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Abstract. Accumulating evidence has established that peri-
odontitis was an independent risk factor for coronary heart 
disease (CAD). Porphyromonus gingivalis (P. gingivalis), a 
major periodontal pathogen, has already been shown to have a 
significant role in the inflammatory response of CAD in vivo. 
The aim of the present study was to identify whether P. gingi‑
valis heat-shock protein 60 (HSP60) induced the dysfunction 
of human umbilical vein endothelial cells (HUVECs) in vitro. 
HUVECs were stimulated with a range of P. gingivalis HSP60 
concentrations (1, 10 and 100 ng/l) at different time-points. 
The levels of vascular endothelial (VE)-cadherin, endothelial 
nitric oxide synthase (eNOS) and cysteinyl aspartate‑specific 
protease-3 (caspase-3) were measured using western blot 
analysis. The apoptotic rate of HUVECs was detected using 
flow cytometry. P. gingivalis HSP60 at a concentration 
of 10 ng/l significantly decreased the expression levels of 
VE-cadherin and eNOS protein at 24 h stimulation, whereas 
no difference in these proteins was identified following a low 
dose of P. gingivalis HSP60 (1 ng/l). P. gingivalis HSP60 at 
100 ng/l significantly downregulated the expression levels of 
VE-cadherin and eNOS protein at 12 h in HUVECs. However, 
the cleavage of caspase-3 showed an opposing change at 
different concentrations. Consistently, P. gingivalis HSP60 
induced apoptosis of HUVECs in a concentration-dependent 

manner. These results indicated that P. gingivalis HSP60 may 
induce dysfunction and apoptosis in HUVECs via downregu-
lating the expression levels of VE-cadherin and eNOS, and 
promoting the cleavage of caspase-3.

Introduction

Previous studies indicated that periodontitis may be associ-
ated with a higher risk of coronary heart disease (CAD) (1-4), 
independent of established cardiovascular risk factors. 
Periodontitis is a chronic tissue‑destruction inflammatory state 
that is predominantly induced by Porphyromonus gingivalis 
(P. gingivalis) in the gingival pockets of certain individuals 
with advanced and severe periodontal disease.

P. gingivalis may promote transient bacteremia during 
tooth brushing, chewing or dental procedures (5-7). Certain 
studies have identified that P. gingivalis was detected 
frequently in atheromatous plaques of the aorta and coro-
nary artery, and it was reported to perpetuate systemic 
inflammation (8-10). Additionally, P. gingivalis induces 
macrophage foam cell formation (11) and stimulates oxida-
tion of low-density lipoprotein (12). Certain studies show 
that P. gingivalis lipopolysaccharide (LPS) could induce the 
expression of intercellular adhesion molecule 1 and vascular 
cell adhesion molecule 1 in human umbilical vein endothe-
lial cells (HUVECs) (13,14), which significantly enhances 
trans‑endothelial migration of inflammatory cells.

Furthermore, atherosclerosis can be triggered and 
aggravated by the pathogen-driven antigenic peptide from 
P. gingivalis heat-shock protein 60 (HSP60) (15-17). An overall 
55% homology exists between human and bacterial HSP60 that 
can even reach 72% at certain domains of the 573-amino-acid-long 
molecule (18). P. gingivalis HSP60 is reported to accelerate the 
development of experimental atherosclerosis by cross-reactivity 
of the immune response to bacterial HSPs (19). However, 
Jeong et al (20) found that P. gingivalis HSP60 peptides 
have distinct roles in the development of atherosclerosis; 
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peptide 14 or 19 from P. gingivalis HSP60 may have either 
an anti- or pro-atherogenic role, respectively, in the ApoE(-/-) 
mouse model of infection-triggered atherosclerosis through 
distinct mechanisms operating in the polarization of T cells. 
Additionally, in a clinical study, a strong positive correlation 
was found between high levels of soluble HSP60 and the 
risk of CAD (21). Soluble HSP60 levels directly correlate 
with the presence of classic risk factors of atherosclerosis, 
such as elevated low-density lipid cholesterol levels, and with 
particular proinflam¬matory markers, such as tumor necrosis 
factor-α (22).

