+/PR+̸HER2-̸low Ki‑67; and the luminal subtype B, 

characterized by ER+/PR+̸HER2+ or ER+/PR+/high Ki‑67. 
Based on these molecular signatures, effective diagnostic and 
therapeutic decisions are enabled, with subsequent improved 
clinical outcomes. However, these simplified signatures are 
unable to accurately represent the complex intrinsic processes 
of tumor cell growth. The details of the molecular processes 
within the tumor cell have not been elucidated, nor have the 
mechanisms of treatment resistance, the clear panorama of the 
molecular networks and the molecular cascade upon treatment. 
In addition, the treatment interventions in the tumor suppressor 
genes have not been adequately investigated and the effect 
of the microenvironment on treatment efficacy has not been 
determined. The applications of several molecular signature 
sets, including the Oncotype DX and MammaPrint assays 
mentioned earlier, have been demonstrated to be powerful tools 
enabling more accurate predictions and effective therapeutic 
decisions. The prediction values of these assays have also been 
confirmed when combined with other approaches. However, 
due to the heterogeneous properties of the breast cancer 
subtypes and the complex molecular processes underlying 
breast cancer development, these molecular signature sets are 
not considered sufficient for practical clinical application. In 
addition, accumulating data have demonstrated the individual 
differences based on genomic sequencing results of clinical 
samples. Although the individual genomic differences may not 
reflect the decisive molecular mechanisms, they are a reminder 
of the heterogeneity and complexity of the decision‑making 
process. The combination of the present molecular signature 
sets with accumulating data obtained by the new-generation 
sequencing technology and the high throughput gene expres-
sion quantification technology may enable obtaining more 
reliable molecular signature sets for future diagnosis and 
prediction of human breast cancer.
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