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Abstract. Ecto-protein kinases, including protein kinase CK2 
(former name, casein kinase 2), have been the focus of research 
for more than 30 years. At the beginning of the ecto-kinase 
research their identification was performed with substrates 
and inhibitors whose specificity under the current knowledge 
was rather limited. Since all currently known ecto-kinases, 
including ecto-CK2, have intracellular counterparts, one has to 
exclude that an ecto-localization originates from intracellular 
counterparts after cell damage. Protein kinase CK2 is involved 
in cellular key processes such as cell cycle progression, inhibi-
tion of apoptosis, DNA damage repair, differentiation and many 
other processes. CK2 is composed of two catalytic CK2α or 
CK2α' subunits and two non-catalytic CK2β subunits. Progress 
in the ecto-kinase and in particular ecto-CK2 studies was made 
with the use of transfected tagged CK2 subunits, which allowed 
to follow their individual transport and localization on the cell 
surface after transfection. Furthermore, immunofluorescence 
studies with antibodies against CK2 subunits as well as affinity 
chromatography with a binding partner of CK2 subunits have 
improved ecto-kinase research. The use of new and more 
specific inhibitors as well as of substrates, which do not cross 
the plasma membrane, have further improved the specificity for 
ecto-CK2. From the various substrates of ecto-CK2, it can be 
concluded that ecto-CK2 plays a role in Alzheimer disease, cell 
adhesion, platelet aggregation, immune response and cellular 
signalling. New tools and techniques, to study ecto-CK2 
activity, are required to identify new substrates and thereby 
new functional implications for ecto-CK2.
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1. Introduction

Cells need a versatile, fast mechanism to respond to changes in 
their environment. Such a fast response is possible by revers-
ible phosphorylation of extracellular domains of cell surface 
proteins. Ecto (Greek word for outside)-phosphorylation 
is emerging as an important mechanism to regulate ligand 
interaction with their receptors, ion channels, signalling 
mechanisms, shedding from cell surfaces, cell-cell adhe-
sion, immune response and proliferation and differentiation. 
Ecto-protein kinases are cell surface constituents of many 
cell types (1,2).

Ecto-kinase activities are involved in synaptogenesis, 
synaptic plasticity and long-term potentiation (3), activa-
tion of the complement system (4,5) and homeostasis (6,7). 
Ecto-kinases are powerful regulatory enzymes for protein 
phosphorylation at the cell surface. They are critical for 
intercellular communication and transduction of external 
stimuli. Potential substrates for ecto-kinases are cell adhesion 
molecules, growth factors and their receptors, coagulation 
factors and ion channels. In some cases, ecto-kinases are 
shed from the surface of cells in a substrate-induced manner. 
Ecto‑kinases have been identified as extracellular versions 
of known intracellular kinases. The pathway involved in 
their export out of the cell is largely unknown. They utilize 
extracellular ATP, which is present in blood plasma at a 
concentration of approximately 2 µM (8). The cytosol of 
mammalian cells contains 5-10 mM ATP. This concentra-
tion gradient facilitates an increase in extracellular ATP 
concentration after cell activation or cell damage. It is well 
known that, the level of intracellular Ca2+ increases and ATP 
is released from endothelial cells into the medium when cells 
are activated by thrombin (9,10). Another important argument 
for ecto-kinases may be the addition of exogenous substrates, 
which do not enter the cells, or the use of inhibitors of kinases, 
which do not penetrate into cells into the labelling medium. 
Moreover, working on ecto-kinases, it is always an important 
point to exclude leakage from dead cells.