However, the potential pathways linking periodontitis and 
cardiovascular disease remain to be elucidated (23-25) and the 
underlying molecular mechanisms from P. gingivalis HSP60 
regarding the association between periodontitis and athero-
sclerosis require further investigation. In the present study, the 
aim was to investigate whether P. gingivalis HSP60 treatment 
leads to the dysfunction of HUVECs directly by affecting the 
protein expression levels of endothelial nitric oxide synthase 
(eNOS) and vascular endothelial (VE)-cadherin.

Materials and methods

Cell culture. HUVECs were kindly provided as a gift by 
Dr Yun Mu (Tianjin Medical University, Tianjin, China). Cell 
culture media and supplements were purchased from Gibco 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). Fetal 
bovine serum (FBS) was purchased from Gibco (Thermo 
Fisher Scientific, Inc.). P. gingivalis HSP60 was purchased 
from Hongling Longcheng Technology Co., Ltd. (Beijing, 
China). The cells were cultured in RPMI-1640 medium 
supplemented with 10% FBS at 37˚C in a humidified incubator 
with 5% CO2. The culture medium was exchanged every 48 h. 
HUVECs up to passage 6 were used for the experiments.

Cell viability. Cell viability was determined using the MTT 
assay. HUVECs were seeded in 96-well culture plates at a 
density of 0.5x104 cells/well and incubated overnight at 37˚C. 
Following treatment with P. gingivalis HSP60 at different 
concentrations (1, 10 and 100 ng/l), cells were incubated with 
5 mg/ml MTT for 24 h. Subsequently, the MTT-containing 
growth medium was replaced with 100 µl of dimethyl sulf-
oxide (DMSO) and mixed thoroughly for 10 min. The optical 
density readings of each well were determined at 570 nm 
using a microplate reader (ELx808; BioTek Instruments, Inc., 
Winooski, VT, USA). The effect of P. gingivalis HSP60 on 
cell viabilities was expressed as the percentage of viable cells 
in the treated groups compared to the DMSO control. Values 
[mean ± standard deviation (SD)] are from three independent 
experiments.

Sodium dodecyl sulfate‑polyacrylamide gel electrophoresis 
(SDS‑PAGE) and western blot analysis. The cell layer was 
washed with 3 ml of phosphate-buffered saline (PBS) twice. 
Following treatment (1, 10 and 100 ng/l P. gingivalis HSP60 
for 2, 6, 12 or 24 h), the cells were homogenized in an ice 
bath using sonification (3 times for 15 sec, 50 Hz) with 1 ml 
of radioimmunoprecipitation assay lysis buffer containing 
400 µl of protease inhibitors of phenylmethylsulfonyl fluo-
ride (Thermo Fisher Scientific, Inc.). The homogenate was 

collected and centrifuged at 12,000 x g for 15 min, and the 
supernatant was used as a lysate for further determinations. 
Protein concentration was determined by the BCA™ protein 
assay kit (Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. Western blot analysis was performed 
as described previously (26). Equal amounts of cellular protein 
(30 µg) underwent electrophoresis on a gradient SDS-PAGE 
(4-10% gel) and the samples were electrotransferred onto 
nitrocellulose membranes in a buffer consisting of 25 mM Tris, 
192 mM glycine and 20% methanol (pH 8.4) for 2 h at a constant 
voltage (100 V) with cooling. The following primary antibodies 
were used for blotting: β-actin (cat. no. M20010; monoclonal 
mouse anti-human; 1:500; Abmart, Inc., Berkeley Heights, NJ, 
USA), VE-cadherin (cat. no. SAB1306131; polyclonal rabbit 
anti-human; 1:500; Sigma-Aldrich, St. Louis, MO, USA), eNOS 
(cat. no. SAB4502013; polyclonal rabbit anti-human; 1:5,000; 
Sigma-Aldrich), caspase-3 (cat. no. C9598; polyclonal rabbit 
anti-human; 1:500; Sigma-Aldrich) and cleaved caspase-3 
(cat. no. SAB4503294; polyclonal rabbit anti-human; 1:500; 
Sigma-Aldrich). The secondary antibodies include IRDye 
(1:3,000; Abmart, Inc.). Immunocomplexes were detected 
using the ECL western blotting detection kit (GenMed, Inc., 
Houston, TX, USA). All the other reagents were purchased 
from Sigma‑Aldrich. The specific proteins were visualized by 
an Odyssey™ infrared imaging system (LI-COR, Inc., Lincoln, 
NE, USA).

