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Abstract. The present case‑control study was conducted 
on 110 children with acute lymphoblastic leukemia (ALL) 
and 120 healthy children to determine the impact of poly-
morphisms in paired‑box gene 8 (PAX8) antisense RNA 1 
(PAX8‑AS1), namely rs4848320 C>T, rs6726151 T>G and 
rs1110839 G>T, on ALL risk. Genotyping was performed 
through the polymerase chain reaction‑restriction fragment 
length polymorphism method. The findings indicated that 
the rs4848320 variant increased the risk of ALL in codomi-
nant [CT vs. CC: odds ratio (OR)=2.13, 95% confidence 
interval (CI)=1.16‑3.90, P=0.014; and TT vs. CC: OR=2.21, 
95%  CI=1.03‑4.74, P=0.041], dominant (CT+TT vs. CC: 
OR=2.15, 95% CI=1.22‑3.81, P=0.009,) and allele (T vs. C: 
OR=1.55, 95% CI=1.07‑2.25, P=0.024) inheritance models. 
The rs6726151 variant significantly increased the risk of ALL 
in codominant (GT vs. GG: OR=1.88, 95%  CI=1.08‑3.27, 
P=0.036) and overdominant (GT vs. GG+TT: OR=2.08, 
95% CI=1.23‑3.53, P=0.008) inheritance models. No signifi-
cant relationship was identified between the rs1110839 G>T 
variant and disease risk/protection in childhood ALL. In 
conclusion, the findings of the present study indicated that 
rs4848320 and rs6726151 polymorphisms of PAX8‑AS1 may 
be a risk factor for the development of childhood ALL. Further 
studies with larger sample sizes and different ethnicities are 
now required to confirm these findings.

Introduction

Acute lymphoblastic leukemia (ALL) is the most prevalent 
malignancy in children and constitutes approximately 75% 
of pediatric acute leukemias (1). While the etiology of ALL 
is not fully understood, previous reports have indicated that 
genetic factors serve a role in the development of childhood 
ALL (2‑5).

Non‑coding RNAs, comprising microRNAs and long 
non‑coding RNAs (lncRNAs), do not encode protein sequences, 
yet are involved in various biological processes  (6‑8). In 
particular, lncRNAs, as transcripts of >200 nucleotides 
in length that lack protein‑coding potential, regulate gene 
expression at various levels, including at the chromatin 
remodeling  (9), transcription and post‑transcriptional 
processing stages (10,11).

Paired‑box gene 8 (PAX8) encodes a transcription factor 
required for cell growth and differentiation during embryonic 
development (12). Overexpression of PAX8 has been identified 
in various cancers (13‑17). Though the precise role of PAX8 
in cancer remains uncertain, it has been proposed that PAX8 
contributes to the development and progression of specific 
cancers by maintaining tissue specific stem cells, by inhibiting 
terminal differentiation and apoptosis (18).

LncRNA PAX8 antisense RNA 1 (PAX8‑AS1) is mapped 
to chromosome 2q13 in the upstream region of PAX8 (19). An 
expression quantitative trait loci (eQTL) is a locus containing 
a genetic variant that influences the expression level of a 
gene (20). PAX8‑AS1, a potential regulator of PAX8, may 
contain polymorphisms that represent eQTLs for PAX8 (21). 
In particular, previous bioinformatics analyses have revealed 
that the polymorphisms rs4848320 C>T and rs1110839 G>T 
in PAX8‑AS1 may be eQTLs for PAX8 (21). Furthermore, 
it has been suggested that rs4848320 and rs1110839 may 
affect the function or expression of PAX8‑AS1, thereby influ-
encing PAX8 expression (22,23). Few previous studies have 
evaluated the impact of PAX8‑AS1 variants on cancer risk. 
Han et al (19) reported that rs4848320 and rs1110839 vari-
ants of PAX8‑AS1 significantly decreased the risk of cervical 
cancer (19). Ma et al (24) identified that the two variants of 
PAX8‑AS1 were significantly associated with the prognosis 
of hepatocellular carcinoma (HCC). However, to the best of 
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our knowledge, no previous study has investigated the impact 
of PAX8‑AS1 polymorphisms on childhood ALL. Based on 
the previous findings on PAX8‑AS1 and cancer risk, it was 
hypothesized that polymorphisms of PAX8‑AS1 may affect the 
risk of childhood ALL by disturbing the interaction between 
PAX8‑AS1 and PAX8, to in turn influence PAX8 expression. 
PAX8 has been demonstrated to serve an important role in 
the pathogenesis of cancer by inhibiting cell differentiation 
and apoptosis  (18). Therefore, the present study aimed to 
assess the possible association between the PAX8‑AS1 poly-
morphisms rs4848320 C>T, rs1110839 G>T and rs6726151 
T>G and the risk of childhood ALL in a Southeast Iranian 
population sample. In the analysis, the polymorphisms which 
have been implicated as potential risk factors for cancer were 
selected (19,24), while the rs6726151 T>G variant, with a minor 
allele frequency of 0.486 (25), was examined for the first time. 
The findings of the present study highlight the potential role 
of PAX8‑AS1 variants in the pathogenesis of childhood ALL.

