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Abstract. Systemic lupus erythematosus (SLE) is a multi-
system autoimmune disease, with mechanisms that remain to 
be elucidated. Previous studies have proposed that genes and 
environments are required for lupus to develop and flare. It 
has been found that epigenetics have a significant influence 
on SLE. The present review will concentrate on epigenetics in 
SLE. There are a number of studies reporting that autoreac-
tive T cells and B cells in patients with SLE have evidence of 
altered patterns of DNA methylation, modifications of histones 
and microRNA (miRNA). Long noncoding RNAs (lncRNAs) 
are another type of noncoding RNAs, which have an impor-
tant role in epigenetics. lncRNAs may possibly become a new 
hotspot in SLE.
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1. Introduction

Autoimmune diseases arise from the dysfunction of the 
immune system, which results in the inflammation and the 
damage of tissues and organs. Innate and adaptive immunity 
contribute to the mechanism of diseases (1). Systemic lupus 
erythematosus (SLE) is a multisystem autoimmune disease 
that is characterized by immune complex accumulation in 
blood vessels and connective tissue (2).

The etiology and pathogenesis of SLE remain to be eluci-
dated. It is believed that the etiological factors include the 
genetic susceptibility, environmental factors and epigenetics. 
Recent genome‑wide association studies (GWAS) and fine 
mapping of candidate genes or regions have considerably broad-
ened the understanding of this complex autoimmune disease. 
At present, >100 gene variations/alleles from different ethnici-
ties are known, which are genetic risk factors for lupus (3). 
Another study of GWAS of several thousand allelic variants 
(single nucleotide polymorphisms) in case‑control studies 
have identified >30 genes involved in SLE (4). Environmental 
factors, such as ultraviolent light, smoking and alcohol, have 
an important role in the pathophysiology of SLE (5). The 
combination of genetic abnormalities, environmental factors 
and their interactions contribute to the induction of SLE (6,7). 
Epigenetic dysregulation has recently been reported to have a 
critical role in the pathogenesis of SLE (8).

2. Epigenetics

Epigenetic information is carried chiefly by DNA itself, 
histones and noncoding RNAs (ncRNAs). It has been found 
that epigenetic dysregulation occurs generally in lupus.

3. DNA methylation abnormalities

DNA methylation is one of the epigenetic mechanisms. It 
suppresses gene expression by methylating the deoxycytosine 
base at the 5' position to form deoxymethylcytosine (9). DNA 
hypomethylation, an epigenetic modification, can influence 
gene expression and has been implicated in the pathogenesis of 
SLE. The gene can lead to decreased or silenced gene expres-
sion by the methylation of C‑G dinucleotides (CpG) (10,11). 
Lupus patients exhibit global T‑cell hypomethylation  (12). 
The genes include a number of autoimmune‑related genes, 
such as ITGAL [cluster of differentiation 11a (CD11a)] and 
TNFSF7  (CD70)  (13,14). CD11a, perforin and the KIR 
genes were overexpressed in patients with active, but not 
inactive, lupus, and the same sequences demethylated in 
proportion to disease activity and gene overexpression in these 
patients (15,16). CD4+ T cells from idiopathic SLE patients 
are significantly hypomethylated compared to healthy control 
CD4+ T  cells  (17). The X chromosome of SLE women is 
demethylated, which may be the reason of the predominance 
of SLE in women (18,19). A genome‑wide DNA methylation 
study in CD4+ T cells in lupus patients compared to normal 
healthy controls identified that there are 105 hypermethylated 
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and 236  hypomethylated  CG sites in the 27,578  CG sites 
located within the promoter regions of 14,495 genes  (20). 
There is another study regarding genome‑wide DNA meth-
ylation study in two independent sets of lupus patients and 
matched healthy controls, which characterized the DNA 
methylome in naïve CD4+ T cells in lupus. The study quanti-
fied for >485,000 methylation sites across the genome, and 
identified and replicated 86 differentially methylated CG sites 
between patients and controls in 47 genes, with the majority 
being hypomethylated through gene expression analysis from 
the same cells to investigate the association between the DNA 
methylation changes observed and mRNA expression levels. 
Significant hypomethylation has been observed to interfere on 
regulated genes in naïve T cells from lupus patients, including 
IFIT1, IFIT3, MX1, STAT1, IFI44L, USP18, TRIM22 and 
BST2, which suggested epigenetic transcriptional accessibility 
in these genetic loci (21). Hypomethylation of CpG sites within 
genes from different pathways has also been reported to be 
associated with anti‑double stranded DNA (dsDNA), anti‑SSA, 
anti‑Sm and anti‑ribonucleoprotein production in SLE (22). 
The plasma DNA of active SLE patients showed decreased 
methylation densities. The extent of hypomethylation corre-
lated with SLEDAI and the anti‑dsDNA antibody level. SLE 
patients had higher concentrations of immunoglobulin  G 
(IgG)‑bound DNA in plasma (23). The hypomethymethylation 
of plasma DNA may be accessible for IgG to bind DNA. DNA 
methylation mechanisms are involved in SLE.

