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Abstract. Dynapenia is defined as the age‑related loss of 
muscle strength, and plays a significant role in the loss of 
physical function and increased risk of disability among older 
individuals. The need for an early diagnosis supports the 
search for a biomarker that reflects muscle ‘weakening’. This 
has previously proven difficult due to patient heterogeneity 
at presentation and lack of understanding of the underlying 
molecular mechanisms. The aim of the present study was to 
identify potential urinary biomarkers of dynapenia in patients 
undergoing potentially curative surgery for upper gastro
intestinal cancer. Maximum isometric knee extensor strength 
(strain gauge) and maximum leg extensor power (Nottingham 
power rig) measurements were taken. Cut‑off values for dyna-
penia were based on the Allied Dunbar national fitness survey. 
Values below the 5th percentile for the population matched for 
age and sex on the Allied Dunbar national fitness survey were 
used to stratify the cohort into dynapenic or normal. Urine 
samples taken at induction of anaesthesia were analysed by 
SELDI‑TOF mass spectrometry using CM10 and IMAC30 
chip‑types to establish statistically significant m/z peak 
fingerprint patterns, followed by in‑gel LC‑MS/MS to identify 
molecular constituents. Statistical analysis of decision‑tree 
calculations using Biomarker Pattern software resulted in 
models with sensitivities of 86 and 96%, specificities of 

81 and 89%, and overall correctness of 84 and 93%, when 
applied to the entire cohort for power and strength measure-
ment‑based stratifications using the IMAC30 chip‑type and 
the CM10 chip‑type, respectively. The molecular identities of 
10 peaks of interest were further investigated. After subtrac-
tion of potentially unrelated proteins, they were identified as 
fragments of Annexin A1, collagen α‑1 (XV), perlecan and 
myotrophin. These results demonstrate that urinary screening 
can be used to define cancer‑associated muscle weakness, and 
the identification of potential biomarkers could be invaluable 
in establishing a rapid test to measure and assess dynapenia in 
the clinical setting.

Introduction

Cancer cachexia is a syndrome of muscle and fat loss leading 
to progressive functional impairment (1,2). It is thought to be 
due to complex and variable host‑tumour interactions (3,4). 
Currently, cachexia is defined by the presence of weight loss 
greater than 5% or greater than 2% in the presence of low 
muscle mass or low BMI (5). This definition also introduces 
the concept of ‘pre‑cachexia’, a phase of minimal weight loss 
that may be a stage at which intervention is best targeted. By 
relying on weight loss, the current cancer cachexia definition 
is dependent on gross assessment of the patient phenotype 
rather than identification of the underlying pathological 
process. Weight loss (often self‑reported) may be difficult 
to determine accurately and may be complicated by factors 
which act to increase body mass such as fluid accumulation or 
fat gain because of chemotherapeutic or hormonal treatment. 
The radiological detection of low muscle mass is known to 
be associated with adverse patient outcome, particularly in the 
presence of obesity (5). However, the use of low muscularity 
in the diagnosis of cachexia is hampered by the fact that 
measures of muscle mass are often only available as a single 
measure without dynamic reference to loss or gain. As a result, 
slim individuals with a low pre‑morbid muscle mass risk are 
grouped along with those with severe cachexia. One alterna-
tive to measuring the quantity of fat and muscle tissue in body 
composition is to measure the tissue quality or function.

Dynapenia is defined as ‘the age associated loss of 
muscle strength that is not caused by neurologic or muscular 
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diseases’ (6). It predisposes patients to an increased risk of 
functional limitations and mortality. Development of dyna-
penia is variable according to pre‑existing host characteristics 
such as initial BMI, body composition, physical activity, food 
intake and pre‑existing co‑morbidities. These factors are often 
concurrently present and interact to lead to muscle wasting (6).

