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Abstract. Cushing's disease (CD) is a severe (and potentially 
fatal) disease caused by adrenocorticotropic hormone 
(ACTH)‑secreting adenomas of the pituitary gland (often 
termed pituitary adenomas). The majority of ACTH‑secreting 
corticotroph tumors are sporadic and CD rarely appears as 
a familial disorder, thus, the genetic mechanisms underlying 
CD are poorly understood. Studies have reported that various 
mutated genes are associated with CD, such as those in 
menin 1, aryl hydrocarbon receptor‑interacting protein and 
the nuclear receptor subfamily 3 group C member 1. Recently 
it was identified that ubiquitin‑specific protease 8 mutations 
contribute to CD, which was significant towards elucidating 
the genetic mechanisms of CD. The present study reviews the 
associated gene mutations in CD patients.
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1. Introduction

Cushing's disease (CD) is a severe (and potentially 
fatal) disease caused by adrenocorticotropic hormone 
(ACTH)‑secreting adenomas of the pituitary gland [often 
termed pituitary adenomas (PAs)], and constitutes 10‑15% of 
all PAs worldwide  (1). Excess secretion of ACTH in CD 
results in the following symptoms: Central obesity, hirsutism, 
glucose intolerance and osteoporosis. Since their first descrip-
tion in 1932 (2), the pathogenesis of tumors of the pituitary 
gland has not been elucidated, which has hindered the early 
diagnosis of many cases of PA.

Generally, PAs result from clonal expansion of somatic 
mutated cells (3). Studies have suggested that ~40% of sporadic 
PAs are associated with somatic mutations of genes  (4). 
Germline mutations in genes also predispose individuals to 
PAs (5). Thus, tumorigenesis in the pituitary gland may be 
explained by gene mutation.

Recent studies have demonstrated that mutations in the 
aryl hydrocarbon receptor‑interacting protein (AIP) gene, 
and Carney complex and multiple endocrine neoplasia type 1 
(MEN1) are associated with sporadic PAs (6,7). Disruption in 
the balance of pituitary‑secreting hormones as a result of gene 
mutation may result in severe‑to‑fatal consequences. Therefore, 
identification of relevant gene mutations is particularly useful 
in the early diagnosis of CD, and for genetic counseling of CD 
patients.

It has been suggested that CD may be a consequence of 
hereditary disease  (8). Previous studies revealed genetic 
factors to be involved in CD (9,10). Recently, a review by 
Perez‑Rivas and Reincke (11) specified the roles of mutations 
in ubiquitin‑specific protease 8 (USP8) in CD. In the present 
study, the gene mutations that have been reported in CD 
patients are reviewed.

2. Menin 1 (MEN1) mutation

MEN1 is composed of 10  exons, is located in chromo-
some 11q13 and encodes a 610‑amino acid menin protein. 
Bassett et al (12) identified 47 mutations in the coding exons 
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of MEN1 as follows: 12 Nonsense mutations, 21 deletions, 
7 insertions, 1 donor splice‑site mutation and 6 missense muta-
tions. The authors suggested that 80% of these mutations were 
likely to be inactivating (12). Mutations in MEN1 have been 
found to be associated with pancreatic endocrine tumors (13). 
Furthermore, inactivating mutations of MEN1 lead to a familial 
disorder termed MEN1, of which one common component is 
CD (14). Thus, it has been speculated that mutations in MEN1 
may also participate in CD. Stratakis et al (5) reported that 
two mutations of MEN1 (a deletion mutation and p.Arg415X) 
were identified in CD patients. Matsuzaki et al (15) reported 
an R460X mutation in MEN1 in a Brazilian subject with 
early‑onset CD and his sister. A heterozygote C→T transition 
was detected at codon 460 in exon 10 in MEN1, which converts 
codon 460 CGA (Arg) to a stop codon TGA (15). Thus, muta-
tions in MEN1 lead to the early clinical manifestations of 
MEN1, and are involved in CD. Furthermore, these findings 
confirm the hereditary characteristics of CD.

3. Nuclear receptor subfamily  3 group  C member  1 
(NR3C1) mutation

Perfect balance in the requirement and secretion of glucocor-
ticoid hormones (which is maintained by feedback from the 
hypothalamic‑pituitary‑adrenal‑axis) is critical for the regula-
tion of glucose metabolism and the feedback mechanism in the 
immune system.