Originally, two ecto-kinases have been described, c-AMP 
dependent protein kinase (11) and a cyclic nucleotide inde-
pendent kinase (12-14). Paas and Fishelson (4) reported on 
two types of ecto-kinases, a serine/threonine kinase and a 
tyrosine kinase. These ecto-kinases were assumed to bind to 
lipid-anchored molecules, some of which were additionally 
shed into the medium of cultured cells. In addition, there is 
also evidence for ecto-kinases, which are shed into the culture 
medium without being previously attached to the cell surface. 
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Notably, there is also evidence for the presence of ecto-phos-
phatase activity at least on endothelial cells, which was shown 
by using the membrane impermeable reagent, microcystin 
LR, which inhibits protein phosphatases PP-1 and PP-2a (15). 
Walter et al have identified protein kinases CK1 and CK2 as 
ecto-kinases on HeLa cells (14). Moreover, CK2-like kinases 
have been reported to be secreted from activated platelets, 
neutrophils and endothelial cells (7,16,17).

2. Protein kinase CK2

Knowledge regarding protein kinases and in particular protein 
kinase CK2 has increased considerably. The human kinome 
consists of 518 protein kinases (18). The common feature of 
these protein kinases is the transfer of the terminal phosphate 
group of a nucleotide to a serine, threonine or tyrosine residue 
of substrate proteins. The majority of protein kinases employ 
ATP as a phosphate donor, and only a few other kinases, 
including CK2, can also use GTP as a phosphate donor. Most 
of the protein kinases are serine/threonine kinases, some are 
tyrosine kinases and only a few, such as CK2, are dual‑specific 
kinases, phosphorylating serine, threonine and tyrosine (19).

The number of cell proteins, which are phosphorylated by 
CK2, is increasing rapidly (20) and therefore it is not surprising 
that CK2 is involved in almost every cell process regulating 
cell proliferation, cell survival (21), apoptosis (22), DNA 
damage and repair (23), development and differentiation (24) 
and the regulation of metabolism (25). CK2 is regarded as a 
constitutively active enzyme. With regard to the numerous 
substrates of CK2 and its implication in numerous basic cell 
processes it is, however, hard to believe that this kinase is not 
tightly controlled. In many organisms, CK2 is composed of 
two catalytic α-subunits or two α'-subunits and two non-cata-
lytic β-subunits forming tetramers such as (CK2αCK2β)2, 
(CK2α'CK2β)2 or (CK2αCK2α')/(CK2β)2, which can further 
aggregate into multimers of this basic tetramers (26,27). Since 
the tetramers and higher molecular weight complexes differ in 
their kinase activity, self-aggregation and dissociation seem to 
be involved in the regulation of CK2.

In addition to the tetramers and higher molecular 
complexes there is increasing evidence for the existence of 
CK2α-, α'- and β-subunits aside from the CK2 tetrameric 
holoenzyme. There are substrates, which are phosphorylated 
by the holoenzyme, in addition to substrates that are phos-
phorylated by CK2α or CK2α' alone and by the holoenzyme. 
Finally, there are substrates that are phosphorylated by CK2α, 
but not by the holoenzyme (28). These observations indicate a 
regulatory role for CK2β, which is supported by early findings, 
showing that CK2β confers stability to the holoenzyme (29), 
that it determines substrate specificity (30) and it increases the 
enzyme activity (31). It was shown by Cochet and Chambaz 
that CK2β can enhance the catalytic activity of CK2α 
5- to 10-fold (32). By contrast, Meggio et al reported that 
CK2β downregulated the activity of CK2α against calmodulin 
as a substrate (33). Polybasic compounds such as polylysine 
or spermidine react with an acidic cluster between residues 
55 and 64 of CK2β, thereby stimulating the kinase activity of 
the CK2 holoenzyme (34,35). These polybasic compounds do 
not directly affect the CK2α subunit. Recently, a new function 
of CK2β was identified by the cell‑specific deletion of CK2β 

in T cells, which showed that CK2β plays an important role 
as a modulator of the immune response (36). There are some 
examples, where CK2β can also contribute this regulatory 
function to other protein kinases such as A-raf, c-mos and 
CHK-1 (37,38). Recently, a close interaction between CK2β, 
mTOR and IGFBP-1 in hepatocellular carcinoma cells was 
reported (39). On the other hand, there is an increasing number 
of proteins binding to the CK2 holoenzyme or to CK2α or 
CK2α' alone. These binding partners of CK2 are known to 
regulate CK2 kinase activity such as p53 (40-44) or PP2A and 
topoisomerase (45,46). Thus, there are obvious cell regulators 
of CK2 (47-49) and vice versa, as well as other proteins that 
are regulated by CK2 binding (49-52).