Early recognition of dynapenia and assessment of its 
progression or regression may be difficult with the common 
measures used to diagnose muscle wasting, e.g., CT scan. 
Furthermore, repeated measures of muscle strength and power 
may be hampered in routine clinical practice by patient frailty 
and the specialised equipment required. However, safe, acces-
sible and non‑invasive tools to detect dynapenia biochemically 
are currently lacking because the precise molecular mecha-
nisms that define it are currently poorly characterised (7).

Assessment of the urinary protein profile to determine 
metabolites which may act as biomarkers is one potential 
method for diagnosing or monitoring disease. Urine is an ideal 
sample source for the clinical setting, as it can be obtained 
easily, is relatively stable and the collection of samples is 
non‑invasive. In addition, urine contains a relatively small 
number of proteins which are present at lower concentra-
tions compared with serum or plasma therefore making them 
easier to detect (8,9). Despite the relative simplicity of urine 
this method is complicated by the difficulty in standardising 
urine samples across individuals to determine the clinically 
relevant concentration of any particular urinary biomarker. 
One solution to this is to examine the whole urine protein 
and peptide profile with SELDI‑TOF‑MS mass spectrom-
etry (MS) and identify potential biomarkers from a urinary 
proteomic ‘fingerprint’ of multiple peaks corresponding to the 
urinary metabolites of a potential marker. Previous studies 
have found the technique of SELDI‑TOF‑MS ideally suited 
for urine analysis, with a combination of high throughput, 
speed and relatively low cost  (10). The main drawback of 
SELDI‑TOF‑MS is the comparatively medium resolution of 
the spectra obtained. However, this is adequate to resolve peaks 
in the 1,000 to 25,000 Da range from spectra with <500 peaks. 
The presence or absence of dynapenic muscle is predicted by 
a decision tree model consisting of the presence or absence of 
multiple urinary protein/peptide peaks.

SELDI‑TOF MS is an established technique for peptide/ 
protein biomarker discovery (11). This method has been success-
fully performed in a recent study where SELDI‑TOF MS was 
capable of identifying urinary diagnostic markers of upper 
gastrointestinal (uGI) cancer (12). As excess or abnormal skel-
etal muscle protein breakdown or synthesis is likely to result in 
the presence of metabolites in the urine just as cancer‑associ-
ated markers appear in urine, an identical methodology should 
be suitable for the detection of protein/peptide markers for the 
presence of dynapenia.

With this in mind, we aimed to identify potential urinary 
biomarkers for dynapenia in patients with uGI cancer.

Materials and methods

Materials. Buffers, gels and SELDI chips were purchased from 
Bio‑Rad (Hemel Hempstead, UK), and all other chemicals 
were obtained from Sigma‑Aldrich (Gillingham, UK), unless 
stated otherwise in the text.

Sample collection. Patients were recruited from the regional 
uGI or hepatopancreaticobiliary mutli‑disciplinary team 
meetings. Patients had to be over the age of 18, be able to 
give informed consent and be undergoing potentially curative 
surgery. There were otherwise no exclusion criteria. Ethical 
approval was provided by the Lothian region ethics board. Urine 
was sampled into a sterile container at the time of anaesthesia 
following an overnight fast. Samples were then snap frozen in 
liquid nitrogen and stored at ‑40˚C until use. Samples requiring 
to be stored for over a month were stored at ‑80˚C. The study 
conformed to the standards set by the Declaration of Helsinki.

CRP measurement. Serum CRP concentration was measured 
using an automated immunoturbidimetric assay. Using this 
assay, a concentration of 10 mg/l represents the upper limit of 
normal range with most healthy individuals having a serum 
concentration <2 mg/l.

Dynapenia stratification
Maximum isometric knee extensor strength (strain gauge) 
(IKES). Maximum IKES (13) was measured with the partici-
pant seated in an adjustable straight‑backed chair with the 
pelvis secured and the knee flexed at strain gauge and data 
acquisition system (PowerLab; ADInstruments, Ltd., Oxford, 
UK). Following instruction, the participant made a maximum 
voluntary contraction which was held for 5 sec. Three separate 
measurements (Newtons) were obtained for each limb and 
the highest value from the dominant limb used in subsequent 
analysis. The coefficient of variation for IKES is 6.9% for a 
single session and 10% across sessions occurring over several 
days (14).

