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Abstract. Network-based systems biology has become 
an important method for analyzing high-throughput gene 
expression data and gene function mining. Yeast has long been 
a popular model organism for biomedical research. In the 
current study, a weighted gene co-expression network analysis 
algorithm was applied to construct a gene co-expression 
network in Saccharomyces cerevisiae. Seventeen stable gene 
co-expression modules were detected from 2,814 S. cerevisiae 
microarray data. Further characterization of these modules 
with the Database for Annotation, Visualization and 
Integrated Discovery tool indicated that these modules were 
associated with certain biological processes, such as heat 
response, cell cycle, translational regulation, mitochondrion 
oxidative phosphorylation, amino acid metabolism and 
autophagy. Hub genes were also screened by intra-modular 
connectivity. Finally, the module conservation was evaluated 
in a human disease microarray dataset. Functional modules 
were identified in budding yeast, some of which are 
associated with patient survival. The current study provided 
a paradigm for single cell microorganisms and potentially 
other organisms.

Introduction

The budding yeast, Saccharomyces cerevisiae, has been used 
to make bread and beer for thousands of years. As a single-cell 
organism, budding yeast has been extensively investigated in 
genetics and physiology as a model system for eukaryotes, 
due to its well-annotated genome and short life cycle (1). 

Completion of the budding yeast genome sequencing project 
helped to determine a total of 6,275 genes on 16 chromosomes 
(12 million base pairs). Yeast possesses 23% homologous genes 
to humans; therefore, it is considered as a useful model for 
gene function studies (2). Although yeast and human diverged 
from a common ancestor ~1 billion years ago, lines of evidence 
demonstrate the strong conservation of gene function between 
yeast and humans (3).

The advancement of cDNA array technology and its low 
cost make genome-wide gene expression analysis possible. 
There are many transcriptome data of budding yeast in public 
databases, including gene expression data from different 
nutritional conditions, growth stages and gene knock-out 
models (4). A task for bioinformaticians is to reanalyze these 
large-scale microarray data and next-generation sequencing 
data, and identifying the hidden information within these 
databases. Systems biology studies use high-throughput data 
and mathematical models to construct yeast transcriptional, 
gene regulation and protein interaction networks (5,6). The 
current study used the Google Scholar search engine (https://
scholar.google.com/) and, to the best of our knowledge, 
weighted gene co-expression network analysis (WGCNA) has 
not been applied to budding yeast. Using WGCNA to construct 
a yeast gene co-expression network has many advantages. 
Firstly, individual experiments may lose meaningful biological 
information due to relatively small sample sizes and different 
statistical methods. Pooling datasets from studies helps to 
strengthen statistical power. Secondly, the gene co-expression 
analysis reduces high-dimensional genome-wide gene 
expression to only tens of modules, which simplifies the 
depiction of yeast biology functions. Thirdly, functionally 
unknown genes are inferred from co-expressed gene 
modules by the principle of guilt by association (7). Finally, 
the current analysis may provide a paradigm for single-cell 
microorganism.

The aim of the present study was to construct a budding 
yeast gene co-expression network and identify functional 
modules that may represent different aspects of yeast biolog-
ical function. It is hypothesized that certain highly connected 
genes may be involved in module function. The conservation 
of these modules is further validated in human tumor cells, 
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some of which may differentiate the survival times of separate 
patients into long and short.

Materials and methods

Microarray data processing. Yeast microarray data were 
downloaded from Gene Expression Omnibus (GEO) (http://
ncbi.nlm.nih.gov/gds) (8). Detailed information of the 
218 gene expression datasets used in the current study are 
available at Online Resource 1 (http://bioinformatics.fafu.edu.
cn/Downloads.html). To simplify the data analysis procedure 
and to enhance reproducibility, only 2,814 budding samples 
from experiments run on Affymetrix Yeast Genome 2.0 Array 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) were 
included. Datasets from fission yeast was excluded. Expression 
Console (version 1.2) (Affymetrix, Inc., Santa Clara, CA, 
USA) was used to process raw data. Probe level expression 
data were extracted using the MAS5.0 method and normal-
ized using the DNAMR package (http://www.rci.rutgers.
edu/~cabrera/DNAMR).