4. Histone modifications and SLE

Histones are a group of proteins wrapping the DNA to form 
the chromosomal structure nucleosome. The post‑translational 
modifications of histone proteins have been identified as one of 
the major epigenetic mechanisms in government of chromatin 
remodeling and gene expression through phosphorylation, 
acetylation, and methylation and so on (24). In CD4+ T cells 
of SLE patents, it has been identified that global histone H3 
and H4 are hypoacetylated and global histone H3K9 is 
hypomethylated. The results indicated that the modifications 
of histones are involved in the pathogenesis of SLE (25,26). 
Acetylated histones contribute to the immunostimulatory 
potential of neutrophil extracellular traps (NETs) in systemic 
lupus erythematosus (27). It was found that the histone acet-
yltransferases  (HATs) and histone deacetylases (HDACs) 
were abnormal in patients with active SLE (25). In another 
study, isoaspartic acid (isoAsp) was reported as a modifica-
tion that triggers B‑ and T‑cell autoimmunity to otherwise 
inert self‑peptides and T‑cell autoimmunity to otherwise inert 
self‑peptides (28). H2B is the only histone that has isoAsp 
modification, which has contributed to recognition of H2B by 
B cells and development of the antibodies to this particular 
histone (29). The specific post‑translational histone modifica-
tions of NETs could be immunogens and potential targets of 
lupus autoantibodies (30). Protein phosphatase 2A is involved 
in the regulation of the interleukin (IL)‑17 locus by enhancing 
histone H3 acetylation through a mechanism that involves acti-
vation of interferon regulatory factor 4. This process contributes 
to the pathogenesis of SLE (31). The inhibition of histone 
deacetylase can upregulate B‑cell microRNAs (miRNAs) that 
silence AICDA/Aicda (AID) and PRDM1/Prdm1 (Blimp‑1), 

contributing to B‑cell differentiation processes that underpin 
antibody and autoantibody responses in lupus MRL/Faslpr/lpr 
mice (32). HDAC inhibitors are also able to ameliorate renal 
lesions in lupus nephritis  (LN)  (33). A clinical study also 
showed that mycophenolic acid could upregulate the level of 
histone H3/H4 global acetylation by regulating HATs and 
HDACs in lupus CD4+ T cells and affected the histone H4 
acetylation and histone H3K4 tri‑methylation levels in the 
CD40L promoter region that inhibited the expression of 
CD40L, which indicates the potential epigenetic mechanism 
of therapeutic effects in SLE (34). The structural alterations 
and immunogenicity of histones following glycation and 
oxidation reactions are involved in the pathological process 
of SLE (35). Peroxynitrite‑modified H1 histone induced high 
titre antibodies and binding of SLE autoantibodies involved 
in SLE etiopathogenesis (36). 4‑Hydroxy‑2‑nonenal modified 
histone H2A may also become an antigenic stimulus for SLE 
autoantibodies (37). DNA methylation and histone modifica-
tions can regulate gene expression together. The transcription 
factor cAMP‑responsive element modulator‑α represses IL‑2 
expression through histone deacetylation and CpG‑DNA 
methylation in SLE T cells (21).

5. Noncoding RNAs and SLE

ncRNA were previously regarded as ‘junk and noise’; 
however, recently it was suggested that ncRNA has a critical 
role in physiological processes that maintain cellular and 
tissue homeostasis  (38‑40). ncRNAs are grouped into 
two major classes according to the transcript size: Small 
ncRNAs [<200 nucleotides (nt)], such as miRNAs, and long 
ncRNAs (≥200 nt). miRNAs have a role in regulating protein 
coding genes, such as the binding of transcription factors 
or enhancers to the cis‑regulatory elements, DNA meth-
ylation or histone modification status of the promoter (41). 
There are a number of studies regarding miRNAs in SLE. 
The peripheral blood mononuclear cells from patients with 
SLE exhibited increases in certain miRNAs (miR‑189, 
miR‑61, miR‑78, miR‑21, miR‑142‑3p, miR‑342, miR‑299‑3p, 
miR‑198 and miR‑298) and decreases in others (miR‑196a, 
miR‑17‑5p, miR‑409‑3p, miR‑141, miR‑383, miR‑112 and 
miR‑184)  (42). Profiling of the miRNAs expressed in the 
peripheral blood mononucleated cells (PBMCs) from 
lupus patients revealed that miR‑146a was underexpressed 
in SLE. A further study found that STAT1 was another 
target of miR‑146a, and there was a reverse correlation of 
miR‑146a levels with the expression of interferon‑inducible 
genes and SLE disease activity (43). miR‑3148 could target 
TLR7 through binding to its 3‑untranslated region (3'UTR), 
which may explain why the 3'UTR of TLR7 mRNA affects 
its expression in SLE  (44). miR‑125a was significantly 
downregulated in PBMCs from SLE patients and promote 
the secretion of CCL5 by SLE T cells (45). Recent studies 
showed that distinct expression patterns of miRNAs in 
peripheral blood leukocytes of SLE patients were associated 
with different autoantibodies in those SLE patients  (46). 
Another study reported that there were aberrant expression 
of miRNAs (particularly hsa‑miR‑371‑5p, hsa‑miR‑423‑5p, 
hsa‑miR‑638, hsa‑miR‑1224‑3p and hsa‑miR‑663) in the 
PBMCs of LN patients across different patients with different 
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ethnicities (47). miRNAs ‑21, ‑126 and ‑148a were upregu-
lated in CD4+ lupus T cells and there was decreased Dnmt1 
expression (48,49). miR‑21 was increased in CD4+ T cells 
from lupus‑prone mice. In SLE123 mice models bearing three 
lupus susceptibility loci from the NZM2410 lupus‑prone 
strain, backcrossed onto a C57BL/6 (B6) background, 
blocking miR‑21 expression decreased splenomegaly (50). 
A 27‑miRNA signature was identified in patients with SLE; 
19  miRNAs correlated with  disease  activity. A total of 
8 miRNAs were deregulated specifically in T cells and 4 in 
B cells. miR‑21 was upregulated and strongly correlated with 
SLE disease activity (51).