Maximum leg extensor power (LEP) (Nottingham Power 
Rig). Maximum LEG (Nottingham Power Rig) was measured 
using the Nottingham Power Rig. The participant was seated 
on the rig with the seat position adjusted so that in full exten-
sion the footplate was fully depressed. The participant pushed 
as hard and as fast as possible against the footplate to accel-
erate the fly wheel. The final velocity of the flywheel was used 
to calculate the average power output (Watts) during a single 
maximal thrust of the lower limb. The process was repeated five 
times with each limb and the highest value from the dominant 
limb used in subsequent analysis. The coefficient of variation 
for repeated tests of leg extensor power measured using the 
Nottingham power rig in healthy individuals was 8.7% (15).

Definition of dynapenia. Dynapenia was defined as a strength 
and/or power below the 5th  percentile for the population 
matched for age and sex based on the Allied Dunbar national 
fitness survey (16).

SELDI‑TOF‑MS. SELDI‑chips (CM10 and IMAC30) were 
prepared for sample application according to the protocol 
and as previously reported (13). Briefly, IMAC30 chips were 
loaded with 0.1 M CuSO4, washed with water, neutralised with 
0.1 M NaAc (pH 4.0) and washed with water, followed by two 
washes with 0.1 M NaHPO4. NaCl (0.5 M), and CM10 chips 
were washed twice with 0.1 M NaHPO4 (pH 4.0). All the chips 
were processed in a bioprocessor‑assembly by incubating 
0.1 ml urine and 0.1 ml binding buffer [CM10: 0.1 M NaHPO4 
(pH 4.0); IMAC30: 0.1 M NaHPO4, 0.5 M NaCl] for 1 h at 
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room temperature with vigorous shaking. This was followed 
by three washes with 0.2 ml binding buffer for 5 min each at 
room temperature with vigorous shaking and two washes with 
0.2 ml water at room temperature with vigorous shaking. They 
were then air‑dried and 2 times 1 ml energy absorbing matrix 
[sinapinic acid (SPA), in 50% ACN, 0.5% TFA)] was added. 
Air‑dried chips were analysed in a PCS4000 SELDI‑TOF 
instrument (Bio‑Rad) by measuring the 1,000 to 25,000 Da 
range with a laser setting of 2.5 mJ and spectra were exported 
as ‘.xml’ files. The SELDI instrument was calibrated using the 
ProteinChip All‑In‑One peptide standard (Bio‑Rad). Source 
voltage was 25,000 V, and detector voltage was 2,946 V. Quality 
control and consistency was ensured by using one random pool 
of urines on one spot per chip each. Spectral alignments of 
quality controls ensured consistency of all spectra.

Data processing. ProteinChip Data Manager software 
(PCDMS) version 4.1 with integrated Biomarker Wizard cluster 
analysis (Bio‑Rad) was used for analysis. SELDI‑TOF‑MS 
traces were split into two groups: Control and dynapenia. 
The baseline was subtracted from individual m/z traces and 
profiles were normalised using total ion current, followed by 
identification of peak clusters using the cluster analysis tool. 
Peaks were selected in the first pass where the signal to noise 
(S/N) ratio was >5, had a valley depth of at least 3, and in the 
second pass S/N ratio was 2 and the valley depth 2. The cluster 
mass window was set to 0.2% of mass. Clustered peaks were 
only included if they occurred in at least 10% of all spectra. 
The resulting P‑values, receiver‑operating characteristic 
(ROC) areas, average and median m/z values, and intensities 
of the clustered peaks were exported and saved as ‘.csv’ files 
and used for model building. Heat‑maps using Pearson's corre-
lation and principle component analysis plots were calculated 
to assess global group divisions (i.e., dynapenia and control). 
A two‑sample t‑test was used to compare mean normalized 
intensities between the case and control groups. P<0.05 was 
considered statistically significant.

