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Abstract. The field of cancer epigenetics has been evolving 
rapidly in recent decades. Epigenetic mechanisms include 
DNA methylation, histone modifications and microRNAs. 
Histone modifications are important markers of function 
and chromatin state. Aberrant histone methylation frequently 
occurs in tumor development and progression. Multiple studies 
have identified that histone lysine methyltransferases regulate 
gene transcription through the methylation of histone, which 
affects cell proliferation and differentiation, cell migration 
and invasion, and other biological characteristics. Histones 
have variant lysine sites for different levels of methylation, 
catalyzed by different lysine methyltransferases, which have 
numerous effects on human cancers. The present review 
focused on the most recent advances, described the key func-
tion sites of histone lysine methyltransferases, integrated 
significant quantities of data to introduce several compelling 
histone lysine methyltransferases in various types of human 
cancers, summarized their role in tumor development and 
discussed their potential mechanisms of action.
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1. Introduction

Tumor initiation and progression were traditionally described 
as a consequence of genetic variations; breakthroughs in 
epigenetic mechanisms provided more evidence to show that 
epigenetic changes have critical roles in tumor development. 
Targeting epigenetics appears to be a promising therapy for 
cancer treatment. Several targeting epigenetic drugs for cancer 
patients have already obtained approval by the Food and Drug 
Administration (1).

As epigenetic markers, post-translational modification of 
histone, involving methylation, acetylation, phosphorylation as 
well as ubiquitination, SUMOylation, adenosine diphosphate-
ribosylation, deimination and proline isomerization, are critical 
determinants for tumor initiation and progression, which could 
be passed to daughter cells. A number of previous studies 
have demonstrated that histone modifications are important 
for the recruitment or activity of downstream effectors. As 
aberrant histone modifications are associated with divergent 
reactions, the present review focuses on histone methylation. 
Histone methylation was first described in 1964 by Murray (2), 
and frequently occurs at lysine and arginine residues at the 
N-terminals of H3 and H4. Histone methylation can engage in 
either gene activation or silencing depending on specific sites, 
which may result in the promotion of tumor development (3-5). 
The lysine residues can be either mono-, di- or tri-methylated, 
and only the arginine residues can be mono- or di-methylated, 
and this can have divergent effects on gene transcription (6-9).

As essential tools to ensure accomplished methylation, 
histone methyltransferases (HMTs) transfer methyl groups 
from S-adenosyl methionine to the lysine and arginine residues, 
which further affect gene transcription, chromatin compac-
tion and effector proteins binding (8,10,11). To date, histone 
methyltransferases has received much attention (Fig. 1), and 
~47% of previous studies regarding HMTs were associated 
with tumor development. Currently, 51 SET domain lysine 
HMTs, 1 non-SET domain lysine HMT (DOT1L) and 9 argi-
nine HMTs have been identified, and the majority of these are 
associated with cancer development  (11). Misregulation of 
HMTs shifts the balance of transcription and leads to changes 
in cell fate, resulting in tumor formation. The following are 
summaries of the current knowledge of certain histone lysine 
methyltransferases  (HKMTs) and their key sites, whilst 
exploring the relevance of HMTs and cancer development.
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2. Histone lysine methyltransferases

The HKMT family contains an evolutionarily conserved 
SET domain, which is defined as a 130-amino acid sequence 
carrying the two most-conserved sequence motifs ELXF/YDY 
and NHS/CXXPN. It catalyzes the site- and state-specific 
methylation of different lysine residues with relatively high 
substrate specificities. There have been 52 family members 
identified, including 51  SET domain lysine HMTs and 
1 non-SET domain lysine HMT, known as DOT1L (12).

Studies have verified that histone lysines 4, 9, 27, 36 and 
79 of histone H3 (H3K4, H3K9, H3K27, H3K36 and H3K79), 
and 20 of histone H4 (H4K20) may be methylated (Fig. 2). 
Methylation can take three forms: Mono-(me1), di-(me2) 
and tri-(me3) methylation. Each histone methylation has a 
function in regulating transcription and chromatin confor-
mation. H3K4me2/3, H3K9me1, H3K27me1, H3K36me3, 
H3K79me3 and H4K20me1 are generally enriched in active 
transcribed regions, while H3K9me2/3, H3K27me2/3  and 
H4K20me3 are associated with gene repression (13).

