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Abstract. Cancer is caused by multiple genetic alterations 
within cells. Recently, large‑scale sequencing has identified 
frequent ribonuclease type III (DICER1), CCCTC‑binding 
factor (CTCF), ribosomal protein L22 (RPL22), DNA 
(cytosine‑5‑)‑methyltransferase 3α (DNMT3A), transforma-
tion/transcription domain‑associated protein (TRRAP), 
isocitrate dehydrogenase (IDH)1 and IDH2 hotspot muta-
tions in diverse types of cancer. However, it remains largely 
unknown whether these mutations also exist in ovarian 
carcinomas. In the present study, a collection of 251 patients 
with distinct subtypes of ovarian carcinomas were recruited 
and sequenced for the presence of these hotspot mutations. 
However, no mutations in the seven genes were detected in the 
samples. These negative results, together with certain recent 
reports, indicate that the hotspot mutations in the CTCF, 
RPL22, DNMT3A, TRRAP, IDH1 and IDH2 genes may not be 
actively involved in the carcinogenesis of ovarian carcinoma. 
Of note, the DICER1 mutation frequency in Sertoli‑Leydig 
cell tumor in the present study was significantly lower 
compared to prior observation, and therefore, it is speculated 
that this discrepancy may be mainly due to the small sample 

size analyzed in the study. In addition, among these samples, 
frequent polymerase (DNA directed)  ε, catalytic subunit 
(POLE1) and ring finger protein 43 (RNF43) mutations were 
identified in endometrioid and mucinous ovarian carcinomas, 
respectively; thus DICER1, CTCF, RPL22, DNMT3A, TRRAP, 
IDH1 and IDH2 hotspot mutations may not play synergistic 
roles with POLE1 or RNF43 mutations in the carcinogenesis 
of endometrioid or mucinous ovarian carcinomas.

Introduction

The current understanding of human malignancy is that it 
mainly arises due to the accumulation of multiple genetic alter-
ations, transforming normal cells into malignant cells (1,2). Of 
these genetic alterations, a myriad of genomic mutation data 
derived from a high‑throughput DNA sequencing technique 
provided a unique opportunity to profile the mutation spectra 
underlying human cancers and a large number of significant 
functional mutations in multiple genes were identified in 
diverse types of cancer (1,3,4). These genes can be defined 
as oncogenes or tumor suppressor genes and are being used 
as molecular markers for diagnosis, staging and prognosis of 
human cancers (5,6).

Ovarian carcinoma constitutes a heterogeneous group of 
malignancies with significantly different clinical expression, 
pathological characteristics and genetic etiology (7,8). However, 
the majority of ovarian carcinomas shared certain common 
genetic alterations, such as frequent tumor protein p53 (TP53) 
and PIK3CA, catalytic subunit α mutations (9,10), and patients 
also exhibited subtype‑specific mutations (11‑13), which are 
possibly essential for the differential clinical expression and 
molecular‑targeted therapy in ovarian carcinomas  (14,15). 
These observations emphasized the requirement to identify 
novel subtype‑specific molecular genetic aberrations in 
ovarian carcinomas.

Recently, large‑scale sequencing has identified frequent 
mutations of the ribonuclease type  III (DICER1) gene in 
Sertoli‑Leydig cell tumors of the ovary (3), CCCTC‑binding 
factor (CTCF) gene in transient abnormal myelopoiesis (16) and 
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endometrial cancer (17), ribosomal protein L22 (RPL22) gene 
in endometrial cancer (18), DNA (cytosine‑5‑)‑methyltrans-
ferase 3α (DNMT3A) gene in hematological malignancies (4), 
the transformation/transcription domain‑associated protein 
(TRRAP) gene in melanoma (19) and isocitrate dehydroge-
nase 1 and 2 (IDH1 and IDH2) genes in gliomas (1,20) and 
acute myeloid leukemia (AML) (21), respectively. Some of 
these mutations were closely associated with cancer progres-
sion (22) and prognosis (23,24).

Thus far, the mutation statuses of DICER1, CTCF, RPL22, 
DNMT3A, TRRAP, IDH1 and IDH2 mutational hotspots in 
ovarian carcinomas remain largely unknown. One critical 
concern in cancer genetics is whether those cancer‑associated 
mutations identified in one type of cancer are also common 
in other types of cancer. Therefore, a cohort of 251 Chinese 
patients with distinct subtypes of ovarian carcinomas was 
recruited in the present study to examine whether the hotspot 
mutations in these genes also existed in these samples.