Flow cytometry analysis for apoptosis quantification. Following 
the designated treatment (1, 10 and 100 ng/l P. gingivalis 
HSP60), annexin V-fluorescein isothiocyanate-conjugated 
(FITC)/propidium iodide (PI) apoptosis detection kit (Invitrogen, 
Thermo Fisher Scientific, Inc.) was used according to the 
manufacturer's protocol. In brief, the cells were centrifuged at 
300 x g for 5 min, washed with cold PBS, and resuspended in 
100 µl of binding buffer. Annexin V-FITC (5 µl) and PI (5 µl) 
were added to each sample, and the mixture was incubated 

Figure 1. Viabilities of HUVECs following P. gingivalis HSP60 treatment at 
various concentrations for 24 h. Data are expressed as % viability to that of 
the controls. Values are mean ± standard deviation, n=3. Compared to 1 ng/l 
P. gingivalis HSP60-treated HUVECs, P=0.004 for 10 ng/l and P<0.001 
for 100 ng/l. Compared to 10 ng/l P. gingivalis HSP60-treated HUVECs, 
P=0.035 for 100 ng/l. OD, optical density; P. g, Porphyromonus gingivalis; 
HSP60, heat-shock protein 60; HUVECs, human umbilical endothelial cells.
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at 4˚C in the dark for 15 min. The cells were immediately 
subjected to fluorescence‑activated cell sorting analysis (BD 
Accuri C6; BD Biosciences, San Jose, CA, USA) within 1 h. For 
cells in the early apoptotic stage, membrane phosphatidylserine 
was exposed and combined with annexin V. The cells were 
stained with annexin V with no PI fluorescence and recorded as 
annexin V (+)/PI (-). The membranes of dead cells and cells in 
the late apoptotic stage were permeable to PI. These cells were 
stained with annexin V and PI and were recorded as annexin V 
(+)/PI (+). Finally, annexin V (+)/PI (-) and annexin V (+)/PI (+) 
cells were detected under flow cytometry, and the percentages 
of the total number of cells in each group were compared.

Statistical analysis. Statistical analyses were performed with 
SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA). Results are 
provided as mean ± SD. One-way or two-way analysis of vari-
ance tests were applied to compare the different groups. P<0.05 
was considered to indicate a statistically significant difference.

Results

P. gingivalis HSP60 inhibits the proliferation of HUVECs. To 
examine the effects of P. gingivalis HSP60 on HUVECs, the 
HUVECs were first treated with different concentrations of 
P. gingivalis HSP60, and the cell viability was detected using 
the MTT assay. P. gingivalis HSP60 at 1, 10 and 100 ng/l 
significantly altered the viability of HUVECs (P<0.05) (Fig. 1).