Materials and methods

Patients. A total of 230 subjects including 110 children diag-
nosed with ALL and 120 age‑ and sex‑matched healthy children 
were enrolled in the present case‑control study. The study design 
including the enrolled patients has been reported previously 
by our group (2,8). The local Ethics Committee of Zahedan 
University of Medical Sciences (Zahedan, Iran) approved the 
project (approval no. IR.ZAUMS.REC.1395.270) and informed 
consent was obtained from the parents of all participants. 
Extraction of genomic DNA from whole blood was performed 
using the salting out method as described previously (26).

Genotyping. Polymorphism genotyping was performed 
through the polymerase chain reaction‑restriction fragment 
length polymorphism (PCR‑RFLP) method. The primer 
sequences and restriction enzymes are summarized in Table I. 
The primers were produced by Bioneer Corp., (Daejeon, 
Korea). Into a 0.20 ml PCR reaction tube, 1 µl genomic DNA 
(~100 ng/ml), 1 µl (10 µM each) forward and reverse primers, 
10 µl 2X Prime Taq Premix, all from Genet Bio, Inc., (Daejeon, 
Korea), and 7 µl ddH2O were added. The PCR conditions were 
as follows: Preheating for 6 min at 95˚C; 30 cycles of 95˚C for 
30 sec, 64˚C for rs1110839 and rs4848320 for 30 sec or 62˚C 
for rs6726151 for 30 sec, and 72˚C for 30 sec; followed by a 
final extension step for 5 min at 72˚C. Subsequently, 10 µl of 
amplified product was digested with the appropriate restric-
tion enzyme (New England BioLabs, Inc., Ipswich, MA, USA), 
resolved on 2.5% agarose gel containing 0.5 µg/ml ethidium 
bromide, observed under a UV transilluminator (DigiDoc 
H101; UVP, LLC, Upland, CA, USA) and photographed. For 
quality control, 15% randomly selected samples were regeno-
typed and the outcome revealed 100% concordance.

Statistical analysis. Statistical analysis was performed 
using SPSS  22.0 software (IBM, Corp., Armonk, NY, 
USA). The categorical and continuous data were analyzed 
using χ2 and t‑test, respectively. Individual single nucleotide 
polymorphism (SNP) associations with childhood ALL 
risk were assessed using unconditional logistic regression 
analyses, in which odds ratios (ORs) and 95% confidence 

intervals (CIs) were determined for codominant, dominant, 
recessive, overdominant and allele inheritance models. 
P<0.05 was considered to indicate a statistically significant 
difference. Haplotype and linkage disequilibrium analyses 
were conducted using SNPStats (https://www.snpstats.net/
snpstats) (27) and Haploview 4.2 software both from Broad 
Institute (Cambridge, MA, USA) (28), respectively. Linkage 
disequilibrium between the PAX8‑AS1 polymorphisms 
was estimated through calculation of D' (correlation 
coefficient  between pairs of loci) and r2 (square of the 
correlation coefficient between two indicator variables) with 
Haploview 4.2.

Results

Patient characteristics. The demographic characteristics 
of the patients considered in the present study are reported 
previously (2,8).

Genotyping of the variants. Variants were genotyped by 
PCR‑RFLP. When genotyping the rs4848320 variant, diges-
tion of the PCR product (222 bp) yielded a fragment of 195 bp 
(and presumed 27 bp fragment not visible on agarose gel) for 
the C allele, and remained undigested for the T allele (Fig. 1). 
Regarding the rs1110839 variant, the T allele remained undi-
gested (270 bp), while the G allele was digested and produced 
a fragment of 244 bp (and presumed 26 bp fragment not visible 
on agarose gel; Fig. 2). For rs6726151, the T allele was digested 
and produced 211 and 160 bp fragments while the G allele 
was undigested (371 bp; Fig. 3). The lengths of all fragments 
following restriction digestion are summarized in Table I.