Materials and methods

Sample collection. The study included 251  archival 
formalin‑fixed, paraffin‑embedded (FFPE) tissues with 
various subtypes of ovarian carcinoma recruited from the 
Jiangxi Provincial Maternal and Child Health Hospital 
(Nanchang, Jiangxi, China). Only those patients with >70% 

of neoplastic cells were recruited in the study. The sample 
cohort contained 76 ovarian serous carcinoma, 43 ovarian 
clear cell carcinoma, 37 ovarian endometrioid carcinoma, 
33 ovarian germ cell tumor, 15 mucinous ovarian carcinoma, 
18 ovarian sex cord‑stromal tumor, 12 other rare subtypes and 
17 Krukenberg tumor, and the available clinical data was as 
described previously (25,26) and in Table I. Informed consent 
conforming to the tenets of the Declaration of Helsinki was 
obtained from each patient prior to the study. The Institutional 
Review Boards of the Jiangxi Provincial Maternal and Child 
Health Hospital approved the study.

Mutation analysis of the DICER1, CTCF, RPL22, DNMT3A, 
TRRAP, IDH1 and IDH2 genes. The Omega FFPE DNA kit 
(Omega Bio‑tek Inc., Doraville, GA, USA) was used to isolate 
the DNA from the FFPE tissues. The polymerase chain reac-
tion (PCR) primers were as summarized previously (25,27) 
and are shown in Table II. PCR reactions were performed 
in a total volume of 25 µl, containing 50 ng genomic DNA, 
2 units of LA Taq DNA Polymerase (Takara Biotechnology 
Dalian Co. Ltd., Liaoning, China), 300 µM of each dNTP 
and 0.2 µM of each primer. The amplification reaction was 
performed in a Thermal Cycler 2720 (Applied Biosystems, 
Foster City, CA, USA) and employed one denaturation cycle 
of 94˚C for 3 min, 35 amplification cycles of 94˚C for 30 sec, 
50‑60˚C (Table II) (25,27) for 20 sec and 72˚C for 30 sec, 

Table I. Mutation frequencies of ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), 
DNA (cytosine‑5‑)‑methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isoci-
trate dehydrogenase (IDH)1 and IDH2 hotspot mutations in 251 Chinese patients with ovarian carcinomas.

		  DICER1	 DICER1								        RNF43
		  p.1705‑	 p.1810‑	 CTCF	 RPL22	 DNMT3A	 TRRAP	 IDH1	 IDH2	 IDH2	 p.I48V and	 POLE1
Subtype/gene	 No.	 1709	 1813	 p.T204fs*	 c.43delA	 p.R882	 p.S722	 p.R132	 p.R140	 p.R172	 p.R40fs*11a	 p.S297Fb

Epithelial
  Serous	 76	   0/76	   0/76	   0/72	   0/75	   0/74	   0/75	   0/73	   0/74	   0/74	   0/74	   0/74
  Clear cell	 43	   0/43	   0/43	   0/42	   0/43	   0/43	   0/43	   0/42	   0/41	   0/41	   0/41	   0/41
  Endometrioid	 37	   0/37	   0/37	   0/35	   0/35	   0/36	   0/37	   0/35	   0/37	   0/37	   0/37	    3/37
  Mucinous	 15	   0/15	   0/15	   0/14	   0/15	   0/15	   0/15	   0/14	   0/15	   0/15	    2/15	   0/15
  Undifferentiated	   3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3
  Unclassified	   4	 0/4	 0/4	 0/3	 0/4	 0/4	 0/4	 0/4	 0/4	 0/4	 0/4	 0/4
  Transitional cell	   3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3	 0/3
  Mixed	   2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2
Non‑epithelial
  Germ cell tumor
    Yolk sac	 11	   0/11	   0/11	   0/10	   0/11	   0/11	   0/10	   0/11	   0/11	   0/11	   0/11	   0/11
    Dysgerminoma	   7	 0/7	 0/7	 0/7	 0/7	 0/7	 0/7	 0/6	 0/6	 0/6	 0/6	 0/6
    Teratoma	   9	 0/9	 0/9	 0/8	 0/9	 0/9	 0/9	 0/8	 0/9	 0/9	 0/9	 0/9
    Mixed	   6	 0/6	 0/6	 0/6	 0/6	 0/6	 0/6	 0/6	 0/6	 0/6	 0/6	 0/6
  Sex cord‑stromal
  tumor
    Granulosa cell	 16	   0/16	   0/16	   0/14	   0/16	   0/16	   0/16	   0/15	   0/16	   0/16	   0/16	   0/16
    Sertoli‑Leydig	   2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2	 0/2
Krukenberg tumors	 17	   0/17	   0/17	   0/16	   0/16	   0/17	   0/17	   0/15	   0/17	   0/17	   0/17	   0/17