CD patients share the characteristics of resistance to gluco-
corticoids and unresponsiveness to normal glucocorticoid 
negative feedback (16). However, somatic mutations of NR3C1, 
or dysfunction of genes associated with glucocorticoid receptor 
function, are rarely found in CD (5). However, Karl et al (10) 
reported a novel heterozygous missense mutation in NR3C1 
in a CD patient. The authors found that the mutation occurs 
in exon 5 of the coding region of NR3C1 in lymphoblasts and 
fibroblasts, as well in 50% of sperm. As a result, the neutral 
and polar asparagine at codon 559 substitutes the neutral and 
hydrophobic amino acid, isoleucine. The authors also suggested 
that the mutation contributed to severe, sporadic, generalized 
glucocorticoid resistance. Further investigation demonstrated 
that the mutation was not detected in the patient's parents or 
seven siblings. Therefore, it was concluded that this novel 
mutation was de novo and present in the germline (10). That is, 
the mutation in NR3C1 may be involved in CD.

4. Aryl hydrocarbon receptor‑interacting protein (AIP) 
mutation

AIP is a protein of 330  amino acids and acts as a tumor 
suppressor (17). Studies have demonstrated that AIP combines 
with the aryl hydrocarbon receptor on the cell surface, and 
probably exerts its effects by regulating integrin function. 
More than 100 variants in AIP have been identified, of which 
the most frequent mutation occurs in the p.R304 locus (18). 
Approximately 15‑30% of familial isolated PAs harbor 
germline mutations in AIP  (19,20). PAs with mutations in 
AIP are predominantly somatotropinomas and prolactinomas; 
however, studies have revealed that AIP mutations may also 
occur in CD. Georgitsi et al (9) found a heterozygous c.696G>C 
(which leads to the silencing of p.P232P in exon 5) in a CD 

patient in Poland. Furthermore, Stratakis et al (5) reported a 
novel germline AIP mutation, c.308A>G/p.Lys103Arg, in the 
heterozygotic state in one pediatric patient with recurrent CD, 
although the authors suggested that the overall prevalence of 
AIP mutation was very low. These findings indicate that AIP 
mutations may be directly involved in the molecular patho-
genesis of CD, but that screening for mutations may not be an 
effective method for the diagnosis of CD.

5. Tumor protein p53 (TP53) mutation

The p53 protein is encoded by a tumor‑suppressor gene termed 
TP53, which is located on chromosome 17. p53 inhibits the G1→S 
transition of the cell cycle, and is significant in suppression 
of tumorigenesis. Studies have suggested that TP53 muta-
tions are associated with the pathogenesis of ~50% of human 
cancers, including those in the central nervous system (21,22). 
However, the role of p53 in tumors of the pituitary gland is 
controversial. Oliveira et al (23) demonstrated p53 protein to 
be positive in only two of 148 PA patients, suggesting that p53 
may not be a biomarker for tumors of the pituitary gland. Other 
studies have indicated that p53 expression in tumors of the 
pituitary gland cannot be detected, including ACTH‑secreting 
adenomas (24‑26). By contrast, Buckley et al (27) found that 
abnormal expression of p53 was involved in the development 
of invasive pituitary tumors. The common alterations associ-
ated with TP53 in human tumors are inactivating mutations, 
which occur between exon 5 to 8 (28). Levy et al (29) and 
Herman et al (30) failed to identify mutations in TP53 in PAs, 
although Kawashima et al (31) reported that a somatic mutation 
of TP53 contributed to a case of atypical PA that caused CD. 
The authors sequenced the region of exon 5 through to exon 8 
of TP53 and identified a missense mutation of CTG>CGG 
on codon 145 (L145R). The study indicated that the mutation 
was detected in tumor tissues, but not in peripheral blood (31). 
These studies imply that a somatic mutation of TP53 may 
contribute to the pathogenesis of CD.