Weighted gene co‑expression network construction and 
module detection. Signed network was constructed according 
to WGCNA protocols (9-11). The WGCNA R function was 
implemented using the following parameters: power=12, 
minModuleSize=30, deepSplit=4, networkType=‘signed’. 
Briefly, Pearson correlation coefficients were calculated for 
all pair-wise comparisons of the probes across all samples. 
The resulting correlation matrix was converted into a matrix 
of connection strengths (that is, an adjacency matrix) using 
the power function αij = [0.5+0.5 x cor(xi, xj)]β where xi and 
xj are the i th and j th probe expression, which resulted in a 
weighted network. Then topological overlap measure (TOM) 
was calculated as follows: 

Calculation of 1-TOM was performed as a biologically 
meaningful measure of node similarity, representing how 
close the neighbors of probe 1 were to the neighbors of 
probe 2. Probes were hierarchically clustered using 1-TOM 
as the distance and modules were determined by choosing a 
height cutoff of 0.995 for the resulting dendrogram. Highly 
similar modules were identified by clustering and merged 
together using a dynamic tree-cutting algorithm (7). The 
module eigengene (ME) corresponds to the first principal 
component of a given module and is calculated as follows: 
ME = princomp(xil

(q)), where i corresponds to module probes 
and l represents microarray samples in module q. This may 
be considered as the most representative probe expression in 
a module. Module membership (MM or kME) for each probe 
in each module refers to the Pearson correlation between the 
expression level of the probe and ME (7). MM was calculated 
by Kcor,i

(q) = cor(xi,E(q)), where xi is the profile of node i and E(q) is 
the ME of module q. Hub genes were defined as corresponding 
probes that have high module membership values within a 
module (11). The stability of each module was evaluated by 
sampling 1,407 samples from all 2,814 samples 1,000 times. 
Correlation between connectivity calculated from the sampled 

samples and the original samples was represented as the 
mean ± standard deviation.

Gene ontology (GO) and pathway enrichment analysis. GO 
enrichment and Kyoto Encyclopedia of Genes and Genomes 
pathway analysis for network modules were performed using 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID 6.7, https://david-d.ncifcrf.gov) with the 
background list of all genes on the array (12-14). In DAVID, the 
overrepresentation of a term is defined as a modified Fisher's 
exact P-value with an adjustment for multiple tests using the 
Benjamini-Hochberg method (15).

Survival analysis. A human breast cancer dataset, GSE31448, 
colorectal cancer dataset, GSE17536, and sarcoma dataset, 
GSE21050 were downloaded from the NCBI GEO database. 
Raw files were processed using the Affymetrix Expression 
Console. The yeast module genes were mapped to human 
genes using the NCBI HomoloGene system (https://www.ncbi.
nlm.nih.gov/homologene). To obtain the module expression 
value MEs, the three disease gene expression datasets were 
projected to yeast modules according to homologous genes. 
Patients were then separated into two groups with high and low 
MEs. Survival analysis was conducted to compare the survival 
time difference in R using the survival package. P-values for 
survival curves were determined from the Kaplan-Meier 
survival curves by use of the log-rank test.

Results

WGCNA. A large budding yeast gene co-expression network 
was constructed in the present study, to the best of our knowl-
edge, for the first time. WGCNA identified 17 modules, which 
contained genes with similar expression patterns. To evaluate 
the stability of modules, gene connectivity was correlated before 
and after sampling (Fig. 1). Module stability was expressed as 
the correlation of intramodule connectivity between the original 
and sampled module. The average correlation was >0.8. Module 
Cyan was the most stable module, and module Lightyellow was 
the least stable (Fig. 1). All gene modules and corresponding 
connectivity data are provided in Online Resource 2 (http://
bioinformatics.fafu.edu.cn/Downloads.html).

Modules are involved in different functions. To identify 
modular features, DAVID was used to characterize module 

Figure 1. Correlation of intramodule connectivity for each module after sam-
pling 1,000 times (means ± standard deviation).
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genes (Table I). All the modules were associated with distinct 
biological functions, representing aspects of yeast cell function. 
Module yellow is enriched with genes associated with ncRNA 
processing, which predominantly localize in the nucleolus. 
Both modules cyan and green-yellow were associated with 
mitochondria, while module cyan encodes proteins involved 
with oxidative phosphorylation on mitochondrial membranes, 

and module green-yellow encodes mitochondrial ribosome 
proteins.

Functions of module hub genes. In a network biology, genes 
do not contribute equally to a module. Those genes with higher 
connectivity may exert more significant roles in a module. To 
establish the functional annotation of those genes, the top 

Table I. GO and KEGG annotation of the identified 17 gene co-expression modules in Saccharomyces cerevisiae.