Association between the variants and childhood ALL risk. 
The genotype and allele distributions of PAX8‑AS1 polymor-
phisms in pediatric patients with ALL and healthy controls are 
presented in Table II. The findings suggested that the rs4848320 
variant was associated with risk of ALL in codominant (CT 
vs. CC: OR=2.13, 95% CI=1.16‑3.90, P=0.014; and TT vs. CC: 
OR=2.21, 95% CI=1.03‑4.74, P=0.041), dominant (CT+TT 
vs. CC: OR=2.15, 95% CI=1.22‑3.81, P=0.009,) and allele (T 
vs. C: OR=1.55, 95% CI=1.07‑2.25, P=0.024,) inheritance 
models. For the rs6726151 variant, the findings indicated that 
this variant significantly increased the risk of ALL in codomi-
nant (GT vs. GG: OR=1.88, 95% CI=1.08‑3.27, P=0.036) and 
overdominant (GT vs. GG+TT: OR=2.08, 95% CI=1.23‑3.53, 
P=0.008) inheritance models. No significant association was 
observed between the rs1110839 G>T variant and disease 
risk/protection in childhood ALL.

Results of the haplotype analysis of the three variants 
are presented in Table III. The findings did not support an 
association between haplotype and risk of childhood ALL. 
Associations between the PAX8‑AS1 polymorphisms and 
patient clinical characteristics were also estimated. As depicted 
in Table IV, a significant association between rs4848320 and sex 
was observed [χ2=8.45, degrees of freedom (df)=2, P=0.015]. 
Notably, the CT genotype significantly decreased the risk of 
ALL in females (OR=0.32, 95% CI=0.13‑0.84, P=0.0355; 
data not shown). For rs6726151, the findings indicated that 
this variant was associated with organomegaly (χ2=8.21, df=2, 
P=0.017) and lymphadenopathy (χ2=11.48, df=2, P=0.003; 
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Table IV). No significant associations were identified between 
rs1110839 and patient clinical characteristics.

Furthermore, linkage disequilibrium was observed between 
rs4848320 and rs1110839 (D'=0.2242, r2=0.0455); rs4848320 
and rs6726151 (D'=0.5268, r2=0.1117); and rs1110839 and 
rs6726151 (D'=0.2279, r2=0.0189; Fig. 4).

Discussion

In the present study, the possible association between 
PAX8‑AS1 polymorphisms and risk of childhood ALL in 
a Southeast Iranian population was investigated. The find-
ings indicated that the rs4848320 and rs6726151 variants of 
PAX8‑AS1 significantly increased the risk of developing 
childhood ALL, while there was no association between 
rs1110839 and disease risk/protection. By contrast, the haplo-
type analysis did not identify a significant association of any of 
the variants with risk of childhood ALL. However, stratifica-
tion of the variants according to the clinical characteristics of 
patients indicated that the rs4848320 variant was associated 
with sex while the rs6726151 variant was associated with 
organomegaly and lymphadenopathy.

Previous results have indicated that non‑coding transcripts 
in the human genome serve crucial and diverse biological 
roles (29). The findings of macromolecular interactions have 

Table I. Primers and restriction enzymes used in the detection of paired‑box gene 8 antisense RNA 1 polymorphisms.

Polymorphism	 Sequence, 5'‑3'	 Restriction enzyme	 Product size, bp

rs4848320 C>T	 F: CTGCTTAGCATGTGCTTGGTGATG	 PstI	 T allele: 222;
	 R: GAAACACTGAGAACTAAGAGAAGCCTGCA		  C allele: 195+27
rs1110839 G>T	 F: TCATCTCCCCAGGAGAGGTCCTCAGC	 HhaI	 T allele: 270;
	 R: ACAGTCCGGTTGGAGACTG C		  G allele: 244+26
rs6726151 T>G	 F: CCCAAAGACCAGCACACA	 MboI	 G allele: 371;
	 R: AGACCCACCATTTCCATAACA 		  T allele: 211+160

F, forward; R, reverse.