6. Nuclear receptor subfamily  0 group  B member  1 
(NR0B1) mutation

Dosage‑sensitive sex reversal, adrenal hypoplasia critical 
region, on chromosome  X, gene  1 (DAX‑1) is critical 
in steroidogenic development and sex determination. 
Studies have demonstrated that DAX‑1 suppresses the 
transcription of various genes expressed in the adrenal 
cortex and hypothalamic‑pituitary‑gonadal axis, such 
as steroidogenic factor‑1  (32,33). DAX‑1 is encoded by 
NR0B1, which comprises two exons separated by a 3.4‑kb 
intron. Studies have shown involvement of mutations of 
NR0B1 in hypogonadotropic hypogonadism and X‑linked 
adrenal hypoplasia congenital (34,35). However, the role of 
DAX‑1 in ACTH‑secreting PAs remains poorly understood. 
Suzuki et  al  (36) analyzed the regulatory mechanisms of 
differentiation of pituitary cells in 89 corticotroph adenomas. 
DAX‑1 was found to be positive in all subjects, indicating that 
DAX‑1 is essential for the genesis of ACTH‑secreting PAs. 
Furthermore, De Menis et al (37) described a novel mutation 
of NR0B1 in a patient with ACTH‑secreting PA and X‑linked 
adrenal hypoplasia congenita and his mother [a 4‑bp insertion 
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(AGCG) at nucleotide  259 in exon  1 of NR0B1] leading 
to premature termination of transcription. This evidence 
indicates that monitoring of mutations in NR0B1 may be 
beneficial for early diagnosis in patients with CD and X‑linked 
adrenal hypoplasia congenita.

7. Ubiquitin‑specific peptidase 8 (USP8) mutation

USP8 is a member of the USP family. The specific 
roles of USP8 mutations in CD have been reviewed by 
Perez‑Rivas and Reincke (11). Here, three studies published 
recently, which reported mutations of USP8 in CD, are 
reviewed.

Reincke et al (38) found that mutations of p.Ser718Cys, 
p.Pro720Arg and p.Ser718del in the 14‑3‑3 protein binding 
motif promoted the proteolytic cleavage and catalytic 
activity of USP8, which inhibited epidermal growth factor 
receptor (EGFR) degradation and prolonged EGF signaling, 
resulting in increased activity in the proopiomelanocortin 
(POMC) promoter and transcription, as well as causing CD. 
Perez‑Rivas et al (39) demonstrated that somatic mutations 
comprising p.718Ser>Pro, Ser718del, p.720Pro>Gln, and 
p.720Pro>Arg in USP8 diminished EGFR ubiquitination and 
induced the activity of the POMC promoter. Ma et al (40) 
reported the significant clinical relevance of three somatic 
mutations (c.CTC2151‑2153del/p.S718del, c.C2159G/p.
P720R and c.T2152C/p.S718P) of USP8 and CD. It was 
revealed that mutations in exon  14 of USP8 disrupt the 
interaction between USP8 and 14‑3‑3  protein, leading 
to protection of the EGFR from lysosomal degradation. 
Mutations in USP8 sustain EGFR‑mitogen‑activated protein 
kinase signaling to promote ACTH production in CD (40). 
These findings clearly demonstrate that mutations in USP8 
contribute to CD.

8. Dicer 1, ribonuclease (RNase) III (DICER1) mutation

DICER1 is a highly conserved RNase III enzyme, the functions 
of which are predominantly associated with RNA interference 
pathways, including the processing of microRNA precursors 
into mature microRNAs (41,42). DICER1 is associated with 
various tumors, such as pulmonary adenomas and pleuropul-
monary blastomas (41,43). Hill et al (44) suggested that almost 
all patients with pleuropulmonary blastoma exhibit germline 
mutations of DICER1. In addition, mutations in DICER1 
are involved in the development of cystic nephroma (45). As 
mutated DICER1 participates in diverse types of tumors, 
previous studies have indicated that DICER1 mutations 
result in tumors of the pituitary gland. Wildi‑Runge et al (46) 
reported a germline heterozygous DICER1 mutation in 
a blastoma of the pituitary gland in an infant, suggesting a 
role for DICER1 mutations in tumors of the pituitary gland. 
Furthermore, Sahakitrungruang et al (47) described two novel 
DICER1 mutations in a one‑year‑old female with a blastoma of 
the pituitary gland presenting with CD. The results showed that 
a novel heterozygous c.3046delA (p.S1016VfsX1065) muta-
tion in DICER1 was identified by whole‑exome sequencing of 
leukocytes and pituitary blastoma tumor tissues, and another 
somatic missense  c.5538A‑>T (p.E1813V) mutation was 
identified in tumor tissues only (47). These findings indicate 

that DICER1 mutations may facilitate with understanding the 
pathogenesis of CD.