H3K9  methyltransferases G9a and SETDB1. Methylation 
of histone H3K9 is a well-conserved epigenetic marker for 
transcriptional silencing (14). Histone H3K9 methylation and 
DNA methylation can work together on the establishment 
and maintenance of heterochromatin (15). The methyltrans-
ferases responsible for histone H3K9 methylation are able to 
catalyze different substrates and lead to various results (16). 
These include Clr4/SUV39H1 (17), SUV39H2 (18), G9a (19), 
GLP/Eu-HMTase1 (20), ESET/SETDB1 (21), Riz1/PRDM2 (22) 
and CLLD8/KMT1F (23).

Among these HKMTs, G9a is critical for gene silencing and 
embryo development. Currently, aberrant regulation of G9a has 
been identified in a number of cancers (Fig. 3), and is involved 
in the control of cancer metabolism by maintaining the serine-
glycine biosynthetic pathway (24). In PC3 prostate cancer cells, 
knockdown of G9a significantly inhibits cell growth and induces 
cellular senescence, and higher G9a expression is associated 
with poorer prognosis in cancer patients (25). In addition, knock-
down of G9a promotes E-cadherin expression in claudin-low 
breast cancer (CLBC), and inhibited cell migration and invasion 
in CLBC and lung cancer (26,27). In ovarian cancer, higher 
G9a expression predicts a greater mortality of patients (28). In 
neuroblastoma, our previous study reported the importance of 
G9a in regulating the autophagy signaling pathway, knockdown 
of G9a inhibited cell growth and proliferation, and the activa-
tion of autophagy occurred (29). In acute myeloid squamous 
cell carcinoma and pancreatic adenocarcinoma, inhibition of 
G9a induced autophagy-related cell death (30,31). In glioma 
cancer, previous studies have identified that G9a-dependent 
H3K9me2  repressed cluster of differentiation  133  and 
Sox2 expression and in leukemia, and loss of G9a markedly 
delayed tumor progression and repressed ATRA‑mediated 
leukemia cell differentiation (32,33). Additionally, in head and 
neck cancer, G9a inhibited stem cell self-renewal (34). G9a was 
also upregulated in hepatocellular carcinoma (HCC) tissues, 
and cooperated with the H3K9 methylation effector protein 
CDYLb, which is involved in HCC development (35,36). In 
oesophageal squamous cell carcinoma, G9a may serve as an 
effective prognostic factor and be used as a biomarker (37).

Another key enzyme is SETDB1 (Fig. 3), which has been 
reported in numerous types of human cancer. SETDB1 was 
identified in 1999, and the activity of histone H3-K9‑specific 
methyltransferase was reported in 2002 (38,39). SETDB1 is 
recruited by various transcription factors to regulate gene 
expression, and is associated with the H3K9me3-enriched 
genome regions (40). As a constitutive member of promyelo-
cytic leukemia-nuclear bodies, SETDB1 has been linked to 
numerous cellular processes, such as apoptosis, DNA damage 
responses and transcriptional regulation (41). In melanoma, 
a study in zebrafish regarded SETDB1 as an oncogene, and 
indicated its role in regulating tumorigenesis (42). SETDB1 was 
upregulated in cell lines and tissues in a number of human 
carcinomas, for example, non-small and small lung cancer, 
glioma and prostate cancer. In non-small and small lung cancer, 
recent studies have shown that knockdown of SETDB1 reduced 
lung cancer cell growth in vitro and in vivo, and overexpres-
sion of SETDB1 promoted cancer cell invasiveness (43-46). 
In glioma, suppression of SETDB1 by siRNA significantly 
reduced cell proliferation (47). In prostate cancer, downregu-
lation of SETDB1 by siRNA inhibited PCa cell proliferation, 
migration and invasion  (48). Another study reported that a 
microRNA, known as miR-7, directly targeted SETDB1, and 
inhibited breast cancer stem cell (CSC) invasion and metastasis, 
and decreased the breast CSC population, which suggested that 
SETDB1 activity is important in breast cancer (49).