Figure 1. Electrophoresis of rs4848320 C>T polymorphism fragments. The 
C allele was digested by PstI and produced a 195 bp fragment and presumed 
27 bp fragment not visible on agarose gel, while the T allele remained undi-
gested (222 bp). M: DNA marker; lanes 1 and 6: CT; lanes 2 and 5: TT; 
lanes 3 and 4: CC.

Figure 2. Electrophoresis of rs1110839 G>T polymorphism fragments. The 
G allele was digested by HhaI and produced 244 bp fragment and presumed 
26 bp fragment not visible on agarose gel, while the T allele remained undi-
gested (270 bp). M: DNA marker; lanes 1 and 6: GT; lanes 2 and 5: TT; 
lanes 3 and 4: GG.

Figure 3. Electrophoresis of rs6726151 T>G polymorphism fragments. The 
T allele was digested by MboI and produced 211 and 160 bp fragments, while 
the G allele remained undigested (371 bp). M: DNA marker; lanes 1 and 4: 
GT; lane 2: GG; lane 3: TT. 
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Table II. Association of paired‑box gene 8 antisense RNA 1 polymorphisms and risk of acute lymphoblastic leukemia.

Polymorphism	 Cases, n (%)	 Controls, n (%)	 OR (95% CI)	 P‑value

rs4848320 				  
  Codominant				  
    CC	   26 (23.6)	   48 (40.0)	 1.00	‑
    CT	   60 (54.6)	   52 (43.3)	 2.13 (1.16‑3.90)	 0.014
    TT	   24 (21.8)	   20 (16.7)	 2.21 (1.03‑4.74)	 0.041
  Dominant				  
    CC	   26 (23.6)	     48 (40.0)	 1.00	‑
    CT+TT	   84 (76.4)	   72 (60.0)	 2.15 (1.22‑3.81)	 0.009
  Recessive				  
    CC+CT	   86 (78.2)	 100 (83.3)	 1.00	‑
    TT	   24 (21.8)	   20 (16.7)	 1.39 (0.72‑2.70)	 0.322
  Overdominant				  
    CC+TT	   50 (45.4)	   68 (56.7)	 1.00	‑
    CT	   60 (54.6)	   52 (43.3)	 1.57 (0.93‑2.64)	 0.090
  Allele				  
    C	 112 (50.9)	 148 (61.7)	 1.00	‑
    T	 108 (49.1)	   92 (38.3)	 1.55 (1.07‑2.25)	 0.024
rs1110839 				  
  Codominant				  
    TT	   43 (39.1)	   54 (45.0)	 1.00	‑
    TG	   43 (39.1)	   34 (28.3)	 1.59 (0.87‑2.90)	 0.132
    GG	   24 (21.8)	   32 (26.7)	 0.94 (0.48‑1.83)	 0.860
  Dominant				  
    TT	   43 (39.1)	   54 (45.0)	 1.00	‑
    TG+GG	   67 (60.9)	   66 (55.0)	 1.27 (0.75‑2.16)	 0.365
  Recessive				  
    TT+TG	   86 (78.2)	   88 (73.3)	 1.00	‑
    GG	   24 (21.8)	   32 (26.7)	 0.77 (0.42‑1.41)	 0.393
  Overdominant				  
    TT+GG	   67 (60.9)	   86 (71.7)	 1.00	‑
    TG	   43 (39.1)	   34 (28.3)	 1.62 (0.93‑2.82)	 0.085
  Allele				  
    T	 129 (58.6)	 142 (59.2)	 1.00	‑
    G	   91 (60.4)	   98 (40.8)	 1.02 (0.70‑1.48)	 0.924
rs6726151 				  
  Codominant				  
    GG	   40 (36.3)	   56 (46.6)	 1.00	‑
    GT	   63 (57.3)	   47 (39.2)	 1.88 (1.08‑3.27)	 0.036
    TT	   7 (6.4)	   17 (14.2)	 0.58 (0.22‑1.52)	 0.576
  Dominant				  
    GG	   40 (36.4)	   56 (46.6)	 1.00	‑
    GT+TT	   70 (63.7)	   64 (53.4)	 1.53 (0.90‑2.60)	 0.141
  Recessive				  
    GG+GT	 103 (93.6)	 103 (85.8)	 1.00	‑
    TT	   7 (6.4)	   17 (14.2)	 0.41 (0.16‑1.04)	 0.082
  Overdominant				  
    GG+TT	   47 (42.7)	   73 (60.8)	 1.00	‑
    GT	   63 (57.3)	   47 (39.2)	 2.08 (1.23‑3.53)	 0.008
  Allele				  
    G	 143 (65.0)	 159 (72.3)	 1.00	‑
    T	   77 (35.0)	   81 (27.7)	 1.06 (0.72‑1.55)	 0.844

