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Abstract. Neuronal apoptosis is crucial in neurodegenera-
tive diseases. However, a lower apoptotic rate of nerve cells 
is detected in the brain compared to that in other organs in 
neurodegenerative patients or in animal models, suggesting 
that neuronal apoptosis induced by any type of risk factors is 
intricately regulated. Human and animal studies demonstrated 
that a high concentration of oxidized LDL (ox-LDL) in the 
brain, which is associated with hyperlipidemia, is one of the key 
apoptosis inducers in neurodegenerative diseases. However, 
the mechanism underlying the ox-LDL-mediated regulation 
of neuronal apoptosis has not been fully elucidated. Recently, 
we investigated proprotein convertase subtilisin̸kexin type 9 
(PCSK9), a striking gene involved in lipid metabolism that 
exhibits a positive correlation with macrophage and endothe-
lial cell apoptosis induced by ox‑LDL. Moreover, PCSK9 may 
degrade β-site amyloid precursor protein-cleaving enzyme 1 
(BACE1), the key enzyme cleaving amyloid precursor protein 
(APP) to generate amyloid β peptide (Aβ). Aβ is another key 
apoptosis inducer in neurodegenerative diseases. Our find-
ings indicated that PCSK9 may be upregulated by the high 
levels of ox-LDL in the brain associated with hyperlipidemia 
and promote neuronal apoptosis through the NF-κB-B-cell 
lymphoma 2 (Bcl-2)/Bax-caspase 9‑caspase 3 signaling 
pathways. Moreover, increased PCSK9 levels may inhibit 

the APP̸Aβ metabolic pathway and reduce Aβ generation by 
degrading BACE1, thereby decreasing Aβ‑induced neuronal 
apoptosis. The dual regulation mechanism of PCSK9 on apop-
tosis maintains neuronal apoptosis induced by risk factors at 
low levels.
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1. Introduction

In 2003, proprotein convertase subtilisin/kexin type 9 (PCSK9) 
was identified by the bioinformatics method and DNA micro-
array technology (1,2). PCSK9 is a member of the subtilisin 
family of proprotein convertases and is involved in the degra-
dation of low-density lipoprotein receptor (LDLR) in the 
liver (3). Gain- and loss-of-function mutations of PCSK9 may 
result in hyper- and hypocholesterolemia, respectively, thereby 
affecting liver LDLR degradation and blood lipid levels. 
Cohen et al (4) reported that African-Americans harbouring 
nonsense mutations in PCSK9 exhibited a 28% decrease in 
LDL cholesterol levels and a 88% lower risk of coronary heart 
disease (CHD), whereas Caucasians with less severe mutations 
in PCSK9 exhibited a 15% decrease in LDL levels and a 47% 
lower risk of CHD. Surprisingly, the LDL-lowering mutations 
of PCSK9 were shown to exert a protective effect in CHD. A 
previous phase II clinical trial of a monoclonal antibody to 
PCSK9 demonstrated that patients with severe heterozygous 
familial hypercholesterolemia on high-dose statins who were 
injected with anti‑PCSK9 monoclonal antibody exhibited 
maximum LDL-C levels (5). The results, however, depend on 
the phase III side effects of the anti‑PCSK9 monoclonal anti-
body (6). If proven efficient, the combination of anti‑PCSK9 
anibodies with statins may become a potent lipid-lowering 
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and cardioprotective treatment that should be used prior to the 
advancement of atherosclerosis, since the effects of lowering 
LDL levels do not depend solely on the extent, but also on 
the duration of the decrease (7). The extensive investigation 
regarding PCSK9 revealed novel functions, in addition to those 
in lipid metabolism, including cell apoptosis, inflammatory 
response, neuronal development and tumor metastasis (8-11).

Neurodegeneration is a progressive loss of neurons and 
synapses in the cerebral cortex and certain subcortical regions. 
A number of neurodegenerative disorders (ND), such as 
Parkinson's disease, Alzheimer's disease (AD) and Huntington's 
disease, occur as a result of neurodegenerative processes. AD 
is the major form of ND and is characterized by senile plaques 
and neurofibrillary tangles in the brain. Excessive generation 
and accumulation of amyloid β peptide (Aβ) in the brain is an 
important factor implicated in AD. Neuronal apoptosis is also 
a primary mechanism underlying AD pathogenesis. Table I 
shows the numerous pro- and anti-apoptotic factors that may 
mediate neuronal apoptosis. Although several treatments are 
currently available to mitigate the progression of the disease, 
there is no established medical method to definitively prevent 
the progression of AD; the loss of neurons is permanent, due 
to their lack of proliferative ability (12).