Model building and validation. Clustered peak lists were anal-
ysed with the Biomarker Pattern software (BPS; Bio‑Rad). The 
m/z versus intensity matrices were analysed using decision 
tree‑analysis, selecting the standard error rule of minimum 
cost‑tree regardless of size, and the method used was Gini. 
V‑fold testing was set to 1,000. A total of 15  dynapenic 
samples and 15 control samples were randomly chosen and 
used as the learning and testing datasets for both the CM10‑ 
and IMAC30‑based datasets. The remainder of 19 (IMAC30) 
or 12 (CM10) samples were used as the validation dataset for 
blind‑testing. Sensitivity was defined as the probability of 
predicting dynapenia cases, and the specificity was defined as 
the probability of predicting control samples.

Peak isolation and identification. Peaks observed in the 
CM10 and IMAC30 chip‑types which showed marked expres-
sional differences between control and dynapenia samples, or 
branching points in the models were further investigated. Urine 
(0.5 ml) from positive or negative samples in relation to specific 
peaks was added to 30 ml CM10 or IMAC30 spin column resins 
(Bio‑Rad) and 0.75 ml binding buffer [0.1 M NaHPO4 (pH 4.0) 
for CM10 resins, and or 0.1 M NaHPO4 (pH 7.0) including 

0.5 M NaCl for IMAC30 resins] and incubated for 1 h at room 
temperature under constant agitation. Unbound material was 
removed and the resin was washed 4 times with 0.3 ml binding 
buffer. Bound material was separated by electrophoresis 
on a 16.5% Tris‑Tricine gel (Bio‑Rad), and gel bands in the 
region of 2 to 10 κDa were excised after Coomassie staining 
(BioSafe Coomassie; Bio‑Rad). Positive and negative samples 
were both chosen on the presence and absence of a specific 
m/z peak to be identified based on SELDI‑TOF‑MS analysis. 
Proteins and peptides from gel bands were digested in situ 
with trypsin, the resulting peptides eluted with ACN, and anal-
ysed by LC‑MS/MS as described (12). Fragmentation spectra 
were then processed by Xcalibur and BioWorks software 
(Thermo Fisher Scientific, Loughborough, UK) and submitted 
to the Mascot search engine (Matrix Science, London, UK) 
using UniProt/SwissProt (release July 2010, Homo sapiens, 
18,055 sequences) as the reference database. Mascot search 
parameters were: Enzyme specificity trypsin, maximum 
missed cleavage 1, fixed modifications cysteine carbamido-
methylation, variable modification methionine oxidation, 
precursor mass tolerance +/‑3 Da, fragment ion mass toler-
ance +/‑0.4 Da. Only Mascot hits with a false discovery rate 
of <0.05 were taken into consideration. Proteins with at least 
two peptide matches were then analysed by pattern matching 
based on SELDI‑TOF‑MS measured expression levels of 
peaks of interest (expected abundance in selected samples) and 
observed presence of proteins. Peptide distribution of identi-
fied peptides within a protein as well as calculated molecular 
mass of identified proteins was also used to assess whether 
breakdown products were likely to account for mass variances 
between the expected mass and the molecular weight of the 
full‑length protein.

Mascot‑SELDI matrix matching. Observed proteins with 
at least two peptide matches from the LC‑MS/MS analysis 
were then further analysed by pattern matching based on 
SELDI‑TOF‑MS measured expression levels of peaks of 
interest (expected abundance in selected samples). This was 
carried out using software written in‑house, which compares 
observed protein expression patterns in a pre‑defined set 
of samples (LC‑MS/MS results) against a matrix of peak 
patterns (SELDI‑TOF clustered peak intensities, where 
estimated peaks are set to null) in the same set of samples. 
The scoring was based on sensitivity (percent observed over 
expected) and specificity (percent not observed over not 
expected), and results are presented in descending order of 
cumulative scores.

