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Abstract. Gap junctions are tightly packed intercellular 
channels that serve a common purpose of allowing the inter-
cellular exchange of small metabolites, second messengers and 
electrical signals. Connexins (Cxs) are gap junction proteins. 
Currently, 20 and 21 members of Cxs have been character-
ized in mice and humans, respectively. Connexin 43 (Cx43) 
is the most ubiquitously expressed type of Cx in the skin. It is 
produced by various different types of skin cell, such as kera-
tinocytes, fibroblasts, endothelial and basal cells, melanocytes 
and dermal papilla cells. At present, more evidence indicates 
that Cx43 has an important role in skin repair and skin tumor 
development, as well as in skin cell invasion and metastasis. 
In this review, current knowledge regarding the regulation and 
function of Cx43 is summarized and the therapeutic potential 
of regulating Cx43 activity is discussed.
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1. Introduction

The skin forms a protective barrier between the internal 
organs and the environment by preventing invasion of patho-
gens, and fending off chemicals and physical assaults, as well 
as preventing the unregulated loss of water and solutes (1,2). 
Skin is arranged into three layers, including the epidermis, 
dermis and hypodermis (from top to bottom). Cutaneous blood 
vessels and nerve endings are presented in the dermis and 

hypodermis, while the epidermis is avascular with no neural 
tissue. Therefore, the cell-to-cell communications mediated 
by GJs provide a crucial mechanism for the integrity of the 
epidermal barrier and dermal supports (3).

GJ channels formed from Cxs are the predominant intracel-
lular connections that regulate cell permeability and polarity. 
To date, 21 Cxs have been identified in humans and 20 Cxs 
in mice (4,5). Cxs are named according to their respective 
molecular weight, such as Cx26, Cx31, Cx43 and Cx57. The 
structure differences between them lie in the cytoplasmic loop 
and carboxyl (C) terminal region. The Cx subunit contains 
four hydrophobic transmembrane domains, comprising two 
extracellular loops, one cytoplasmic loop and one cytoplasmic 
N-terminal, as well as a C-terminal region. When functioning, 
six Cx subunits form a hemichannel in the plasma membrane 
that dock to another hemichannel in the plasma membrane 
of an adjacent cell to assemble a complete GJ channel (4). 
These channels allow the exchange and diffusion of various 
compounds up to a molecular mass of 1,000 Da, for example 
metabolites, ions, second messengers, water and electrical 
impulses (6,7). The half-life of Cxs is relatively short, ranging 
from 1.5 to 5 h in the majority of tissue and cell types (8,9). 
However, the mechanism of the balance between Cx synthesis 
and degradation remains elusive. Abnormal Cx expression 
has been reported to be associated with dysregulated cell 
proliferation, migration and wound healing rates (10).

There are 10 Cxs in human skin, including Cx43, Cx45, 
Cx40, Cx31, Cx26, Cx32, Cx30, Cx30.3, Cx41.8 and Cx39.3. 
Cxs display distinct function in the epidermis and dermis 
with overlapping expression (11). Among these 10 Cxs, Cx43 
is the most ubiquitously expressed in the skin. It is produced 
by various different types of skin cell, such as keratinocytes, 
fibroblasts, endothelial and  basal cells, melanocytes and 
dermal papilla cells (11,12).

2. Regulation of Cx43

Cx43 is encoded by gap junction α 1 gene (GJA1; MIMno. 121014). 
The normal expression (10), proper location (13) and accurate 
connection with other Cxs (14,15) are crucial for its function.

