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Abstract. Neuropeptides act as neurohormones, neurotrans-
mitters and/or neuromodulators. Neuropeptides maintain 
physiological homeostasis and are paramount in molecular 
mechanisms of disease progression and regulation, including 
in cancer. Neuropeptides, by their definition, originate and 
are secreted from the neuronal cells, they are able to signal to 
neighboring cells or are released into the blood flow, if they 
act as neurohormones. The majority of neuropeptides exert 
their functions through G protein‑coupled receptors, with 
certain exceptions. Although previous studies indicate that 
neuropeptides function in supporting proliferation of malig-
nant cells in many types of solid tumor, the antitumorigenic 
action of the neuropeptides and their receptors, for example, 
in gastric cancers and chondrosarcoma, were also reported. 
It is known that epigenetically modified chromatin regulates 
molecular mechanisms involved in gene expression and 
malignant progression. The epigenetic modifications are 
genetically heritable, although they do not cause changes in 
DNA sequence. DNA methylation, histone modifications and 
miRNA expression are subject to those modifications. While 
there is substantial data on epigenetic regulation of neuro-
peptides, the epigenetic control of cancer by neuropeptides is 
considered to be uncharted territory. The aim of the current 
review is to describe the involvement of neuropeptides in the 
epigenetic machinery of cancer based on data obtained from 
our laboratory and from other authors.
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1. Introduction

Neuropeptides are an important class of messenger molecules 
that carry information between neurons; they can act as 
neurohormones, neurotransmitters, and/or neuromodula-
tors, maintain physiological homeostasis and are involved in 
regulation of malignant disease progression. Notably, peptide 
hormones and neuropeptides are synthesized by the same route 
and enzymes from common precursor cleavage, resulting in 
the production of bioactive peptides. The majority of neuro-
peptides exert their functions through G protein-coupled 
receptors, with certain exceptions (1). The predominant notion 
was that neuropeptides possess protumorigenic functions 
demonstrated via paracrine and autocrine loops of regulation, 
which were reported in different types of solid tumors (2‑6); 
however, antitumorigenic action of the neuropeptides and their 
receptors has been reported for gastric cancers (6), chondrosar-
coma (7‑9) and triple negative breast cancer (10). The epigenetic 
modifications are crucial in regulating gene expression and 
control the progression of cancer. The epigenetic modifica-
tions are genetically heritable, but do not cause changes in 
DNA sequence. DNA methylation, histone modifications and 
miRNA expression are subject to those modifications. While 
there is substantial data regarding epigenetic regulation of 
neuropeptides (11), the epigenetic control of cancer by neuro-
peptides is considered to be a particularly promising discipline 
and requires close attention and further development.

The current review aims to present the involvement 
of certain neuropeptides in the epigenetic machinery of 
cancer (12‑19) based upon data obtained from our laboratory 
and from other authors.

2. Neuropeptides involved in epigenetic control of cancer

Proline‑rich polypeptide‑1 (PRP‑1; galarmin). PRP-1 is a 
cytokine hypothalamic neuropeptide produced by neurosecre-
tory granules of neurohypophysis, in Nucleus supraopticus 
and Nucleus paraventricularis, the same neurons from which 
vasopressin and oxytocin originate. PRP-1 is derived from its 
precursor, neurophysin-vasopressin-associated glycoprotein 
precursor (20). In addition, large quantities of PRP‑1 were 
detected in bone marrow granulocytes (21). The antimicrobial, 
antitumorigenic and antineurodegenerative properties for this 
immunomodulatory cytokine were previously reported (22) 
and the quantification of hypothalamic PRP‑1 in the blood 
was recently documented (23). Furthermore, our prevous 
studies described that PRP-1, mammalian target of rapamycin 
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complex 1 inhibitor, exerts antiproliferative cytostatic effects 
in chondrosarcoma (7‑9,24) and breast cancer cells (10).

Chondrosarcoma is a type of cartilage cancer, which does 
not respond to chemotherapy or radiation, and eventually 
metastasizes rendering surgery as the only treatment option; 
thus, the search for novel therapeutic strategies is considered 
to be relevant and urgent (25).

Although PRP-1 is a neuropeptide, our preliminary results 
(not yet published) did not indicate that PRP‑1 exerts its 
actions via the G protein-coupled receptor. Cytostatic PRP-1 
manifests its antiproliferative effect via cell cycle regulation 
in cancer (10), as well as by its unique ability to upregulate 
tumor suppressor proteins (26) and micro RNA (miR) 
tumor suppressors (miR20a, miR125b and miR192) while 
causing downregulation of onco‑miRs (miR509‑3p, miR589, 
miR490‑3p and miR 550) in the human chondrosarcoma cell 
line, JJ012 (27), demonstrating the possibility for future thera-
peutic interventions.