  GO term (Benjamini-Hochberg adjusted P-value)  
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------- 
    KEGG
Module    (Benjamini-Hochberg
(no. genes) Biological process Cellular component Molecule function adjusted P-value)

Black (277) Response to heat (1E-45) Plasma membrane Aldehyde reductase Sucrose metabolism
  (6E-11) activity (9E-4) (7E-7)
Blue (935) Cell cycle phase (8E-10) Chromosome (1E-8) Protein kinase activity (5E-2) Cell cycle (4E-12)
Brown (796) Regulation of translation Cytosolic ribosome Structural constituent of Ribosome (5E-66)
 (4E-27) (1E-80) ribosome (5E-39) 
Cyan (111) Oxidative phosphorylation Mitochondrial (4E-41) Hydrogen ion Oxidative
 (2E-38)  transmembrane transporter phosphorylation
   activity(4E-29) (4E-31)
Dark green (37) M phase of meiotic Condensed nuclear Structure-specific Meiosis (7E-7)
 cell cycle (2E-22) chromosome (3E-10) DNA binding (1E-04) 
Dark red (49) Amino acid Glycine cleavage Oxidoreductase activity, Arginine and proline
 biosynthesis (2E-23) complex (7E-3) acting on the CH-NH2 metabolism (3E-3)
   group of donors, disulfide 
   as acceptor (3E-2) 
Green  (736) Autophagy (1E-19) Vacuole (5E-4) Transcription regulator 
   activity (9E-4) 
Green yellow Mitochondrial translation Mitochondrial Structural constituent of Aminoacyl-tRNA
(135) (7E-98) ribosome (7-E101) ribosome (8E-69) biosynthesis (8E-7)
Grey 60 (84) Steroid metabolism Intrinsic to membrane O-acyltransferase 
 (1E-5) (5E-7) activity (1E-3) 
Light cyan (85) Ubiquitin-dependent Proteasome (2E-58) Threonine-type Proteasome (2E-50)
 protein metabolism (1E-38)  endopeptidase activity 
   (3E-21) 
Light green Protein amino acid Intrinsic to membrane Mannosyltransferase N-Glycan
(187) glycosylation (2E-13) (4E-34) activity(1E-3) biosynthesis (5E-9)
Light yellow Oligosaccharide   
(57) metabolic process (3E-4)   
Pink (194) Sporulation (5E-4)   
Purple (143) Organic acid Microbody (3E-17) Ligase activity, Glyoxylate and
 catabolic process (4E-11)  forming carbon-sulfur dicarboxylate
   bonds (2E-2) metabolism (5E-6)
Royal blue (52) Sulfur metabolism (2E-25)  Sulfur amino acid Sulfur metabolism
   transmembrane (5E-10)
   transporter activity (6E-5)
Tan (1851) Monosaccharide catabolic Cytosolic ribosome Structural constituent Ribosome (3E-10)
 process (3E-2) (2E-10) of ribosome (9E-5) 
Yellow (666) ncRNA processing (1E-100) Nucleolus (2E-128) DNA-directed RNA Pyrimidine
    polymerase activity (2E-14) metabolism (9E-16)

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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hub genes were screened to examine their functions (16). For 
example, module blue was enriched in cell cycle-associated 
genes. The top hub gene of the module was YDR506C, which 
contributes to nuclear division and genome integrity (17,18). 
The results are presented in Table II.

Module conservation in human cancer cell lines. WGCNA 
ModulePreservation function was used to evaluate the 
preservation of the 17 yeast modules in the human cancer 
cell lines dataset, GSE36133 (Fig. 2). Five modules, yellow, 

Table II. Hub genes and their encoding proteins of the gene co-expression modules in Saccharomyces cerevisiae.

Module Gene Encoding protein

Black DCS2 Protein DCS2
Blue YDR506C Putative multicopper oxidase YDR506C
Brown RPL22A 60S ribosomal protein L22-A
Cyan SDH2 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial
Dark green IME2 Meiosis induction protein kinase IME2/SME1
Dark red ARG7 Arginine biosynthesis bifunctional protein ARG7, mitochondrial
Green GPX1 Glutathione peroxidase 1
Green yellow MRPL49 54S ribosomal protein L49, mitochondrial
Grey 60 PAU5 Seripauperin-5; Seripauperin-7
Light cyan RPT4 26S protease subunit RPT4
Light green ALG8 Dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-glucosyltransferase
Light yellow PRP39 Pre-mRNA-processing factor 39
Pink MER1 Meiotic recombination 1 protein
Purple FOX2 Peroxisomal hydratase-dehydrogenase-epimerase
Royal blue MET16 Phosphoadenosinephosphosulfate reductase
Tan SPBC947.09 Uncharacterized protein C947.09
Yellow RPF2 Ribosome biogenesis protein RPF2