H3K27 methyltransferase zeste protein-2 (EZH2). Methylation of 
histone H3K27 is correlated with transcriptional repression (50). 
Enhancer of EZH2, as a catalytic component of the polycomb 
repressive complex 2, catalyzes histone H3K27 tri-methylation. 
To date, >300 studies have reported a close correlation between 
EZH2  and 46  types of human cancer  (Fig.  4). EZH2  is 
commonly overexpressed in the majority of common cancers, 
and high EZH2 expression is a prognostic indicator of poor 
survival. In breast cancer, downregulation of EZH2 blocks the 
cell cycle, and suppresses cell growth and survival (51-54). In 
prostate cancer, knockdown of EZH2 inhibits cell proliferation 
and invasion (55-57). In glioma stem cells, EZH2 is a known 
target of the MELK‑FOXM1 complex, having a critical role 
in promoting resistance to radiation (58). In glioma and clear 
cell renal cell carcinoma, downregulation of EZH2 expression 
can reduce cell proliferation and increase cell apoptosis (59,60). 
Furthermore, in non small-cell lung cancer, EZH2 silencing 
alters the cell cycle by inducing G2/M arrest (61). In lymphoma, 
overexpression of EZH2  promotes the proliferation and 
aggressiveness of neoplastic cells, facilitates malignant tumor 
cell diffusion and mediated transcriptional silencing  (62). 
Additionally, knockdown of EZH2 induces RUNX expression 
to further inhibit cell proliferation in gastric, breast, prostate, 
colon and pancreatic cancer cells (63). Furthermore, EZH2 is 
important in other types of cancer, including malignant 
peripheral nerve sheath tumor (64), medulloblastoma (65) and 
lung adenocarcinoma (66).

H3K4 methyltransferase SMYD3. Methylation of H3K4, as 
an epigenetic phenomenon conserved from yeast to human, is 
extremely important for transcriptional initiation. It recruits 
proteins for transactivation, and has reverse functionally to 
H3K9 methylation. As a common marker of activated genes, 
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H3K4 tri-methylation provides an epigenetic signature of active 
enhancers (67). H3K4 methyltransferases include the mixed 
lineage leukemia (MLL) family (68), SET1A/B (69), absent, 

small or homeotic disks 1‑like (ASH1L) (70), ASH2L (71), 
SET and MYND domain-containing protein 3 (SMYD3) (72), 
SET7/9  (73), and SMYD1  (74). However, in mammals, 
≥6 H3K4 methyltransferases, including Set1A and Set1B and 
MLLs 1-4, exhibit histone methyltransferase activity (68).

As cardiac- and muscle-specific histone methyltransfer-
ases, except for the regulation of early heart development, 
the oncogenic role of SMYD3 has been identified in different 
types of cancer. In colorectal cancer, HCC and esophageal 
squamous cell carcinoma, knockdown of SMYD3 impairs cell 
proliferation (75-77). Similarly to CRC and HCC, in breast 
cancer, silencing of SMYD3 also inhibits cell growth, and 
SMYD3 promotes breast carcinogenesis by directly regulating 
the protooncogene WNT10B (78). In cervical carcinoma cells 
and prostate cancer, reduction of SMYD3 expression by doxy-
cycline or small hairpin RNA is able to significantly inhibit 
cell proliferation, colony formation and migration/invasion 
activity (79,80).

H3K36 methyltransferases. H3K36 methylation is an indicator 
of transcriptional elongation, and H3K36 methyltransferases 
contain nuclear receptor binding SET domain-containing 
protein 1 (NSD1), NSD2, NSD3 (81), SMYD2 and SETD2 (82). 
These are involved in diverse biological processes, including 

Figure 1. Published studies of histone methyltransferases associated with cancer. In the past few decades, the number of published studies of histone methyl-
transferases that are associated with cancer has significantly increased.

Figure 2. Function sites of histone methyltransferases. The histone methyltransferases can catalyze the methylation of histone lysine 4, 9, 27, 36 and 79 of 
histone H3 (H3K4, H3K9, H3K27, H3K36 and H3K79), and 20 of histone H4 (H4K20).

Figure 3. Types of cancer associated with H3K9-specific methyltransferases 
G9a and SETDB1. Two H3K9 methyltransferases, G9a and SETDB1, have 
been identified to have a critical role in a variety of tumors. H3K9, histone 
lysine 9 of histone H3.



LI et al:  HISTONE METHYLTRANSFERASES; TUMOR DEVELOPMENT296

alternative splicing and transcriptional repression, as well as 
DNA repair and recombination (83).