PRP‑1 epigenetically regulates embryonic stem cell 
marker, miRNA 302c (miR302C) and its targets. miR302C, 
a component of the miR302 367 cluster, was significantly 
downregulated by PRP‑1. Notably, this cluster is not expressed 
in adult mesenchymal stem cells and normal tissue (28), 
although it is particularly characteristic, with a significant role 
in tumors and human embryonic stem cells, where it regulates 
renewal of stem cells and the process of differentiation (29). 
This may explain the strong tumor growth inhibitory role of 
PRP-1 in certain tumors, particularly in chondrosarcomas 
and multipotent adult stem cells (marrow‑isolated adult multi-
lineage inducible cells) of embryonic primitive type (28,30). 
Our collaborative study of glioblastoma demonstrated that 
PRP‑1 did not exert inhibitory action on the growth of this 
type of tumor, as in glioblastoma this cluster suppresses stem-
ness (28,29). This fact served as the basis for the paradigm that 
the antiproliferative action of PRP‑1 is defined by the presence 
of miR302C and its stemness-inducing potential in particular 
types of tumor.

The stemness markers, targets of the miR302C polycomb 
protein, BMI‑1, NANOG (28) and c‑Myc (8,24,28), were 
markedly downregulated by PRP‑1 (28). Interestingly, PRP‑1 
demonstrated the inhibition of giant cell tumors of the bone 
and, conversely, supported the growth of human normal bone 
marrow stromal cells (31). Epigenetic regulation of miR302C 
expression (32) is defined by positive regulatory activity of 
JMJD2, H3K9me2 demethylase and NANOG in the promoter 
regions (28). Our previous data indicated that PRP‑1 inhibited 
H3K9 demethylase activity (JMJD1 and JMJD2) leading to 
the conclusion that miR302C activity suppression by this 
neuropeptide is epigenetically regulated (28).

Vasoactive intestinal peptide (VIP) and pituitary adenylate 
cyclase activating polypeptide (PACAP). VIP is produced by 
various cells, however, its primary location is within neurons; 
this peptide is expressed in the peripheral and central nervous 
systems, as well as in certain tumors (3,33‑36). In a previous 
study, VIP receptor antagonists facilitated chemotherapeutic 
agents to cause apoptosis in certain cancer cell lines (33); 
VIP is cell context‑dependent and is known to contribute 
to leukemogenesis (34). There is reported similarity of VIP 

with pituitary adenylate cyclase, which belongs to the secretin 
family. PACAP binds to the G protein-coupled receptor and 
belongs to the secretin glucagon VIP peptide group (35).

VIP shares 68% homology with PACAP, and is considered 
to be a rational target against inflammatory disease (35). 
Notable data on transcriptional modulation of genes involved in 
production of inflammatory products, such as inducible nitric 
oxide synthases, revealed the inhibitory effect of VIP on gene 
transcription, which may possess marked therapeutic potential 
preventing production of inflammatory molecules (37).

PACAP is significantly involved in regulating the immune 
response, and is found in neurons and the immune system. 
PACAP is comprised of three known receptors, PAC‑1, 
VPAC1 (3) and VPAC2, and is involved in signal transduction 
pathways and, depending on the tumor type, either directly 
suppresses or promotes tumor growth (36). In cervical cancer, 
PACAP is considered as a methylation biomarker for cervical 
cancer early detection (38,39). In a previous study, a low 
expression of PACAP was demonstrated in cervical cancer, 
which was due to hypermethylation in its promoter and was 
correlated with tumor development. Treatment with 5'‑Aza‑2', 
a methyltransferase inhibitor, or with histone deacetylase 
inhibitor (HDACi), trichostatin reactivated PACAP gene 
expression (38). PACAP in humans is encoded by adenylate 
cyclase‑activating polypeptide 1 (ADCYAP1). Another 
study reported that the methylation of ADCYAP1 may be 
highly associated with the development of cervical cancer 
and that gene promoter hypermethylation suppressed gene 
expression (40).