Cx43 expression is regulated at the transcriptional and 
post-transcriptional levels. One activator protein-1 (AP-1) and 
two Sp1 transcription factor (SP1) binding sites exist in the 
5'‑flanking promoter of Cx43 (16). Activated protein kinase C 
(PKC) and estrogen induce Cx43 transcription through AP-1 
and SP1 sites (16,17). Wnt signaling and protease-activated 
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receptor-1 (PAR-1) also increase the transcription level of 
Cx43 (18). Post-transcriptional regulation of Cx43 predomi-
nantly relies on its C-terminal region, which contains multiple 
phosphorylation sites and acts as the functional domain of 
Cx43. Tumor growth promoting factors, protein kinase and 
inflammatory mediators, such as PKC (19), mitogen activated 
protein kinase (20), Src kinase (21), casein kinase 1 (22) and 
PKA (23), may modulate phosphorylation of Cx43 through 
serine/tyrosine residues at the C-terminus and subsequently 
regulate subcellular localization of Cx43 and GJ formation. 
However, the effect of phosphorylation of Cx43 on GJ intra-
cellular communication remains uncertain. The ubiquitin (24) 
and small ubiquitin‑related modifier (25) system are important 
in post-transcriptional regulation of Cx43 GJs. In addition to 
post‑transcriptional modifications, Cx43 interacts with a range 
of cytoskeleton proteins, including zonula occludens-1 (ZO-1), 
ZO-2, and α- and β-tubulin, to regulate cell adhesion and 
migration (26-28).

3. Implications of Cx43 in skin system

Increasing evidence indicates that Cx43 directly affects 
the proliferation and migration of keratinocytes and fibro-
blasts (29). Cx43 also participates in wound healing (30), 
hyperkeratosis (31) and tumor development of skin (32,33).

Cx43 in cutaneous wound healing. Normal skin regenerates 
after wounding or damaging. Wound healing is a compli-
cated physiological process in which different types of cell, 
containing various growth factors and chemokines, are 
involved (34,35). There are four steps in the wound healing 
process: Hemostasis, inflammation, migration and prolif-
eration, and remodeling (34,36). During wound healing, the 
expression of Cx43 varies and influences cell behaviors.

Numerous factors may regulate the expression levels of 
Cx43 during repair processes (Fig. 1). Subsequent to wounding, 
a high concentration of cyclic adenosine monophosphate at the 
wound site induces a reduction in Cx43 expression levels and 
other junction proteins at the plasma membrane, which subse-
quently destructs the cell junction and causes cytoskeleton 
remodeling (30). The activated AKT phosphorylates Cx43 at 
S373 and limits its interaction with ZO-1, potentially leading 
to activation and migration of keratinocytes in the skin (37).

The expression level of Cx43 changes dynamically during the 
wound healing process. On days 1 and 2 subsequent to injury, 
the mRNA and protein expression levels of Cx43 were signifi-
cantly decreased at the wound edge, and readjusted to normal 
levels (like those in non-injured skin) from day 3 onwards in 
mice (10). By contrast, the level of Cx43 expression remains at a 
low level throughout the entire healing process in humans (29). 
Cx43 reduction has been shown to be associated with: i) 
Remodeling of the extracellular matrix (ECM) (38); ii) prolifer-
ation and migration of keratinocytes and fibroblasts (10,39,40); 
and iii) regulation of inflammatory responses through certain 
cytokines, chemokines or growth factors (38,40). Transient 
knockdown or artificial deficiency of Cx43 induces the prolif-
eration and migration of keratinocytes and dermal fibroblasts, 
and enhances ECM production by upregulating collagen type I, 
collagen type III, matrix metalloproteinase-2 and transforming 

growth factor (TGF)-β1 (38). Additionally, Cx43 knockdown 
may decrease the expression levels of chemokine (C-C motif) 
ligand 2 and tumor necrosis factor (TNF)α, and elevate the 
expression levels of TGF-β1 and collagen α1, which affects 
the extravasations of neutrophils and macrophages involved in 
the wound healing process (40). Furthermore, the angiogenic 
potential of endothelial cells would be impaired following 
Cx43 knockdown (41,42). Although the role of Cx43 reduction 
in wound healing has been widely accepted, the underlying 
mechanism and signaling pathway involved in its function 
require further investigation to provide a solid theoretical basis 
for its clinical application.