a,bAs per references (25,26); POLE1, polymerase (DNA directed) ε, catalytic subunit; RNF43, ring finger protein 43.
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with one final extension cycle of 72˚C for 10 min. The PCR 
products were purified and sequenced with an ABI 3730 DNA 
sequencer (Applied Biosystems). DNA sequence analyses were 
performed with the DNASTAR package software (DNASTAR 
Inc., Madison, WI, USA).

Results and Discussion

The available clinical data of these patients are as described 
previously (25,26). In the present study, a total of 251 Chinese 
samples with distinct subtypes of ovarian carcinoma were 
screened for the presence of potential hotspot mutations in the 
DICER1, CTCF, RPL22, DNMT3A, TRRAP, IDH1 and IDH2 
genes. However, no mutations in these genes were detected in 
the 251 samples (Table I and Fig. 1).

Previous studies have found frequent DICER1 
p.E1705‑D1709 and p.D1810‑E1813 mutations in Sertoli‑Leydig 
cell tumors  (3,28). However, no DICER1 mutations were 
detected in the two patients with Sertoli‑Leydig cell tumors. 
Therefore, it can be speculated that this discrepancy may be 
caused mainly by the small sample size of the Sertoli‑Leydig 
cell tumors analyzed in the present study. In addition, DICER1 
mutations were not identified in other subtypes of ovarian 
carcinomas in the samples, which is consistent with previous 

large‑scale sequencing results in which the DICER1 hotspot 
mutations were absent in 12 mucinous  (29) or 316  serous 
ovarian carcinomas (9). Collectively, these results indicated 
that the DICER1 hotspot mutations may not be actively 
involved in the pathogenesis of ovarian carcinoma, except for 
Sertoli‑Leydig cell tumors.

CTCF p.T204fs* and RPL22 c.43delA mutations have been 
observed frequently in endometrial carcinoma in previously 
studies (17,18). Considering the fact that ovarian carcinoma have 
certain overlapped genetic aberrations with endometrial cancer, 
such as frequent TP53 (9,30) and polymerase (DNA directed) ε, 
catalytic subunit (POLE1) mutations (26,30), we hypothesized 
that ovarian carcinomas may also harbor these mutations. 
However, neither CTCF p.T204fs* nor RPL22 c.43delA muta-
tions were identified in the samples in the present study. The 
absence of the CTCF and RPL22 mutations in ovarian cancer 
in a previous study (29) and the present study suggested that 
the CTCF and RPL22 hotspot mutations may play an extremely 
limited role in the pathogenesis of ovarian cancer.

Prevalent TRRAP p.S722 mutation was initially identi-
fied in melanomas in a whole‑exome sequencing study (19). 
Subsequent extended studies failed to identify these mutations 
in thyroid cancer (31) or splenic marginal zone lymphoma (32). 
In the present study, no TRRAP p.S722 mutations were detected 

Table II. Primers for the mutational analysis of the ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal 
protein L22 (RPL22), DNA (cytosine‑5‑)‑methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated 
protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 genes.

		  Amplicon,	 Sample	 Annealing,
Gene	 Target regions	 bp	 detected	 ˚C	 Forward primer (5'‑3')	 Reverse primer (5'‑3')