Results

Patients. A total of 51 patients were recruited, of whom 44% 
had oesophagogastric cancer and the remainder had a mixture 
of pancreatic and duodenal cancer. A total of 49  patients 
underwent strength testing of which 22 (44.9%) were classi-
fied as dynapenic; 42 of these patients also underwent power 
testing of which 23 (54.8%) were dynapenic; 13 patients had 
both low strength and power. The mean age of participants 
was 65 years with ages ranging from 43 to 82. Patients on 
average had lost 5.6% of their body weight, mean BMI was 
24.10 and CRP was 3. Demographic data are shown in Table I.
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Data collection. Mass spectra data were collected in the 
m/z range of 1,000 to 25,000 for the 49 strength‑measure-
ment‑based and 42 power‑measurement‑ based patient urine 
samples using the IMAC30 (Cu2+‑complexed) chip‑type and 
the CM10 chip‑type respectively. A total of 99 (IMAC30) 
and 106 (CM10) cluster peaks across the entire datasets were 
identified. Fifteen of these peak clusters in the IMAC30, and 
6 in the CM10 datasets had P‑values <0.05. Analysis using 
peak clustering and group distribution demonstrated that both 
control and dynapenia groups shared a general overlap in PCA 
for both chip‑types but were distinct enough to allow a degree 
of separation in heat‑map plotting using Pearsons correlation.

Decision‑tree analysis. Decision‑tree modelling using the 
BPS of peak clusters of 15 random samples from each cohort 
was validated by the remainder of the entire cohort (12 control 
and 7  dynapenic samples for strength, and 4  control and 
8 dynapenic samples for power). Decision tree models are 
shown in Fig. 1A and E. The IMAC30 chipset‑based model 
(Fig. 1A) showed a sensitivity of 57% and a specificity of 58% 
with an overall correctness of 58% for the validation data‑set. 
Application of the derived model to the entire cohort showed 
a sensitivity of 86%, specificity of 81% and an overall correct-
ness of 84%. Application of the CM10 chipset‑based model 
(Fig. 1E) to the validation dataset gave a sensitivity of 88%, 
specificity of 50% and an overall correctness of 75%. For the 
entire cohort, the values are 96% sensitivity, 89% specificity 
and 93% overall correctness.

Potential biomarkers. Statistical analysis of the various m/z 
cluster peaks involved in the models and potential marker 
peaks showing low P‑values are shown in Table II. We could 
identify 8 peak clusters in the IMAC30‑based dataset which 
had either high model score values, or showed P‑values <0.05, 
of which 6 were downregulated and two unchanged in dyna-
penia (e.g., m/z 6,366 in Fig. 1B; m/z 2,199 in Fig. 1C; and 
m/z 5880 in Fig. 1D). The CM10‑based chipset showed four 
peak clusters of interest, of which two were upregulated, and 
two downregulated in dynapenia (e.g., m/z 10,869 in Fig. 1F; 
m/z 2,445 in Fig. 1G; m/z 12,726 in Fig. 1H; and m/z 2,583 
in Fig. 1I).

Six of these clustered peaks, which showed statistical 
significance from the IMAC30 dataset, and four from the 
CM10 chipset were further investigated by enrichment of 
urinary proteins from 10 (IMAC30) and 17 (CM10) samples 
each. Gel bands were excised after electrophoresis and 
LC‑MS/MS downstream processing, followed by Mascot 
searching and identification of proteins contained within the 
samples, as described earlier (10). All the lead m/z clusters had 
P‑values <0.05.