Cx43 is crucial in chronic wound healing. Chronic wounds, 
such as diabetic foot ulcers, pressure ulcers, and venous leg 
ulcers are an increasing issue worldwide (43). Diabetic ulcers, 
the most common diabetic complication, represent a major 
concern for patients and doctors with regard to quality of 
life and economics (44). Clinical and experimental evidence 
suggests that chronic wounds do not follow an orderly progres-
sion of wound healing (35). In the case of diabetic ulcers, 
abnormal expression of Cx43 was reported (45). As mentioned 
above, the Cx43 expression level is decreased at the wound 
borders during acute injury of normal human skin. By contrast, 
its expression level elevates by ~10-fold in human chronic 
diabetic foot ulcers at the wound edge (46). It was reported 
that the high glucose level of diabetic cells induces Cx43 
expression, and subsequently represses filopodial extensions 
and fibroblast migration rates (46). However, Vinnik et al (47) 
observed a minor increase of Cx43 expression at the wound 
borders in patients with diabetes mellitus type II. In the study, 
the Cx43 expression levels at the wound edge increased by 
~1.9 times following ozone therapy; however, the action 
mechanism of Cx43 in this case remains to be elucidated (47). 
A finding by Mendoza‑Naranjo et al (48) that is consistent with 
the above-mentioned observations demonstrated an increased 
expression level of Cx43 in venous leg ulcers, and increased 
healing rates following Cx43 shRNA treatment (48).

The role of Cx43 is not simply to form GJ channels, but also 
to stabilize a series of proteins, such as N-cadherin and ZO-1, 
which are required for cell-to-cell adhesion and cell migra-
tion (45,46,48), which further illustrates that the sustained 
inhibition of Cx43 may be efficient for rapid or chronic wound 
healing.

Cx43 in keratoderma. Cx43 is tightly associated with 
keratinocyte behaviors. The human Cx43 gene, or GJA1, is 
located at human chromosome 6q22-q23 within the candidate 
region for the oculodentodigital dysplasia (ODDD) locus. 
A Cx43 mutation directly causes the pleiotropic pheno-
type of ODDD (49). It is proposed that the gene mutations 
(c.412G>A/p.Gly138Ser) (50) and deletions (dinucleotide 
deletion 780_781delTG) (51) causing truncation of the Cx43 
C-terminus are necessary and sufficient for palmoplantar 
keratosis (PPK) development in ODDD patients. More 
recently, other mutations of Cx43 have been observed in 
various types of rare, inherited skin disorder characterized 
by keratoderma or hypokeratosis with other severe symptoms, 
including a heterozygous mutation (c.23G>T [p.Gly8Val]) of 
GJA1 in a family with keratoderma-hypotrichosis-leukonychia 
totalis syndrome (31) and de novo missense mutations (A44V 
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and E227D) of GJA1 in erythrokeratodermia variabilis et 
progressiva (52). Mechanistically, GJA1 mutations lead to 
disruption of Cx43 membrane localization and aggregation 
in the Golgi, resulting in excessive opening of hemichannels 
and cytoplasmic Ca2+ overload, and subsequent keratinocyte 
apoptosis and hyperkeratosis.

In addition to the above-mentioned mutations, Cx43 
participates in epidermal keratinization by interacting 
with other members of the Cx family. For example, Cx26 
mutations, G12R/N14Y or H73R/S183F, directly caused 
keratitis-ichthyosis-deafness and PPK syndrome, respec-
tively. During these syndromes, Cx26 mutants may interact 
with Cx43 more efficiently and exacerbate Cx43 hemichannel 
activity, thus increasing cell membrane permeability and 
resulting in ATP release and Ca2+ overload (14,15). These 
studies further demonstrate the important role of Cx43 in 
genetic skin disorders.