Phosphorylation and dephosphorylation is often the main 
mechanism for the regulation of proteins and their activities. 
Cdk1 is known to phosphorylate CK2α (53,54). The phos-
phorylation of CK2β by CK2α as well as by cdk1 seems to 
be, however, not essential for a fully active heterotetramer of 
CK2 (54). This led to the conclusion that phosphorylation and 
dephosphorylation do not play a major role in the regulation 
of CK2. The most important regulatory mechanism involved 
in CK2 seems to be its subcellular localisation. Since the 
beginning of research on CK2, it has become evident that 
CK2 is located in the nucleus and in the cytoplasm. However, 
an increasing number of studies reported that CK2 is located 
in almost every compartment of a eukaryotic cell. Moreover, 
the subcellular localisation of CK2 seems to be highly 
dynamic (55-58). This dynamic subcellular localisation enables 
the CK2 subunits to interact with proteins, which are specific 
for one particular cell compartment. Besides the nuclear 
and cytoplasmic localisation, CK2 was found at the plasma 
membrane (13,59-61). Plasma membrane preparations from 
A431 cells or from insect cells expressing CK2α and CK2β 
contain oligomeric forms of CK2 (62). The plasma membrane 
association of CK2 is mediated by a specific domain of the 
β-subunit (63).

In recent years, more substrates for CK2 have been 
identified at the plasma membrane. Since plasma membrane 
phosphorylation of proteins by CK2 were neglected thus 
far, the present review aims to address the role of CK2 as 
an ecto-kinase. An early observation identified that bone 
phosphoproteins were phosphorylated by CK2 isolated from 
detergent extracts of membranous fractions of a 12-day 
embryonic chick tibia (64). Although there are many early 
reports on ecto-CK2, little is known regarding the mechanism 
of how CK2 is exported to the cell surface. Tagged CK2 
subunits were transfected in HEK293T cells to study their 
export to the cell surface. It took approximately 5-7 h after 
transfection before tagged subunits were detectable on the cell 
surface (65). When the subunits were expressed individually, 
they were not detectable externally. However, after transfection 
of both CK2α and CK2β, approximately 3-4% of the CK2 
holoenzyme was detectable on the cell surface. Transport to 
the surface of the plasma membrane is independent of the 
kinase activity because a kinase-negative CK2α mutant is also 
transported to the cell surface when CK2β is co-transfected. 
De novo protein synthesis is not required for the presence 
of ecto-CK2 on the cell surface (65). By using deletion and 
point mutants of CK2β, the same group found that a region 
between amino acid 20 and 33 in the N-terminus of CK2β was 
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necessary for the localization of the holoenzyme on the cell 
surface (63). In the course of these experiments, Rodriguez 
et al also reported that CK2β can be exported out of the cells 
but it is not retained at the plasma membrane. A construct 
where the region from amino acid 20 to 33 of CK2β was linked 
to the C-terminus of CK2β was able to bind the CK2α to form 
a holoenzyme, but it was unable to transport the holoenzyme 
to the ecto-kinase location. These results suggest that the 
region between amino acid 20 and 33 of CK2β is necessary 
but not sufficient for the extracellular localization of CK2 (63). 
Free CK2β interacts with several other protein kinases such as 
A-raf, c-mos and CHK-1 (66). One might speculate that these 
kinases are also transported to the plasma membrane by their 
interaction with CK2β. In contrast to an early observation 
by Kübler et al (12), the kinase activity on the cell surface 
is rapidly restored (13). Ecto-CK2 is not released from the 
cell surface by incubation with phospholipase C, suggesting 
that ecto-CK2 is not anchored in the plasma membrane via 
glycosyl-phosphatidyl-inositol-linkage.