The downregulated m/z 10,869 peak cluster observed in 
the CM10 dataset was enriched in four positive samples and 
four negative samples, which did not contain this peak based 
on SELDI‑MS and served as controls. This peak cluster is 
also the most significant based on ROC area values, which 
signifies a combination of false-positive and false‑negative 
discovery rates. Mascot searching matched this peak to either 

Figure 1. Decision tree analysis. Cluster peaks involved in the tree‑analysis model using (A) the IMAC30 chip‑type or (E) the CM10 chip‑type stratifying 
dynapenia (on the right) and control (on the left) were plotted according to their normalised intensity values (B, C, D, F, G, H and I, y‑axis) for peak clusters of 
(B) m/z 6,366, (C) m/z 2,199, (D) m/z 5,880, (F) m/z 10,869, (G) m/z 2,445, (H) m/z 12,726, and (I) m/z 2,583.
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Annexin A1, azurocidin or IgG (Table II). All other potential 
markers were identified by Mascot pattern matching. This was 
performed using a dataset of 600 proteins identified for the 
IMAC chip‑type from 10 urine samples, identical to samples 
used in this study, and 950 proteins for CM10 chips from 
17 urine samples, also identical to samples used in this study, 
in the region of 2-10 κDa. Each individual identification was 
based on Mascot scores >16 and consisting of ≥2 peptides 
each (17). The scores were calculated as a percentage of the 
expected pattern in the Mascot‑identified protein list compared 
to the measured pattern of peaks found by SELDI‑TOF above 
the baseline (sensitivity), thereby setting all estimated peaks 
as null values, which were used to calculate the specificity. 
Table II lists all molecules identified using this approach.

We found several fragments of glyceraldehyde‑3‑phosphate 
dehydrogenase (GAPDH) (m/z 6,366, 7,474 and 11,966), all of 
which were downregulated in dynapenia using strength as the 
stratifier. Other potential components of the downregulated 
m/z 6,366 cluster are fragments of aortic smooth muscle 
actin (ACTA2) and hornerin. Both the downregulated m/z 
6,461 and 11,756  clusters match the expression pattern of 
albumin. Mannan‑binding lectin serine protease 2 precursor 
(MASP2) is associated both with the downregulated m/z 7,474 
and upregulated m/z 2,445. Other potential candidates for 
the downregulated m/z 7,474 peak cluster are Multimerin‑2 
(MMRN2), also known as EMILIN‑3 or elastin microfibril 
interface located protein 3, myotrophin (MTPN) and phos-
phatidylethanolamine‑binding protein 1 (PEBP1). Hemoglobin 
subunit β was identified as the constituent of the m/z 7,679 peak 
cluster. Glial fibrillary acidic protein (GFAP) was matched to 
the m/z 11,756 peak cluster. The m/z 10,869 cluster, observed 
in the CM10 chip based dataset which used power measure-
ments for stratification, also matched the observed expression 
patterns for Bile salt‑activated lipase precursor (CEL) and 
collagen α‑1 (XV) chain precursor (COL15A1). The m/z 2,445 
cluster matches basement membrane‑specific heparan sulfate 
proteoglycan core protein precursor (HSPG2), and the m/z 2,583 
peak cluster matched the expression profiles of cathepsin B and 
several regions of the immunoglobulin κ light chain. The m/z 
12,726 peak cluster found in the CM10‑based screen could not 
be identified through pattern matching as its molecular mass is 
too big compared to the gel band‑cutting range.

Additionally, we tested whether any of our proposed m/z 
peaks correlated with age or gender and found that none of 
the peak clusters showed any significant age‑ or sex‑related 
expression differences. We also observed that the m/z distri-
bution of individual peaks within a peak cluster shows the 
expected pattern of a heterogeneous population of urinary 
molecular species. However, this does not exclude that some 
peak clusters may consist of more than one unique protein 
or peptide. The high degree of overlap of m/z peaks in some 
of the potential markers in due to the way the DataManager 
software interprets ‘missing’ peaks (e.g., non‑existent or below 
the S/N ratio) and attempts to estimate a value centred at the 
m/z cluster value.