2. Neuronal apoptosis rate is lower compared to that in 
other cell types

Using New Zealand rabbit models on a high-fat diet for 
7 months, our research demonstrated that hyperlipidemia may 
induce neuronal apoptosis. Higher rates of apoptosis in the brain 
were observed in the high-fat diet group, compared to those 
in the normal cholesterol group (0.83 vs. 0.30%, unpublished 
data). A study by Cunningham et al (13) also reported that the 
apoptosis rate in brain nerve cells induced by endotoxins in 
neurodegenerative mouse models is lower, which is in accor-
dance with the findings of our study. However, compared to 
other systems, hyperlipidemia is associated with significantly 
lower rates of neuronal apoptosis in the brain. The apoptosis 
rate of smooth muscle cells in atherosclerotic lesions was 
shown to be 11±7.8% in miniature pigs on a high-fat diet for 
37 weeks (14). Nematbakhsh et al (15) observed an endothelial 
cell apoptosis rate of 8% in hyperlipidemic rabbits. However, 
the reason for the significant difference in the apoptosis rate 
of nerve cells and other cells exposed to hyperlipidemia has 
not been determined. It was hypothesized that the presence 
of the blood-brain barrier (BBB) was a possible explanation. 
However, the oxidized LDL (ox-LDL) content was found to 
be increased in the brain and in the blood of AD patients (16), 
indicating that BBB does not play a major role under 
hyperlipidemic conditions. Martins et al (17) proposed two 
mechanisms that may underlie the increase in the lipid content 
of the brain during hyperlipidemia. The first mechanism is 
BBB damage. Ox-LDL may damage the BBB by inducing 
endothelial cell apoptosis, which increases the permeability 
of the BBB membrane, allowing lipids to cross the BBB into 
the brain. The second mechanism involves necessary compo-
nents involved in lipid synthesis, such as unsaturated fatty 
acids, crossing the BBB, thereby increasing endogenous lipid 
synthesis in the brain. The brain lipidogram is significantly 
affected in hyperlipidemia. However, the effect of the BBB 

on the apoptosis rate is minimal. We further hypothesized 
that a pathway inhibiting neuronal apoptosis may exist in the 
process of hyperlipidemia, along with an additional pathway 
inducing brain nerve cell apoptosis; however, further investi-
gation is required to identify the common regulation of the two 
diametrically opposed pathways.

3. PCSK9 promotes neuronal apoptosis

In this study, we mainly focused on the association between 
cell apoptosis and PCSK9. The significant correlations between 
PCSK9 and cell apoptosis are as follows: i) Wu et al (8) 
reported that ox-LDL may upregulate PCSK9 expression in 
human umbilical vein endothelial cells (HUVECs), whereas 
PCSK9 siRNA inhibits HUVEC apoptosis induced by ox‑LDL 
through the Bcl/Bax‑caspase 9‑caspase 3 pathway; and 
ii) previous studies suggested that PCSK9 may be associated 
with neuronal apoptosis (18,19). Cameron et al (20) reported 
that berberine may decrease PCSK9 expression, whereas 
Ji and Shen (21) indicated that berberine exerts a potentially  
preventive effect on AD through a variety of mechanisms. We 
therefore considered the potential involvement of PCSK9 in 
the effect of berberine against AD. The link between PCSK9 
and apoptosis was previously investigated. PCSK9 may regu-
late the expression of inflammatory factors induced by ox‑LDL 
through NF-κB (9), whereas the NF-κB/B-cell lymphoma 2 
(Bcl-2) signaling pathway is crucial in mediating apoptosis. 
The effect of PCSK9 in cerebellar granule neuron apoptosis is 
reflected by the fact that the effects of wild-type and mutant 
PCSK9 on apoptosis are partially reversed by BAF, a caspase 
inhibitor. Moreover, apoptotic mediators, such as caspase 3 
and death receptor 6, may be involved in neuronal apoptotic 
signaling induced by PCSK9 (19). A recent study demonstrated 
that PCSK9 promotes neuronal apoptosis through the decreae 

Table I. Pro- and anti-apoptotic factors in neurons.

Pro-apoptotic (Refs.) Anti-apoptotic (Refs.)

NF-κB (30) Bcl-2 (31,32)
Bax (32-35) Bcl-x(L) (31,32,34)
Bak (34) IAPs (36,37)
Bad (32,38) CrmA (39)
Bid (32) FLIPs (40)
Caspase-3, -6, -8, -9 (35,41‑43) IGF-1 (44)
TNF-α (35)  TGF-β (38)
p53 (33) p35 (45)
Fas/FasL (35) ARC (46)
Cytochrome c (41) VEGF (47)
AIF (48)

TNF, tumor necrosis factor; AIF, apoptosis-inducing factor; Bcl, 
B-cell lymphoma; IAPs, inhibitors of apoptosis; Crm, cytokine 
response modifier; FLIPs, FADD‑like interleukin‑1 β-converting 
enzyme (FLICE)-inhibitory proteins; TGF, transforming growth 
factor; ARC, apoptosis repressor with caspase recruitment domain; 
VEGF, vascular endothelial growth factor.
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of apolipoprotein E receptor 2 levels and deregulation of 
anti-apoptotic signaling pathways (22). However, further inves-
tigations are required to identify the precise PCSK9‑related 
mechanism leading to neuronal apoptosis.