Gastrin. Gastrin‑releasing peptide (GRP) is a human neuro-
peptide that controls gastrin release and regulates gastric acid 
production. Gastrin is released from G cells as a result of vagus 
nerve postganglionic fiber innervation of stomach G cells. 
GRP is engaged in stress regulation of the biological circadian 
rhythm sending signals to the hypothalamic suprachiasmatic 
nuclei (41,42). GRP and neuromedin C are important in 
various types of cancer (42). It was established that pro‑GRP 
is produced in small lung cancer cells and is considered to be a 
biomarker (43). The peptide is utilized for therapeutic purposes, 
measuring the efficacy of chemo‑ and radiation therapies. In 
normal conditions GRP is expressed in the bronchial epithe-
lium and promotes lung development at the fetal stage. When it 
is associated with bombesin (BB)‑like peptide receptors (44), 
such as GRP receptor (GRPR), it predominantely (although 
with certain exceptions) acts as a growth promoter for small 
cell lung cancer. Conversely, epithelial cells of the adult colon 
under normal conditions are deprived of GRP receptor expres-
sion. Notably, GRP/GRPR expression in tumors was identified 
to correlate with improved patient survival rates and reduced 
metastatic spread. However, the mechanisms involved in these 
manifestations require further investigation (45,46). Previous 
findings provide evidence that a GRPR antagonist stimulates 
the growth of cancer cells, and that the stimulatory effects were 
prevented by the HDACi, suggesting that GRPR may interact 
with epigenetic mechanisms in regulating neuroblastoma cell 
growth. However, 100 nM GRPR stimulated proliferation of 
Neuro-2a murine neuroblastoma cells in vitro; the stimulatory 
effects were prevented by the HDACi (47). Involvement of BB 
in the acetylation of the androgen receptor and activation of 
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androgen-associated genes in prostate cancer cells via activa-
tion of p300 histone acetyltransferase activity was reported 
in another study (48). The effects of a BB/GRP receptor 
antagonist, PD176252, and HDACi, MS‑275, were investigated 
in human lung cancer cell lines and the results indicated the 
ability of GRPR antagonists to potentiate the action of HDACi 
on lung cancer cellular proliferation by increasing the expres-
sion of tumor suppressor genes (49).

Gastrin regulates heterochromatin protein 1 (HP1) expres-
sion in cancer and HP1 is directly involved in epigenetic control 
of gene transcription. The methylation of histone H3 at lysine 9 
along with HP1 recruitment secures chromatin assembly to 
epigenetically control the genome (50). Experimental evidence 
indicates that blocking GRP signaling results in the down-
regulation of HP1Hsβ expression, resulting in colon cancer cell 
invasiveness (45). ChIP‑seq revealed the targets of HP1β due 
to BB/GRPR activation, which were as follows: Interleukin‑1 
receptor accessory protein like 2, family with sequence simi-
larity 13 member A, 1,4‑α-glucan branching enzyme 1, polo 
like kinase 3, and solute carrier organic anion transporter 
family member 1B3 (51). In addition, gastrin induced the 
overexpression of miR222 that led to cytoplasmic mislocalisa-
tion of p27kip1, causing cell migration. Data indicated a novel 
mechanism that involves gastrin, which is associated with 
tumor development. Notably, miR222 may serve as a prom-
ising biomarker for observing gastrin-induced premalignant 
changes (52). The role of GRPR is reported to be tumorigenic. 
Therefore, the silencing of GRPR suppresses tumorigenesis and 
the metastatic potential of neuroblastoma (53). Overexpression 
of miR‑335 and miR‑363 decreased tumorigenicity as 
measured by clonogenicity, anchorage‑independent growth, 
and metastasis determined by cell invasion assay and liver 

metastasis in vivo. Thus, miR‑335 and miR‑363 functioned 
as tumor suppressors in GRPR‑silenced neuroblastoma (54). 
Novel therapeutic strategies against aggressive neuroblastoma 
may be derived from upregulation of miR‑335 and miR‑363, 
which are capable of reversing tumorigenicity and blocking 
cell transformation. Initiation of antral gastric cancer was 
associated with epigenetic silencing of trefoil factor 1 (TFF1) 
tumor suppressor gene silencing By contrast, inhibition of 
gastric carcinogenesis by the hormone gastrin was mediated 
by suppression of TFF1 epigenetic silencing (6).

Somatostatin (SST) is a gut peptide that is able to inhibit 
the growth of tumor cells in gastric cancer, inhibit gastrin 
release, gastric acid production, and is regarded as a novel 
cancer repressive polypeptide. SST promoter methylation is a 
common occurrence in human gastric cancer, and is connected 
with a decrease in SST protein and RNA levels, as well as being 
associated with gastric carcinogens. A significant increase in 
SST promoter was identified in tumor samples when compared 
with healthy samples. Thus, the promoter DNA methylation 
was defined as an epigenetic mechanism of SST expression 
regulation. SST is therefore a potential biomarker for gastric 
cancers (55).