Figure 3. Identified modules differentiate between patients with different 
survival/metastasis-free survival time. (A) Breast cancer patients (dataset, 
GSE31448). (B) Colorectal cancer patients (dataset, GSE17536). (C) Sarcoma 
patients (dataset, GSE21050). P-values were computed using Log-rank test. 
Blue line, low ME group; green line, high ME group. ME, module eigengene.

Figure 2. Module preservation analysis between bake yeast and human 
cancer cell lines. Z summary represents the summary preservation statistics, 
where the y-axis demonstrates the preservation statistics and the x-axis is 
the gene numbers in each module. The dashed blue and green lines indicate 
the thresholds Z=2 and Z=10, respectively. Z summary <2 implies no evi-
dence for module preservation, Z summary ≤10 indicates weak to moderate 
evidence, while Z summary >10 suggests strong evidence for module preser-
vation. The statistics are derived from 1,000 permutations.
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green-yellow, light cyan, cyan and brown were identified to be 
well preserved from high to low in human cancer cell lines. 
They are associated with ncRNA processing, mitochondrial 
translation, ubiquitin-dependent protein metabolism, oxidative 
phosphorylation and regulation of translation.

Co‑expression modules differentiate between patients with 
different survival times. To further validate the importance 
of these modules, human breast cancer, colorectal cancer and 
sarcoma microarray datasets were used to plot survival curves. 
For example, module blue differentiates between breast cancer 
patients (Fig. 3A); module royal blue separates colorectal 
cancer patients (Fig. 3B); and module light green distinguishes 
sarcoma patients (Fig. 3C).

Discussion

WGCNA has been extensively applied to gene co-expression 
network construction and analysis in various species. 
For example, in human brain transcriptome analysis, 
Oldham et al (10) identified the gene co-expression corre-
sponding to different brain regions. In plants, Zhan et al (19) 
identified cell-type specific gene co-expression modules, and 
observed regulatory modules that were associated with endo-
sperm cell differentiation. WGCNA was previously used to 
depict functional gene co-expression modules in mouse liver 
and human cancer cell lines (20,21). In the present study, a 
gene network of budding yeast was successfully constructed 
using WGCNA analysis. All of the identified 17 modules were 
associated with specific functional categories. As a single 
cell organism, the results are easier to interpret. Therefore, 
WGCNA has an advantage over differential gene expression 
analysis or ANOVA, which compare two or more experimental 
groups. When there are many different biological groups, it is 
more complicated to analyze these data. WGCNA surmount 
these disadvantages, as it simplifies thousands of genes into 
tens of functional modules. Finally, the method does not 
require prior knowledge, so novel gene functions may be iden-
tified. WGCNA has previously been used as a gene annotation 
method (22).

The 17 identified modules represent different aspects of 
budding yeast functions, including substance and energy 
metabolism, cell proliferation and stimulus response (Table I). 
Module black contains genes associated with heat response, 
which is an important trait of yeast function (23). Recent 
studies indicate that yeast has an adaptation for environmental 
stress, such as high temperature (24). Substance metabolism 
modules, include amino acid metabolism (dark red), steroid 
metabolism (grey 60), organic acid metabolism (purple) and 
sulfur metabolism (royal blue). Each module has a distinct 
function, indicating the robustness of WGCNA.

Only 1,944 module genes were projected to human 
homologous genes due to the limited number of yeast genes 
on microarray. Thus, there is no definitive conclusion that 
modules with a low preservation Z summary value are not 
preserved within humans as a result of fewer genes in these 
modules (Fig. 2). However, the five preserved modules 
identified in the present study are consistent with a previous 
study that demonstrated that genes within these modules are 
replaceable (3).

The significance of cancer cell line gene co-expression 
modules in tumors has previously been reported (21). In the 
current study, yeast modules were observed in various human 
cancer datasets. For example, certain modules differentiate 
between patients with long and short survival times, indicating 
their importance from yeast to humans. Those modules may be 
crucial in cancer biology and provide information for human 
tumor research within yeast cells.
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