The NSD family is known to be involved in multiple types of 
cancer, and knockdown of NSD members would suppress cell 
proliferation and tumor growth. NSD1 specifically mediates 
methyl transfer onto H3K36 and H4K20. In prostate cancer, 
NSD1 can enhance androgen receptor transactivation and is 
associated with prostate tumorigenesis (84,85). In neuroblas-
toma, overexpression of NSD1 induces tumor suppressor-like 
features, such as reduced colony formation density and inhib-
ited cell growth (86). NSD1 has been reported in numerous 
types of cancer, including multiple myeloma (87), acute myeloid 
leukemia (88,89), lung cancer (90,91) and ganglioglioma (92). 
SETD2 is a novel tumor suppressor, which is responsible for 
H3K36me3 reduction, further resulting in tumor growth inhibi-
tion. Mutated SETD2 has been frequently identified in human 
leukemia, thymic carcinoma (93), renal cell carcinoma (82,94), 
non-small cell lung cancer (95) and pediatric glioma (96).

H3K79  methyltransferases. In general, H3K79  methyla-
tion correlates with gene transcription (97,98). Disrupter of 
telomeric silencing 1 (DOT1), the only known H3K79 meth-
yltransferase, participates in the regulation of transcription, 
development, differentiation and proliferation of normal 
cells (99). However, the role of DOT1L in cancer cells remains 
to be elucidated. Dot1 has been shown to interact with multiple 
MLL fusion partners including AF9, 11-19-leukemia protein, 
AF10  and AF17. In clinically aggressive acute leukemia, 
it may be involved in cell survival pathways, and loss of 
Dot1 activity attenuates cell viability and the colony forma-
tion ability (100). However, in lung cancer, downregulation of 
DOT1L reduces cell proliferation and led to cell cycle arrest at 
the G1 phase (101).

H4K20 methyltransferases. Methylation of H4K20 has been 
implicated in multiple biological processes, such as gene 

transcriptional regulation, cell cycle control, development 
and genomic integrity maintenance  (102,103). Mono‑ and 
di-methylated H4K20 have been attributed to DNA replica-
tion, DNA damage repair and chromatin compaction. Lack 
of H4K20me1  results in chromosome condensation in the 
interphase nucleus. Tri-methylation of H4K20 is required for 
silencing heterochromatic regions (104).

H4K20  methyltransferases include SUV4-20H1  and 
SUV4-20H2 (104), PR-Set7/Set8/KMT5A (105), NSD1 (106) 
and NSD2/WHSC1/MMSET  (107). SUV4-20H1  and 
SUV4‑20H2 mediate H4K20me2 and H4K20me3, NSD2 medi-
ates methyl transfer onto H3K4 and H4K20, and PR-Set7 is 
known as the sole enzyme that catalyzes H4K20me1 (108). 
In breast cancer cells, overexpression of SUV420H1  and 
SUV420H2 suppresses cell invasiveness, whereas knockdown 
of SUV420H2 activates normal mammary epithelial-cell inva-
sion in vitro (109).

3. Conclusion

HMTs have become more important in epigenetics and cancer 
in recent years. There appear to be numerous connections 
between SET-domain proteins and cancer. HKMTs are impor-
tant in regulating gene transcription, which may lead to various 
human malignancies. Among these key sites, H3K9  and 
H3K27 occupy the majority of the active proteins. Although the 
functions of HMTs have been explored extensively, the down-
stream and pathological mechanisms remain to be elucidated.

The present review summarizes the current understanding 
of HMTs, provides a platform for exploring potential therapy 
targets through histone modifications, and provides insights 
into a potential role of aberrant histone modifications in 
various human malignancies. The aforementioned methylation 
accumulated the complexity of histone modifications, which 
provides new insights of these functions in different patterns 
and their involvement in additional diseases.

Figure 4. Types of cancer associated with H3K27-specific methyltransferase zeste protein-2 (EZH2). The H3K27 methyltransferase EZH2 is involved in 
46 types of cancer. H3K27, histone lysine 27 of histone H3.
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Previous studies have provided knowledge about epigen-
etic heredity, a process whereby genetic information can be 
preserved through modifications to chromatin without altering 
DNA nucleotide sequences. Future studies may be able to 
uncover the molecular mechanisms of histone modifiers, and 
further studies could perform screening of downstream genes 
by chromatin immunoprecipitation assays and microarrays 
to identify the specific target genes and their roles in cancer 
therapy. This may improve clinical outcomes or predict treat-
ment outcomes for cancer patients.
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