Discussion

In the present study, approximately 45% of patients with uGI 
cancer were classified as being dynapenic based on strength 
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and power measurements. One potential limitation of the study 
is that there are currently no defined cut points for dynapenia 
and we therefore stratified patients based on the Allied Dunbar 
national fitness survey using a strength and/or power measure-
ment below the 5th percentile for the population matched for 
age and sex. The populations described in other similar studies 
of skeletal muscle attenuation in healthy individuals are also 
small however, and different (although similar) values could 
be obtained depending on the series chosen (18).

In this cohort SELDI‑TOF‑MS could analyse and screen 
urine from uGI cancer patients for prospective dynapenia 
biomarkers to establish a proteomic fingerprint pattern which 
potentially can be used in clinical diagnostics. The main 
drawback of SELDI‑TOF‑MS is the comparatively medium 
resolution of the spectra obtained, however this is adequate to 
resolve peaks in the 1,000 to 25,000 Da range from spectra with 
less than 500 peaks. We found that both IMAC30 and CM10 
are useful chip‑types for the analysis of human urine (10), and 
we could generate models based on the full analysis of 51 phys-
ical‑activity measurement‑based dynapenic and non‑dynapenic 
samples from cancer patients. The samples were measured on 
CM10 and IMAC30 chips, and using the tree‑analysis method, 
we established statistical models with overall sensitivities 
of 86% (IMAC30) and 96% (CM10) and specificities of 81% 
(IMAC30) and 89% (CM10) across the entire datasets. Using 
expression pattern matching, we could assign several proteins 
identified in urine to our proposed biomarkers.

Cathepsin B and IgGs are upregulated in uGI cancer, and 
therefore the presence of both molecules at m/z 2,583 in our 
panel of potential candidates to identify muscle‑loss markers is 
not surprising (19). However, those molecules are very unlikely 
to be viable potential biomarkers in dynapenia. Nevertheless, it 
cannot be excluded that modulated levels of specific immuno-
globulins are associated with dynapenia per se.

Annexin A1 was reported to have an anti‑inflammatory 
role and is downregulated in nasal epithelial cells from cystic 
fibrosis patients  (20), but was shown to be upregulated in 
muscular dystrophy (21). Azurocidin was described as a neutro-
phil‑derived protein, and is mainly expressed in proliferating 
smooth muscle cells. It was identified for its antimicrobial 
activity and was reported to show strong immunoregulatory 
effects on host cells (22). The downregulation of fragments 
of IgG heavy chain, whose expression pattern matches the 
expected pattern from the SELDI‑MS scans can be an artefact 
or may be due to an as of yet unidentified mechanism. GAPDH 
has been shown to interact with several muscular gene prod-
ucts such as ataxin‑1 and androgen receptor (23), and its role in 
glycolysis is well documented. A downregulation of GAPDH 
could therefore be an indication of starvation.

We also associated actin (ACTA2) to one of our proposed 
m/z cluster peaks. This molecule is expressed in muscle 
tissues and is a major constituent of the contractile apparatus. 
Mutations of this gene can cause coronary artery disease and 
stroke (24). The downregulated expression of this molecule 
associated with dynapenia could be due to a failing of regen-
eration of muscle cells. The same m/z peak cluster may also 
contain fragments of hornerin, which is described in the litera-
ture as a component of epithelial cells, and is downregulated in 
skin‑associated diseases such as psoriasis (25). This molecule 
is potentially a contaminant in our dataset.

The downregulated m/z 6,461 and 11,756 clusters match 
the expression pattern of albumin. However, albumin itself 
is a common molecule found in all samples in various levels, 
and specific breakdown fragments can be detected in many 
samples. The downregulation of albumin associated with 
muscle loss was also observed in a sarcopenia stratification 
model (unpublished results), and its association with muscle 
dysfunction remains unclear.

Various fragments of MASP2 were found to be associated 
both with a downregulation of m/z 7,474 and an upregulation of 
m/z 2,445. However, the upregulation of this molecule appears 
to be more significant based on the Mascot‑SELDI‑matrix 
matching scores. Levels of MASP2 were reported to be 
elevated in neonatal infections (26), and mouse models lacking 
this molecule showed protection of myocardial and gastroin-
testinal ischemia/reperfusion injury (27). The possible role of 
this molecule in dynapenia remains unclear.