DICER1	 p.E1705‑D1709	 159	 251/251	 55	 CGGATCCCCTCAGATTGTTA	 CGATGCAAAGATGGTGTTGT
DICER1	 p.D1810‑E1813	 171	 251/251	 55	 TGGCCTTTTTGCTTACAAGTC	 TGCCAGACTGTCTCCAGTGA
CTCF	 p.T204fs*	 212	 237/251	 56	 GTTAAAGTGGGGGCCAATG	 AGCAGACCCTCCTGCTGTT
RPL22	 c.43delA	 190	 247/251	 60	 TCTTGTTTTTCCGACTGACTGA	 CCGAGTGGCAATAAGGATGT
DNMT3A	 p.R882	 177	 248/251	 52	 TGCCCTCTCTGCCTTTTCT	 CCATGTCCCTTACACACACG
TRRAP	 p.S722	 183	 249/251	 52	 TCTGCTCTGTTTGCTACGAT	 GCACTACTTAGATTAAATGGAC
IDH1	 p.R132	 269	 239/251	 50	 TGCTGCAGAAGCTATAAAGAAG	 GCAAAATCACATTATTGCCAAC
IDH2	 p.R140 and p.R172	 209	 246/251	 50	 GCTGCAGTGGGACCACTATT	 ACCCTGGCCTACCTGGTC

bp, base pair.

Figure 1. Representative sequencing electropherograms of the ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 
(RPL22), DNA (cytosine‑5‑)‑methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase 
(IDH)1 and IDH2 genes in Chinese patients with ovarian carcinomas.
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in our ovarian cancer patients with distinct subtypes. Also, 
TRRAP p.S722 mutations were not found in 12 mucinous (29) 
or 316 serous ovarian carcinomas (9). These negative results 
led us to speculate that TRRAP p.S722 mutations may not 
play a crucial role in the malignant transformation of ovarian 
carcinoma.

DNMT3A p.R882 mutations were identified almost exclu-
sively in hematological malignancies, including AML (33), 
acute lymphoblastic leukemia  (34) and myelodysplastic 
syndromes (35), and are generally infrequent or absent in some 
solid tumors (9,29,36). DNMT3A p.R882 mutations were not 
detected in the 251 samples with distinct subtypes of ovarian 
carcinoma. Similarly, whole‑exome sequencing studies 
suggested that DNMT3A p.R882 mutations were absent in 
12 mucinous (29) or 316 serous ovarian carcinomas (9). Taken 
together, the absence of DNMT3A p.R882 mutations in ovarian 
carcinoma analyzed in the present study and in previous 
studies (9,29) indicated that DNMT3A p.R882 mutations may 
be infrequent in ovarian carcinoma.

Frequent IDH1 p.R132, and IDH2 p.R140 and p.R172 muta-
tions were identified in the central nervous system tumors and 
AML (1,20,27). However, no IDH1 or IDH2 mutations were 
detected in the present samples. Similar results were observed 
in previous studies in which IDH1 p.R132 mutations were not 
detected in 168 ovarian carcinomas or 8 ovarian cancer cell 
lines (20,37‑39). In addition, IDH1 and IDH2 hotspot muta-
tions were also not identified in 12 mucinous (29) or 316 serous 
ovarian carcinomas (9). These combined results suggested 
that IDH1 and IDH2 potential hotspot mutations may not be 
common in patients with ovarian carcinoma.

Among these patients, the POLE1 mutation has been 
previously found to be frequent in 37 ovarian endometrioid 
carcinomas (26), whereas ring finger protein 43 (RNF43) muta-
tions were recurrent in 15 mucinous ovarian carcinomas (25) 
(Table I). In the present study, neither endometrioid nor mucinous 
ovarian carcinomas were detected to harbor DICER1, CTCF, 
RPL22, DNMT3A, TRRAP, IDH1 and IDH2 hotspot mutations. 
These results suggested that these potential hotspot mutations 
observed in other (sub)types of cancer may not play synergistic 
roles with POLE1 or RNF43 mutations in the carcinogenesis 
of endometrioid or mucinous ovarian carcinomas, respectively.

The main limitation of the present study was that only 
short DNA fragments spanning the potential hotspot muta-
tions were screened in the seven genes, and therefore, there 
is a possibility that mutations in other residues of these genes 
may exist in these samples. However, due to the shortage of 
DNA amounts, this hypothesis was not tested.

In conclusion, DICER1, CTCF, RPL22, DNMT3A, TRRAP, 
IDH1 and IDH2 hotspot mutations were not identified in 
251 Chinese patients with diverse subtypes of ovarian carci-
noma. These results were generally consistent with previous 
studies and these combined results indicated that the hotspot 
mutations in these genes may not be actively involved in the 
carcinogenesis of Chinese patients with ovarian carcinoma, 
except for DICER1 mutations in Sertoli‑Leydig cell tumors.
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