9. Cytochrome P450 family 21 subfamily A member 2 
(CYP21A2) mutation

CYP21A2 encodes active steroid 21‑hydroxylase enzyme. 
Studies have suggested that 21‑hydroxylase‑deficient 
mice show failure of inhibition of the hypothalamic‑pitu-
itary‑adrenal axis (48). Mutations in CYP21A2 are responsible 
for congenital adrenal hyperplasia (CAH), which is associated 
with CD in certain cases. Haase et al (49) found that a homo-
zygous mutation in exon 7 of CYP21A2 (CTG>TTG, p.V281L) 
may have contributed to CD in a female patient with CAH. 
Boronat et al (50) reported that a 39‑year‑old female patient 
with an ACTH‑producing PA carried two point mutations in 
CYP21A2: A severe splicing 655G mutation at intron 2 and 
a mild V28L mutation at exon 7. Concurrently, a severe 8‑bp 
deletion mutation was found at exon 3 of the CYP21A2 gene, 
which caused the 21‑hydroxylase deficiency, in a 21‑year‑old 
CD patient (50). Although 21‑hydroxylase deficiency is rarely 
observed in CD patients, CYP21A2 mutations may (at least in 
part) contribute to CD.

10. GNAS complex locus (GNAS) mutation

GNAS1 (also termed gsp oncogene) comprises 13 exons and is 
located on chromosome 20q13. GNAS encodes various proteins, 
including the α subunit of the stimulatory G protein (Gsα), 
extra‑large αs and 55‑kDa neuroendocrine secretory protein. 
The activating and inactivating mutations of GNAS have previ-
ously been identified (51,52). GNAS mutations have been found 
to be involved in certain endocrine diseases. Patten et al (53) 
demonstrated that the A→G point mutation in GNAS (which 
causes reduced immunoactivity in the Gsα protein) is associ-
ated with Albright's hereditary osteodystrophy. Other studies 
have reported that ~40% of patients with functional PAs exhibit 
somatic mutations of GNAS, which often occur at codons 
R201 and Q227. Williamson et al (54) identified mutations of 
CAG→CGG and CAG→CAC/T at codon Q227 in only two of 
32 ACTH‑secreting PAs, and suggested that these mutations 
are an uncommon abnormality in CD. Riminucci et al (55) 
observed an R201H mutation of GNAS in a child with CD, 
thereby extending the disease spectrum of the R201 mutation 
of GNAS. Therefore, an association between GNAS mutations 
and CD may improve the understanding of CD pathogenesis.

11. Leukemia inhibitory factor (LIF) mutation and 
cyclin‑dependent kinase inhibitor 1B (CDKN1B) mutation

LIF is the most pleiotropic member of the interleukin‑6 
family. LIF is essential in activation of the hypothalamo‑pitu-
itary‑adrenal axis during inflammation (51). In LIF knockout 
mice, the ACTH response to stress is reduced, whereas LIF 
overexpression in transgenic mice leads to corticotroph cell 
hyperplasia and hypercortisolism (56,57). LIF exerts a regu-
latory function by binding to the LIF receptor (LIF‑R) and 
gp130 (58). These studies indicate that LIF promotes ACTH 
secretion, and that mutations in LIF‑  or  LIF‑R‑encoding 
genes may contribute to CD pathogenesis. However, 
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Heutling et al  (59) did not observe mutations in LIF‑R in 
ACTH‑secreting adenomas, and suggested that mutations in 
LIF‑R were an unlikely cause for CD development (59).

CDKN1B, also known as MEN4 and p27/kip1, maps to chro-
mosome 12p13 and encodes a CDK inhibitor, which restricts 
cell cycle progression at G1. Lack of p27/kip1 function leads 
to the development of PAs (60). Furthermore, Liu et al (61) 
found that a selective inhibitor of CDK markedly suppressed 
ACTH levels and restrained growth of ACTH‑secreting PAs 
in mice. One study revealed that germline CDKN1B mutations 
rendered individuals more susceptible to MEN1 (62). Thus, it 
is speculated that CDKN1B mutations may also participate in 
CD. However, Dahia et al (63) proposed that p27/kip1 muta-
tions were not a feature of corticotroph tumors.

12. Conclusions

The majority of tumors of the pituitary gland appear to arise 
from a single mutated cell due to expansion of monoclonal 
cells. Therefore, distinct genetic changes are probably one 
of the most important events within tumorigenesis in the 
pituitary gland, including in ACTH‑secreting corticotroph 
tumors. The current study reviewed previous investigations, 
which showed that various gene mutations are involved in 
CD (Table I). Cases are predominantly sporadic, therefore, 
the regulatory mechanisms of the gene mutations in CD are 
rarely investigated, although USP8 mutations have been more 
extensively evaluated. Thus, current treatment of CD patients 
has not progressed as a result of the identification of gene 
mutations that are associated with CD. However, the findings 
of the present review offer potential benefits regarding genetic 
counseling and early diagnosis of CD.
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