Since CK2 is known to be elevated in many cancer cells and 
the observation that an inhibition of CK2 kinase activity leads 
to apoptosis of at least cancer cells (67,68), there has been a 
search to identify new efficient and specific inhibitors of CK2 
worldwide. Most of the currently known CK2 inhibitors are 
ATP competitors. Recently, bifunctional inhibitors have been 
designed, which, on the one hand bind ATP competitively, and 
on the other hand, mimic phospho-acceptor substrates (69-71). 
On the basis of 4,5,6,7-tetrabromo-1H-benzimidazol (TBI), 
new derivatives were generated, which compete with the 
phospho-acceptor sites of substrates. These bifunctional 
inhibitors of CK2 have impaired cell permeability, which 
qualifies them for the inhibition of ecto‑CK2 (70).

3. Substrates of ecto‑CK2

Table I lists the substrates, which are shown to be phospho-
rylated by ecto-CK2. The β-amyloid precursor protein (βAPP) 
is phosphorylated within its ecto-domain and CK2 was iden-
tified as one of the ecto‑kinases that phosphorylates βAPP 
at the outer face of the plasma membrane (72). Cell surface 
labelling of βAPP was analysed by adding radiolabelled γATP 
or γGTP to the supernatant of HEK293T cells overexpressing 
βAPP1-695. The ecto-kinase activity was inhibited by heparin 
and by DRB, two compounds that are known to inhibit CK2 
kinase activity (73,74). Further experiments revealed that, not 
only membrane-bound βAPP, but also secreted βAPP from 
cell membranes, was phosphorylated by ecto-CK2.

Already in 1993, a CK2-like activity was described in 
thrombin-activated platelets and in the supernatant of these 
activated platelets. It is known that thrombin triggers at least 
in endothelial cells, the release of intracellular ATP (10). The 
presence of elevated extracellular ATP concentration and the 
presence of ecto-CK2 are an ideal combination for the phos-
phorylation of cell surface proteins.

Ecto-CK2 phosphorylated bovine coagulation factor Va 
and human factor VIII (6). Phosphorylated factor Va was 
more sensitive for active protein C than the non-phosphor-
ylated form, triggering its degradation. This result indicates 
that ecto-CK2 may play a role in the downregulation of 
coagulation. Recently, an interesting result was reported for 

megakaryocytes and platelets from CK2β-/- mice. Münzer et al 
showed an abnormal microtubule structure and a signifi-
cantly increased fragmentation within the bone marrow (75). 
Aggregation of CK2β-/- platelets was abrogated and thrombus 
formation was reduced. Whether this effect is due to an 
impaired localization of CK2 on the cell surface remains 
to be elucidated. Another protein that is phosphorylated by 
CK2 is C3 (5). Phosphorylated fragments derived from C3 
cleavage show an increased binding to IgG in serum over that 
of non-phosphorylated C3. Since CK2 phosphorylation of C3 
increases its susceptibility to elastase cleavage, these results 
suggest an effect of platelet-derived CK2 phosphorylation of 
C3 to enhance the opsonisation of immune complexes (5).

Rat liver endothelial cells, which were activated with 
thrombin release up to 10% of the total protein kinase activity 
into the culture medium. This protein kinase phosphorylates 
casein and fibrinogen and the enzyme is inhibited by heparin. 
These features suggest ecto-CK2 (17). There was a very 
similar observation, i.e., cultivated hamster and chicken cells 
have ecto-CK2, which phosphorylates human and bovine 
fibrinogen as well as fibrin (76).