Cx43 in melanoma and non‑melanoma skin cancer. Cx43 is 
closely associated with tumor initiation and development. In 
skin cancer, Cx43 is overexpressed in malignant melanomas 
when compared with the normal and benign nevi (32,33). The 
upregulation of Cx43 was associated with an enhanced cell 
adhesion and invasion of malignant tumor cells (53,54). By 
acting as a downstream effecter of PAR-1, Cx43 also medi-
ates melanoma metastasis and intracellular communication 
between the tumor microenvironment and the metastatic 
tumor cells (46). The roles of Cx43 in melanoma implicate 
it as an oncogene; however, various independent groups 
obtained opposing results. Schiffner et al (55) identified 
Cx43 as a downstream target of nuclear RNA-binding protein 
p54nrb. Cx43 knockdown mediated by p54nrb promotes cell 
proliferation and migration in human melanoma cell lines. 
In mouse melanoma cell lines, Cx43 reduction induced the 
expression of vascular endothelial growth factor and tumor 

angiogenesis (56). Similarly, in human melanoma cell lines, 
Cx43 overexpression reduced melanoma growth and metas-
tasis, and increased TNFα-induced cell apoptosis (57). These 
controversial results may be due to differences between cell 
lines, experimental conditions and test points in the studies.

Basal cell carcinoma (BCC) and squamous cell carcinoma 
(SCC) are the major subtypes of non-melanoma skin cancer (58). 
Stelkovics et al (59) observed a higher expression level of Cx43 
in BCC than that in SCC, indicating that Cx43 prevented 
metastatic invasion of BCC (59). In a previous study, immuno-
fluorescence and immunoelectron microscopy were used, and 
the expression level of Cx43 was relatively low in the basal layer 
of human normal skin; but Cx43 was not detectable in BCC or 
SCC, which consequently led to a small number of GJs in BCC 
and SCC (60). However, the underlying mechanisms of Cx43 
function in melanoma and non-melanoma skin cancers remain 
poorly understood and require further study and discussion.

Cx43 in skin development. Cx43 contributes to epidermal 
and follicular morphogenesis. During human fetal epidermal 
development, Cx43 is expressed at the later stages (88 days) 
of estimated gestational age (61). In rat and mouse skin, Cx43 
is expressed in all of the epidermal layers in the early phase 
of development (62,63), and is detected in hair follicles and 
the arrector pili muscles (12,64). The role and underlying 
mechanism of Cx43 in epidermal development remains 
largely unknown. During mouse ovarian folliculogenesis, 
Cx43-mediated GJs are required for coupling between granu-
lose cells and continued follicular growth (65). In addition, 
Cx43 evolves in skin cell differentiation. Dyce et al (66) 
compared stem cells from the skin of wild-type and Cx43 
knockout newborn mice. The authors found reduced cell 
migration rates and decreased expression levels of the pluri-
potency markers, octamer-binding transcription factor 4 and 
Nanog in Cx43‑deficient stem cells, indicating the role of Cx43 

Figure 1. Schematic of the regulation and function of Cx43 in acute skin injury. Elevated cAMP and pAKT at wound edges alter the expression and phos-
phorylation levels of Cx43. By mediating the upregulation of Col I, Col III, MMP2, TGF-β1 and VEGF, and the downregulation of Ccl2 and TNFα, Cx43 
participates in the important wound healing processes, including ECM remodeling, epidermal/dermal cell proliferation and migration, inflammation response 
and angiogenesis. In addition, dysphosphorylation of Cx43 affects its interaction with other proteins, such as CASK and ZO-1, and subsequently modulates 
cell permeability and migration. Overall, Cx43 integrates multiple pathogenic signals to regulate wound healing. Cx43, connexin 43; cAMP, cyclic adenosine 
monophosphate; pAKT, phosphorylated AKT; Col, collagen; MMP2, matrix metalloproteinase‑2; TGF‑1, transforming growth factor; VEGF, vascular endo-
thelial growth factor; Ccl2, chemokine (C-C motif) ligand 2; TNFα, tumor necrosis factor; ECM, extracellular matrix; CASK, calcium/calmodulin-dependent 
serine protein kinase; ZO-1, zonula occludens-1.
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in maintaining the multipotency of skin stem cells (66). The 
results are partially consistent with a previous study, in which 
the expression level of Cx43 was maintained at a higher level 
in an undifferentiated epidermis and markedly decreased in 
the differentiation of the epidermis (12).