OR, odds ratio; CI, confidence interval.
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revealed that tissue‑specific lncRNAs form base‑pairing 
interactions with numerous mRNAs associated with 
tissue‑differentiation, indicating that tissue specificity is 
an critical factor in controlling human lncRNA‑mRNA 
interactions (30). LncRNAs have tissue‑specific expression 
and serve an important role in the human transcriptome 
by regulating normal tissue differentiation as well as 
cancer development  (30). Notably, a number of previous 
studies have implicated a role of lncRNA dysregulation, of 
transcripts including leukemia‑induced non‑coding activator 
RNA, B‑ALL‑associated long RNA (BALR)‑6 and ‑ 2, 
NOTCH1‑associated lncRNA in T‑ALL and CCDC26, in 
tumorigenicity in leukemias (31‑34). SNPs may significantly 
influence gene expression and function. Altered expression 
of lncRNAs in various cancers indicates the potential tumor 
suppressor or oncogenic functions of the lncRNAs (35‑39). 
Recently, an association between the rs2147578 polymorphism 
of lnc‑LAMC2‑1 and risk of childhood ALL has been 
demonstrated (6).

There is limited information on the impact of PAX8‑AS1 
polymorphisms on cancer risk  (19,24). Han  et  al  (19) 
demonstrated that PAX8‑AS1 rs4848320 and rs1110839 
polymorphisms decreased the risk of cervical cancer, while 
Ma et al  (24) reported that rs4848320 and rs1110839 were 
associated with prognosis of HCC in a Chinese population. 
It has been proposed that the PAX genes act as oncogenes, 
and that PAX overexpression facilitates malignant develop-
ment through effects on apoptotic resistance, tumor cell 
proliferation and migration, and repression of terminal differ-
entiation (40). As PAX8‑AS1 is a potential regulator of PAX8, 
polymorphisms in the PAX8‑AS1 may affect its function and 
alter the expression of PAX8.

There are a number of limitations to the present study. 
First, a relatively small sample size was used. Second, there 
was a lack of data regarding the response of patients to treat-
ment; therefore, it was not possible to analyze the association 
between the variants and response to treatment.

In conclusion, the present results suggested that PAX8‑AS1 
polymorphisms significantly increased the risk of childhood 
ALL in a Southeast Iranian population. As this, to the best of 

our knowledge, was the first study to examine the association 
of polymorphisms in PAX8‑AS1 with risk of childhood ALL, 
future studies with larger sample sizes and different ethnicities 
are required to confirm the findings.

Acknowledgements

The present study was financially supported by a research 
grant from the Deputy for Research of Zahedan University of 
Medical Sciences, (Zahedan, Iran; grant no. 8224).

Table III. Association of paired‑box gene 8 antisense RNA 1 haplotypes and risk of acute lymphoblastic leukemia.

	 Polymorphism
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 	 Cases,	 Controls,
rs4848320	 rs1110839	 rs6726151	 frequency	 frequency	 OR (95% CI)	 P‑value

C	 T	 T	 0.2025	 0.2216	 1.00 [ref.]	‑
T	 G	 G	 0.2010	 0.1680	 1.32 (0.71‑2.47)	 0.390
T	 T	 G	 0.2177	 0.1472	 1.63 (0.83‑3.19)	 0.160
C	 T	 G	 0.1402	 0.2042	 0.77 (0.38‑1.58)	 0.480
C	 G	 G	 0.0910	 0.1431	 0.68 (0.33‑1.42)	 0.310
C	 G	 T	 0.0754	 0.0478	 1.87 (0.55‑6.43)	 0.320
T	 G	 T	 0.0463	 0.0495	 1.09 (0.38‑3.11)	 0.880
T	 T	 T	 0.0259	 0.0186	 1.35 (0.20‑9.20)	 0.760

OR, odds ratio; CI, confidence interval.

Figure 4. Haploview linkage disequilibrium graph of the three polymor-
phisms analyzed in long non‑coding paired‑box gene 8 antisense RNA 1. 
Pairwise linkage disequilibrium coefficients (D' x100) are indicated in each 
cell linkage.
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