P. gingivalis HSP60 downregulates the expression levels of 
eNOS and V-cadherin in HUVECs. HUVECs were incubated 
with P. gingivalis HSP60 (1, 10 and 100 ng/l) at different 
time-points (2, 6, 12 and 24 h) and the levels of VE-cadherin 
and eNOS were detected by western blot analysis. The expres-
sion levels of VE-cadherin and eNOS proteins were comparable 
in HUVECs treated with 1 ng/l of P. gingivalis HSP60. The 
protein expression levels of eNOS at 24 h following treatment 

with P. gingivalis HSP60 (10 ng/l) were significantly decreased 
as compared with those at 2, 6 and 12 h (Fig. 2A), and the 
protein expression level of VE-cadherin had an opposing 
effect (Fig. 2B). Additionally, HUVECs treated with P. gingi‑
valis HSP60 (100 ng/l) exhibited a significantly lower eNOS 
protein expression level following 12 h of treatment in contrast 
to the levels at 2 and 6 h (Fig. 2C), and the protein expression of 
VE‑cadherin was significantly decreased after 12 h (Fig. 2D). 
Taken together, these results provide evidence that P. gingivalis 
HSP60 may lead to endothelial dysfunction by the regulation of 
VE-cadherin and eNOS protein expression levels.

P. gingivalis HSP60 upregulates the expression of caspase‑3 
and induces apoptosis of HUVECs in a concentration‑depen‑
dent manner. Caspase-3 was detected by western blot analysis. 
The expression of the cleavage of caspase-3 at 24 h was 
significantly increased as compared with that of 2, 6 and 12 h 
treatment with P. gingivalis HSP60 (10 ng/l) (Fig. 3A), and 
when HUVECs were treated with P. gingivalis HSP60 at 
100 ng/l, the expression of the cleavage of caspase-3 at 
12 h was significantly increased as compared with that at 
2 and 6 h (Fig. 3B). The apoptosis of HUVECs was analyzed 
by annexin V/FITC staining, as shown in Fig. 3C and D. The 
percentage of total apoptotic cells was 3.86±0.60, 5.52±0.82, 
22.99±2.28 and 27.11±3.87% in cells untreated and cells 
treated with 1, 10 and 100 ng/l of P. gingivalis HSP60, 
respectively. These results showed that P. gingivalis HSP60 
(1, 10 and 100 ng/l) stimulation for 24 h significantly increased 
the apoptotic rate and induced significant apoptosis on 
HUVECs in a concentration-dependent manner.

Discussion

There is increasing evidence that P. gingivalis has a key role 
in contributing to the progression of atherosclerosis (8-11). 
According to a recent study, LPS of P. gingivalis may induce 

Figure 2. Effects of P. gingivalis HSP60 on the protein expression levels of eNOS and VE-cadherin at different time-points. The HUVECs were cultured with 
P. gingivalis HSP60 stimulation (10 and 100 ng/l) at different time-points (2, 6, 12 and 24 h). Effects of P. gingivalis HSP60 (10 ng/l) on protein expression 
levels of (A) eNOS and (B) VE-cadherin at different time-points. Effects of P. gingivalis HSP60 (100 ng/l) on protein expression levels of (C) eNOS and 
(D) VE-cadherin at different time-points. P.g, Porphyromonus gingivalis; HSP60, heat-shock protein 60; eNOS, endothelial nitric oxide synthase; VE, vascular 
endothelial; HUVECs, human umbilical endothelial cells.
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arterial endothelial cell apoptosis and the expression of 
adhesion molecules in endothelial cells in vitro, which may 
promote atherogenesis (27). Although the P. gingivalis-induced 
dysfunction of HUVECs, including LPS and the immunological 
mechanism, are well established, little is known regarding the 
mechanisms involved in P. gingivalis HSP60. The association 
between P. gingivalis HSP60 stimulation and HUVEC 
dysfunction and associated mechanisms are insufficient and 
require further analysis. The present study assessed the impact 
of P. gingivalis HSP60 on HUVECs. The results proved 
that co-culture of HUVECs with P. gingivalis HSP60 led to 
decreased viability of HUVECs, as determined by the MTT 
assay.

As endothelial dysfunction and apoptosis are vital factors 
in the progression of atherosclerosis, the associated mecha-
nisms of P. gingivalis HSP60 on the induction of HUVECs 
dysfunction and apoptosis were investigated in the present 
study. The data showed that P. gingivalis HSP60 downregu-
lated the expression level of the eNOS protein, which is able 
to modulate the biologically active gas production of NO. 
Endothelium-derived NO has an important physiological role 
in the regulation of vascular tone, and endothelial cell survival 
and migration (28,29).