4. PCSK9 inhibits neuronal apoptosis

Although PCSK9 is also referred to as neural apoptosis-regu-
lated convertase 1, certain studies failed to confirm its 
pro-apoptotic effect. Ranheim et al (23) demonstrated that 
PCSK9 significantly downregulated the poly(ADP-ribose) 
polymerase (PARP) family in HepG2 cells through microarray 
analysis of D374Y‑PCSK9, a gain-of-function mutant. B16F1 
melanoma cells were injected in PCSK9‑/‑ mice to induce liver 
metastasis. The findings revealed an increased rate of apoptosis 
in the liver stroma and metastases. Furthermore, the pro-apop-
totic factor tumor necrosis factor-α levels were increased and 
the anti-apoptotic factor Bcl-2 levels were decreased (10), 
confirming the anti-apoptotic function of PCSK9. However, the 
precise mechanism through which PCSK9 inhibits neuronal 
apoptosis has not been fully elucidated.

The following pathways are involved in amyloid precursor 
protein (APP) metabolism: i) APP is cleaved by α-secretase 
to generate soluble APP-α and C83; ii) APP is cleaved by the 
β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase to 
generate insoluble Aβ. The former is generally considered to 
be the major metabolic pathway. Under pathological condi-
tions, the generation of numerous Aβ peptides was suggested 
to cause AD (24). The BACE1 level is increased in the 
majority of sporadic types of AD. Consistent with the increase 
in BACE1, higher concentrations of Aβ may induce neuronal 
apoptosis and lead to AD.

Jonas et al (25) and and Ko and Puglielli (26) observed that 
the levels of BACE1 and Aβ were increased in the brains of 

PCSK9(‑/‑) mice, the overexpression of PCSK9 in CHO cells 
decreased the level of BACE1, PCSK9 siRNA increased 
the level of BACE1 and secreted PCSK9 may stimulate 
the degradation of BACE1. Those findings indicated that 
PCSK9 possibly decreases Aβ generation to prevent neuronal 
apoptosis through the degradation of BACE1 in nerve cells. 
However, Liu et al (27) reported that the levels of PCSK9 and 
BACE1 expression are not important; thus, further investiga-
tions are required to determine whether they affect BACE1 
activity.

5. Inconsistencies and future directions

Shibata et al (28) investigated two single-nucleotide polymor-
phisms (SNPs) of PCSK9, namely rs11583680 and rs662145, 
and suggested that SNPs are not associated with AD. In addi-
tion, Reynolds et al (29) investigated the association between 
lipid pathway genes and AD and reported that PCSK9 is not 
associated with AD. However, although the above-mentioned 
epidemiologic studies did not lead to a definitive conclusion 
regarding the positive correlation between PCSK9 and AD 
under site selection, case scale, or other reasons, PCSK9 may 
still be involved in the pathogenesis of AD.

In this study, we proposed the following hypothesis: hyper-
lipidemia increases the lipid content, particularly ox-LDL, 
of the brain. The increased levels of ox-LDL may upregulate 
PCSK9 expression in nerve cells. Neuronal apoptosis is induced 
through the NF-κB‑Bcl‑2̸Bax‑caspase 9‑caspase 3 signaling 
pathway when PCSK9 expression increases. Additionally, 
through the degradation of BACE1, PCSK9 decreases Aβ 
generation via the inhibition of the APP̸A β metabolic 
pathway, which decreases neuronal apoptosis induced by Aβ. 
Therefore, PCSK9 exerts a dual regulatory effect on neuronal 
apoptosis (Fig. 1), maintaining apoptosis at a low level or 

Figure 1. Dual regulatory effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) on neuronal apoptosis. Hyperlipidemia increases the lipid content in 
the brain, particularly oxidized LDL (ox-LDL). High ox-LDL levels may upregulate the PCSK9 expression in neurons. Neuronal apoptosis is induced through 
the NF-κB-Bcl-2/Bax-caspase 9‑caspase 3 signaling pathway when PCSK9 expression increases. Additionally, through BACE1 degradation, PCSK9 may reduce 
amyloid β peptide (Aβ) generation by inhibiting the amyloid precursor protein/Aβ metabolic pathway, thereby decreasing neuronal apoptosis induced by Aβ.
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limiting its increase, leading to the slow progression of ND. 
The elucidation of the association among hyperlipidemia, 
PCSK9 expression and neuronal apoptosis requires further 
investigations and animal testing. Furthermore, along with 
the anti-PCSK9 antibody, which was proven successful in 
lowering lipid levels (5), drugs targeting PCSK9 are eagerly 
anticipated for evaluation in the treatment of AD.
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