The C9 protein, which is a component of the lytic 
activity of the complement system was found to be phos-
phorylated by an ecto-kinase (4), which was subsequently 
identified as CK2 (77). In this case, the ecto‑kinase activity 
was determined with intact cells and purified C9 protein, 
ATP and Mg2+. The ecto-kinase is neither influenced by 
Ca2+ nor by cAMP. The ecto-kinase is shed from the plasma 
membrane and this shed protein kinase also phosphorylates 
C9 protein (77). C9 phosphorylation was achieved on intact 
Raji cells and also by shed proteins from the surface of Raji 
cells. Ecto‑CK2 was identified by immunofluorescence flow 
cytometry. Kinase activity was inhibited by emodin, TBB 
and DRB, which are known inhibitors of CK2 (74,78,79). 
The three inhibitors did not reduce cell viability. In addition, 
CK2α and CK2β were detected in the supernatant of K562 
and Raji cells using CK2 subunit‑specific antibodies. C9 is a 

Table I. Substrates for ecto-CK2.

Substrates Refs.

β-amyloid precursor protein (72)
Human factor VIII (6)
Coagulation factor Va (6)
Complement factor C3 (5)
Complement factor C9 (4)
Casein (17)
Fibrinogen (17,76)
Fibrin (76)
Phosvitin (59)
Vitronectin (82)
Laminin-1 (85)
Collagen XVII (87)
Osteopontin (88)
Stanniocalcin-2 (89)
Nucleolin (90)
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blood plasma protein that binds to the C5b-8 complex of the 
complement system (80). C9 phosphorylation by ecto-CK2 
is a protective mechanism against complement-mediated 
lysis (81). Phosphorylated C9 has a reduced haemolytic 
activity whereas the inhibition of ecto-CK2 kinase activity 
enhanced cell killing. In addition, C9 ecto-CK2 phos-
phorylated calmodulin and a highly CK2‑specific peptide 
substrate. The level of ecto-CK2 on peripheral blood mono-
nuclear cells (PBMC) and B cells was lower than that on 
Raji and K562 cells (81).

Other examples of substrates for ecto-CK2 are phosvitin 
and vitronectin. Vitronectin is a glycoprotein, which is 
present in blood and in the extracelluar matrix. At least for 
vitronectin, it is known that its phosphorylation is inhibited by 
DRB. Phosphorylation of vitronectin by ecto-CK2 regulates 
the adhesion of cells to the extracellular matrix (82-84). Both 
substrates induced the release of ecto-CK2 when vascular 
smooth muscle cells (VSMC) were incubated with phosvitin 
or vitronectin (82). When the cells were adhered to vitronectin, 
ecto-CK2 was enriched in clusters on the cell surface and then 
underwent a displacement from the VSMC surface (82).

Ecto-CK2 regulates monocyte migration through laminin-1 
phosphorylation (85). Ecto-kinase activity was inhibited by 
heparin and CK2 was identified with CK2‑specific antibodies. 
An interesting feature of phosphorylated laminin-1 is its inter-
action with heparin, where phosphorylated laminin-1 binds 
better to heparin than non-phosphorylated laminin-1. In cell 
adhesion experiments, a significantly higher amount of cells 
adhere to phosphorylated laminin-1 (85). Furthermore, phos-
phorylated laminin-1 promotes cell proliferation as well as 
monocyte migration.

Ecto-CK2 was also detected on mast cells RBL-2113 by its 
capacity to phosphorylate a CK2‑specific peptide, the use of 
[32P]γATP as well as [32P]γGTP, by western blot analysis and 
immunofluorescence with CK2‑specific antibodies (86). CK2 
was co-immunoprecipitated with an anti Fc-R antibody, indi-
cating that ecto-CK2 is tightly bound to a receptor molecule.

Collagen XVII is an example of an integral membrane 
protein with an extracellular domain, which was phosphory-
lated by ecto-CK2 at serine 542 and 544. Collagen XVII 
seems to be an interesting example for hierarchical phosphory-
lation, because serine 544 is the first phosphorylation event, 
which generates an acidic environment, which then allows the 
serine 542 phosphorylation by CK2.