Additionally, similar influences of VE‑cadherin expression 
were observed in P. gingivalis HSP60-treated HUVECs. 
VE-cadherin is localized to the adherens junctions, associating 
with α-catenin, β-catenin, p120-catenin and plakoglobin via 
its cytoplasmic domains. It has previously been reported that 
VE-cadherin, as a major regulator of adherens junctions, in 
particular has an essential role in the regulation of endothelial 
cell permeability (30-32), migration and assembly of new blood 

vessels. Loss of entire VE-cadherin or a lack of its cytoplasmic 
domain induced endothelial apoptosis and prevented normal 
vascular development in vivo (33). VE-cadherin is an endothelial 
cell‑specific adhesive molecule for the integrity of endothelial 
cell contacts (31). VE‑cadherin has significant functions in the 
processes of atherosclerosis (33). Thus far, there have been limited 
studies regarding VE-cadherin expression when HUVECs 
were treated with P. gingivalis HSP60. Information is limited 
regarding the mechanisms of P. gingivalis HSP60-induced 
atherosclerosis involving the expression of VE-cadherin. The 
present data identified that VE-cadherin may be one of the 
factors leading to endothelial dysfunction.

Additionally, the present results showed that P. gingi‑
valis HSP60 induced significant apoptosis of HUVECs 
in a concentration-dependent manner, as shown by the 
annexin V-FITC/PI assay. Apoptosis is primarily mediated 
by the activity of caspases. The extrinsic apoptotic pathway 
involves binding of specific ligands to membrane-bound 
death receptors, such as Fas/cluster of differentiation 95, 
which in turn activates caspase-8, facilitating the subsequent 
activation of terminal effector caspases, such as caspase-3, 
-6 and -7 (34,35). Thus, caspase-3 is pivotal to the death process. 
Furthermore, P. gingivalis HSP60 was also found to a certain 
extent to induce HUVECs apoptosis through a mechanism 
that involved caspase-3 activation. It was proved that apoptosis 
of VE cells resulted in the loss of endothelial integrity, and was 
a risk factor of atherosclerosis. Therefore, the present study 
verified the mechanism of P. gingivalis HSP60, which led to 
atherosclerosis by further accelerating apoptosis in HUVECs.

In conclusion, taken together with the results of other studies, 
we hypothesize that P. gingivalis HSP60 has an essential role in 

Figure 3. Effects of P. gingivalis HSP60 on the protein expression of cleaved caspase-3 protein and apoptosis of HUVECs induced by P. gingivalis HSP60. 
The HUVECs were cultured with P. gingivalis HSP60 stimulation (10 and 100 ng/l) at different time-points (2, 6, 12 and 24 h). Effects of P. gingivalis 
HSP60 (10 and 100 ng/l) on protein expression of (A and B) cleaved caspase-3 at different time-points. (C and D) Measurement of apoptotic cells treated with 
P. gingivalis HSP60 (1, 10 and 100 ng/l) for 24 h was performed. Data are shown as mean ± standard deviation of three independent experiments. *P<0.05 and 
**P<0.01 vs. early apoptosis in the control; #P<0.05 and ##P<0.01 vs. late apoptosis in the control; &P<0.05 and &&P<0.01 vs. total apoptosis in the control. P. g, 
Porphyromonus gingivalis; HSP60, heat-shock protein 60; HUVECs, human umbilical endothelial cells.
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the dysfunction of HUVECs via the mechanism of regulating 
eNOS and VE-cadherin expression levels, as well as apoptosis 
by activating caspase‑3 in a unique manner. These findings 
provide new mechanistic insights into the effect of P. gingivalis 
HSP60 on HUVECs and the associated pathogenesis of cardio-
vascular disease and periodontitis. Further study is required 
to determine the pathway of the P. gingivalis HSP60-induced 
decreased expression of VE-cadherin and eNOS.
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