MMRN2 is a secreted protein described to be associ-
ated with tumour progression (28) and part of the autophagy 
system (29). It is a potential candidate for the downregulated 
m/z 7,474 peak cluster, however, its involvement in muscle loss 
is unknown, and due to the potential involvement with cancer 
is not a suitable dynapenia marker.

MTPN was shown to have a strong growth promoting 
activity on cultured primary skeletal muscle cells (30). The 
observed m/z of 7,474 would also fit the published molecular 
weight of the mature and deglycosylated form of 7 κDa. 
Elevated plasma levels of MTPN have been described in the 
literature to be associated with heart failure (31). However, our 
observed downregulation would fit with a potential hypothesis 
that one of the effects of dynapenia is a reduced re‑growth of 
muscle cells.

PEBP1 is known to be downregulated in various cancers, 
such as prostate, breast, gastrointestinal stromal tumours, 
melanoma, and epithelial ovarian cancer (31). This fits our 
observed downregulation of this marker, and is therefore 
not considered to be of relevance in dynapenia. Hemoglobin 
subunit β was identified as the constituent of the m/z 7,679 
peak cluster, which is downregulated in dynapenia. This 
might be a potential misidentification, or might be indica-
tive of kidney dysfunction. GFAP was shown to be a marker 
for axonal damage in chronic neuropathies  (32), and has 
been reported to be associated with trauma and was found 
frequently in various gliomas (33). Its modulation is there-
fore potentially due to cancer and cancer conditions rather 
than dynapenia. Bile salt‑activated lipase precursor (CEL) is 
mainly expressed and secreted in the pancreas and mammary 
glands, and has a role in vitamin and fat absorption. Defects 
in this gene cause diabetes and pancreatic exocrine dysfunc-
tion (34). Its role in muscle ablation and degeneration is not 
apparent.

COL15A1, which also matches the expression pattern 
of the downregulated peak cluster at m/z 10,869, is mainly 
expressed in muscle cells, and in moderate levels in the kidney 
and pancreas (35), and is part of the basement membrane zone. 
Mouse studies have shown that a lack of this molecule does not 
cause developmental defects, however, progressive histological 
changes characteristic for muscular diseases were visible a 
few months after birth, and they were more vulnerable than 
controls to exercise‑induced muscle injury (36). COL15A1 
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therefore appears to function as a structural component 
needed to stabilize skeletal muscle cells and microvessels, 
which could explain our observed apparent downregulation of 
this protein in dynapenia.

Basement membrane‑specific HSPG2, also known 
as Perlecan, which matched the upregulated m/z 2,445 
cluster, is a secreted inter‑cellular protein, which serves 
as an attachment site for cells, and its roles are in vascu-
larisation, development and vascular response to injury (37). 
Deficiencies in this molecule have been shown to cause 
hypertrophy. It also appears to be important in maintaining 
fast muscle mass, fiber composition and in regulating 
myostatin signaling  (38). The observed upregulation of a 
fragment of this molecule is likely due to atrophy and might 
be directly linked to dynapenia.

In conclusion, stratification of our cancer cohort based 
on power and strength measurements using dynapenia as 
a decider yielded a set of potential urinary biomarkers by 
SELDI‑TOF MS. The most likely lead candidates in this study 
are Annexin A1 and COL15A1 chain, which were downregu-
lated, in leg‑power measurement‑based dynapenia. The 
dynapenia model based on leg‑strength measurement includes 
downregulated MTPN as well as upregulated Perlecan as 
the most promising potential biomarker candidates. Further 
studies including an extended cohort will help determine the 
validity of our findings in discriminating between strength and 
power, and specific assays monitoring expression levels of our 
proposed biomarkers will help to translate our findings into 
the clinical setting.
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