Therapeutic modalities based on regulating Cx43 activity. 
Increasing evidence has identified a positive correlation 
between Cx43 inhibition and wound healing rates (67,68). 
Furthermore, Cx43 reduction relieves inflammation in chronic 
wounds (69). Currently, drug design and development based 
on Cx43 is an important research area. There are two methods 
for artificially downregulating Cx43, which involve antisense 
oligodeoxyribonucleotides (ODNs) and mimetic peptides 
(Table I). Antisense ODNs may have accelerated wound 
healing and reduced scar formation in normal mouse skin and 
diabetic rat skin (40,45,70). Cx43 mimetic peptides include 
Gap 15 (71), Gap 18 (72), Gap 19 (73), Gap 26 (74), Gap 26M 
(Gap26 modified with acylation to improve solubility and 
stability) (74), Gap 27 (74), Gap 35 (72) and Gap36 (72). Among 
these, the most evaluated peptides in skin cells are Gap26, 
Gap26M and Gap27. Gap26 and Gap26M directly interacted 
with amino acids 63-75 of the extracellular loop 1 of Cx43 
(VCYDKSFPISHVR); Gap27 mimicked amino acids 204‑214 
on the extracellular loop 2 of Cx43 (SRPTEKTIFII) (74). 
Gap26 and Gap26M are non‑Cx43 specific, whereas Gap27 
is Cx43‑selective (74). Various studies have demonstrated that 
peptide treatment significantly increases the migration rates of 
keratinocytes and fibroblasts to wound edges (74,75). In addition 
to the above-mentioned peptides, Ongstad et al (76) designed a 
cell-permanent α-connexin carboxyl-terminal (αCT1) peptide 
based on the C-terminus of Cx43. The peptides encapsulated in 
pluronic F127 thermogel and methylcellulose demonstrated a 
significant accelerating effect on wound healing in pre‑clinical 
animal models of the skin and heart. An external application of 
αCT1 on wound healing is now set to proceed into phase I and 
II clinical trials (76). Gap19 is currently applied for the treat-
ment of myocardial ischemia/reperfusion injury and, to the 
best of our knowledge, there are no reports regarding its appli-
cation in wound healing (73). Other peptides, including Gap15, 
Gap18, Gap35 and Gap36 were reported as Cx43 selective 
blockers; however, the function of these in cutaneous systems 
remain elusive (71,72). Various chemicals, including octanol 
and 18β-glycyrrhetinic acid and its water-soluble derivative, 
carbenoxolone, block intercellular junctional communication 
by targeting Cxs (77-79).

Notably, primary diabetic cells exhibited less susceptibility 
to Cx43 inhibitors (80,81); therefore, the clinical application 
of administering Cx43 peptides for the treatment of chronic 
diabetic wounds requires further critical consideration. As the 
mode-of-action of Cxs is not unique, selective downregulation 
of one Cx rather than using broad-spectrum inhibitors would 
be preferable. Furthermore, the functional mechanism and 
effects of Cx43 mimetic peptides on other tissues have yet to 
be determined.

4. Conclusion

Recent studies on Cx43 in the skin clearly demonstrate that 
Cx43 is important in human skin biology and pathology. The 

expression level and activity of Cx43 are strictly regulated 
in certain situations. Downregulation of Cx43 following 
tissue injury significantly reduces ECM deposition, inflam-
mation response and scar formation, and accelerates wound 
healing rates. Currently, Cx43 expression levels and functions 
have been presented in skin injury, skeletal muscle regen-
eration (82), ischemia/reperfusion injury (83) and cornea 
repair (84). The Cx-associated compounds are in development 
and indicate promising therapeutic opportunities in preclinical 
evaluation (85). Non‑toxic Cx43 specific inhibitors may also 
be effective for the treatment of wounds, skin cancer or other 
skin associated disorders. Therefore, it is considered urgent to 
investigate the underlying mechanisms and clinical potential 
of Cx43 in the skin.
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