Long noncoding RNAs (lncRNAs) are another type of 
noncoding RNA, which have been studied recently. lncRNAs 
are defined as transcripts that are non‑protein coding 
transcripts >200 nt (52). lncRNA are classified into five cate-
gories, which are the sense, antisense, intronic, bidirectional 
lncRNAs and long intergenic ncRNAs (lincRNAs) (53). The 
functions of lncRNAs in the immune system have been found 
to be important regulators of the various biological processes 
in recent studies. lncRNAs have an important role in innate 
and adaptive immunity (54). SLE is a type of systemic auto-
immune diseases, which involves a complicated interaction 
between the innate and the adaptive immune system loss of 
immunological tolerance to self‑nuclear antigen, and anti-
body production (55). While there are less lncRNAs reported 
in SLE, the locations of certain lncRNAs have suggested 
their involvement in SLE. There are altered expression 
levels of certain lncRNAs in SLE. For example, linc0949 
and linc0597 were significantly decreased in patients with 
SLE compared with patients with RA and healthy control 
subjects. Linc0949 was associated with the SLEDAI‑2K 
score, complement component C3 level and organ damage. 
Linc0949 was decreased in LN patients (56). This lincRNA 
may become a biomarker of SLE. The BXSB mouse strain 
is an important model of glomerulonephritis observed in 
SLE. In this mice model, the Gas5 gene was underexpressed. 
Suppressed GAS5 may inhibit the cell cycle and apop-
tosis. Therefore, it is implicated in autoimmune diseases 
by leading promotion antigen exposure and production of 
autoantibodies (57). The GWAS have identified a region on 
chromosome 1q25 that is associated with SLE. The Gas5 
gene is an lncRNA, which is a prime candidate for the chro-
mosome 1q25 SLE locus. Therefore, the genetic evidence 
demonstrated that GAS5 is associated with the susceptibility 
of SLE  (58,59). Gas5 binds to the DNA‑binding domain 
of the glucocorticoid receptor  (GR) by acting as a decoy 
‘glucocorticoid response element (GRE)’, thus, competing 
with DNA GREs for binding to the GR (59). Therefore, we 
presume that Gas5 lncRNA may have an important role in the 
SLE patients who are insensitive to glucocorticosteroid treat-
ments. GAS5 lncRNA is itself required for mTOR inhibitor 
action (60). It may be involved in the effects of the tacrolimus 
treatment for SLE. NeST, formally known as Tmevpg1, is a 
lincRNA gene located adjacent to the IFN‑γ‑encoding gene 
in mice (Ifng) and humans (IFNG) (61). lincRNA NeST can 
upregulate the expression of the IFN‑γ gene in Th1 cells by 
recruiting H3K4 methyltransferase to the IFN‑γ locus (61). 
A previous study showed that the activity index for diffuse 
proliferative lupus nephritis (DPLN) was correlated with the 

value of the IFN‑γ/IL‑4 ratio. This indicates that IFN‑γ has 
a principal role in the development of DPLN (62). Another 
study showed that the expression of IFN‑γ was significantly 
higher in patients with DPLN (63). We hypothesized that 
NeST would be involved in the pathomechanism of prolifera-
tive LN.

6. Conclusion

Evidence has clearly suggested that epigenetic mechanisms 
are involved in the pathogenesis of SLE. Although signifi-
cant progress has been made in the field of epigenetics in 
SLE in the past decades, a number of questions remain to be 
elucidated. There are numerous studies regarding DNA meth-
ylation, histone modification and miRNAs. lncRNAs, which 
are relatively new, are important for discovering the different 
expression levels of lncRNAs and the mechanisms in patients 
with SLE.
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