The pharmacological inhibition of CK2 with 4,5,6,7-tetra-
bromobenzimidazol (TBB) as well as the use of a 
non-phosphorylatable alanine mutant revealed that CK2 phos-
phorylation of collagen XVII regulates ecto-domain shedding. 
By contrast, the overexpression of CK2α inhibited the cleavage 
of collagen XVII (87). An antibody against a phospho-peptide 
derived from a collagen XVII sequence from amino acid 
535 to 551 detected CK2-phosphorylated collagen XVII on the 
cell surface. As a control for the specificity, a dominant nega-
tive mutant of CK2 was expressed and shown to be present on 
the cell surface. This mutant ecto-CK2 failed to phosphorylate 
collagen XVII (87). CK2 phosphorylation of collagen XVII 
inhibits its degradation by metalloproteases (87). The authors 
of that study suggested that ecto-CK2 phosphorylation is a 
novel mechanism involved in the regulation of adhesion and 
motility of epithelial cells (87).

Ecto‑CK2 seems to be involved in ossification by direct 
influencing mineral formation through the phosphoryla-
tion of osteopontin (88). This observation is in agreement 
with the detection of stanniocalcin-2 (STC-2), a substrate of 
ecto-CK2 (89). STC-2 is a proteohormone, which is involved 
in the regulation of calcium and phosphate homeostasis (89).

Using affinity chromatography on urokinase-conjugated 
Sepharose4B and nano-electrospray mass spectrometry and 
by immunoblotting, ecto-CK2 was found in a complex with 
urokinase and with nucleolin (90), and this complex seems to be 
highly dynamic on the cell surface. Ecto-CK2 phosphorylated 
the cell membrane-associated protein nucleolin. Nucleolin is a 
phosphoprotein, which shuttles between the nucleus and cyto-
plasm and which is located on the cell surface (91). Urokinase 
activates ecto-CK2, leading to the phosphorylation of nucleolin 
and this phosphorylation is responsible for the translocation of 
nucleolin into the cell nucleus (90). By contrast, intracellular CK2 
is insensitive in the activation by urokinase. Another example of 
a complex of ecto-CK2 with cell surface proteins was mentioned 
earlier, that of the association with Fc-R on monocytes (86).

4. Conclusion and future perspectives

There is a long history of a subclass of CK2 as an ecto-kinase. 
CK2 was identified by using casein as a substrate and with 
heparin as an inhibitor. It is now clear that casein is not a natural 
substrate of CK2. The kinase committed to the phosphorylation 
of casein in the Golgi apparatus of the lactating mammary gland 
is conventionally termed genuine or Golgi casein kinase (92).

Heparin, which was used as an inhibitor of CK2, interacts 
non-specifically with proteins such as cytokines, growth 
factors, adhesion molecules and proteases (93). DRB, not 
only inhibits CK2, but also RNA polymerase II (94). Thus, 
in both cases off-target effects cannot be excluded. The 
direct identification of CK2 subunits on the cell surface by 
immunofluorescence or by immunoprecipitation were steps 
forward in the identification and characterisation of ecto‑CK2. 
Furthermore, the development of new, highly specific, cell 
impermeable inhibitors of CK2 and phosphorylation experi-
ments with substrates that cannot penetrate into cells have 
improved the specificity for ecto‑CK2. Transfection of the 
tagged subunits of CK2 has shown that only the holoenzyme 
and/or the CK2β subunit are present on the cell surface. It 
remains an open question whether there are also high molec-
ular aggregates of the CK2 holoenzyme on the cell surface. 
Since CK2β binds also to other protein kinases and since it is 
responsible for the cell surface localization of CK2, it remains 
to be determined whether these other protein kinases are also 
present as ecto-kinases.

The proteins already identified earlier as substrates for 
ecto-CK2 show that ecto-CK2 plays a role in blood homeo-
stasis, in thrombosis, in cell adhesion, in Alzheimer disease, 
calcium homeostasis and in the regulation of the immune 
system. Other plasma membrane-associated proteins such as 
ion channels and receptors for hormones and growth factors, 
are excellent candidates for ecto-CK2.
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