Neurotensin (NTS). NTS is a neuropeptide that is involved in 
the regulation of luteinizing hormone and it is connected to the 
dopaminergic system. It is highly present in the hypothalamic 
nucleus accumbens and amygdala, inducing multiple effects, 
such as hypothermal and increased locomotor activity, and 
smooth muscle contruction in the small intestine (56). NTS 
is considered to be a cancer promoting mitogen in colon 
cancer (57). A notable connection between its neurotensin 
receptor 1 (NTR1) and induction of inflammation, and 

Table I. Epigenetic regulation of neuropeptides in cancer.

Author, year Description Refs.

Misawa et al, 2014 CpG hypermethylation was reported as the silencing mechanism for the neuropeptide, GAL (61,62)
Misawa et al, 2016 and its receptor, GALR1/2 gene, leading to inactivation of their tumor suppressing properties
 in HNSCC resulting in tumorigenesis. Therefore, the gene's methylation status
 was proposed as an important biomarker for clinical outcome
Misawa et al, 2015 CpG hypermethylation was attributed as a possible mechanism for SST and SSTR1 (63)
 methylation profiles for HNSCC tumorigenesis
David et al, 2009 TAC1 is the precursor protein for neuroendocrine peptides, including substance P, and is (64)
 centrally involved in gastric secretion, motility, mucosal immunity and cell proliferation.
 The authors indicated the aberrant silencing of TAC1 in GC by promoter hypermethylation
Misawa et al, 2013 The specific mechanisms, elucidated by the authors, of TAC1 and TACR1 gene inactivation (65)
 via frequent promoter hypermethylation methylation led to tumorigenesis
Mori et al, 2006 Gene silencing via promoter hypermethylation of SST and TAC1 and 5, leading to colon (66)
 cancer tumorigenesis was highlighted in this study
Kamimae et al, 2015 NTSR1 methylation was associated with lateral and non‑invasive growth of colorectal tumors, (67)
 while low levels of methylation contributed to the malignant potential via activation of NTSR1
 and the clinical implications were documented 
Zhong et al, 2007 In this study, oxytocin receptor was dominantly regulated by histone deacetylation and (68)
 demonstrated to be frequently downregulated in lung tumors

CpG, cytosine‑guanine dinucleotide; GAL, galanin; HNSCC, head and neck squamous cell carcinoma; SST, somatostatin; SSTR1, somatostatin 
receptor type 1; TAC1, tachykinin‑1; GC, gastric cancer; TACR1, tachykinin receptor type 1; NTSR1, neurotensin receptor 1.
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tumor growth mediated by upregulated expression of certain 
miRNAs (such as miR21 and miR155) has been reported (58). 
Their upregulation in human colon cancer, also caused down-
regulation of major tumor suppressors, including phosphatase 
and tensin homolog and suppressor of cytokine signaling 
proteins (58).

NTS and its receptor are implicated in cancer progres-
sion. The upregulation of miR‑29b‑1 and miR‑129‑3p 
expression led to impaired proliferation of glioma cells. NTS 
signaling upregulated c-Myc production and inhibited the 
above-mentioned miRNAs. These results indicate that the 
NTS/NTSR1/c-Myc/miRNA axis is important in the patho-
genesis of glioblastoma and may be considered as a potential 
therapeutic target (59).

3. Conclusion

Epigenetics in cancer research is a rapidly developing field. 
An important lesson is obvious; that the inactivation of tumor 
suppression pathways in cancer presents potential therapeutic 
opportunities for epigenetic therapy intervention (60). To 
better understand the mechanism of derailed epigenetic 
regulation in malignancies, the insight into epigenetic control 
in normal and embryonic tissues is of utmost importance. 
Thus, epigenetic regulation of cancer by neuropeptides is 
an exciting and novel direction; however, it is in its infancy, 
although there is substantial data on epigenetic regulation of 
neuropeptides, some examples are shown in Table I (61‑68). 
Certain neuropeptides, being natural compounds by their 
origin, possess powerful antitumorigenic, tumor suppressor 
and immunomodulatory properties, providing added benefit 
for future potential therapeutic strategies. Whether they are 
cytotoxic or cytostatic by nature, they are promising in the 
battle against cancer.
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