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Abstract. Circular RNAs (circRNAs) have been demon-
strated to be biomarkers in human cancers. CircRNAs are 
majorly recognized in the transcript formation of eukaryotic 
genes. Research has also revealed that circRNAs regulate 
gene expression at the transcriptional, post‑transcriptional, 
and translational levels. Notably, there have been studies 
demonstrating that they contribute to the improvement of 
various diseases, including cancer. In this regard, they have 
potential applications in the diagnosis and treatment of cancer. 
In circRNA studies of blood fluids, plasma circRNAs have 
been identified as biomarkers in human cancers. For instance, 
the acute myeloid leukemia‑associated hsa_circ_0004277 has 
been reported to be a biomarker in targeted treatments. This 
links with circRNAs being highly expressed in hematopoietic 
tissue; in haematopoiesis, the cell states are controlled by the 
main regulators and the complex circuits of the RNA family. 
In particular, circRNA serve a role in cellular processes 
including self‑renewal, apoptosis and proliferation. In the 
current review, the aim was to explain the role of the defined 
pathogenic circRNAs derived from leukemia fusion genes and 
of hsa_circ_0004277 in leukemia cells.
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1. Introduction

Non‑coding RNAs (ncRNAs), which comprise long non‑coding 
RNAs (lncRNAs), short microRNAs (miRNA/miRs) and 
circular RNAs (circRNAs), constitute the majority of total 
RNAs in the eukaryotic transcriptome (1,2). CircRNAs were 
first identified in viruses in 1970, and subsequently in eukary-
otic cells (3,4). CircRNAs are a relatively large group of RNAs 
that form stable closed circles. A major proportion of ncRNAs 
and circRNAs are involved in the regulation of transcriptional 
and post‑transcriptional gene expression (5). CircRNAs are 
produced from the back‑splicing of intronic and/or exonic 
RNA (2). They serve a significant role in cancer development, 
metastasis and response to treatment (6). The specificity of 
circRNA in disease states and the stability of circRNA in 
body fluids indicate that they may be used molecular markers 
in the diagnosis of cancer (6‑9). A high number of circRNAs 
have been identified following the development of sequencing 
and bioinformatics analysis techniques (10‑12). In particular, 
abnormal expressions of circRNAs have been identified in 
leukemia. For instance, hsa_circ_0035381, hsa_circ_0004136 
and hsa_circ_0058058 are reportedly upregulated while hsa_
circ_0017446 and hsa_circ_0004277 are downregulated in 
acute myeloid leukemia (6). In the present review, the aim was 
to explain the role of defined pathogenic circRNAs derived 
from leukemia fusion genes [mixed lineage leukemia‑ALL1 
fused gene from chromosome 9 (MLL‑AF9) and promyelo-
cytic leukemia‑retinoic acid receptor α (PML‑RARA)] and 
hsa_circ_0004277 in leukemia cells.

2. Characteristics of circRNAs

CircRNAs are highly diverse, originating from any region of 
the genomic subsequences (exon–intron circRNAs, intronic 
circRNAs, exonic circRNAs) (2,12‑16). The majority of 
the circRNAs are generated from one or more excess exons 
(17‑20). The exonic circRNAs predominantly reside in the 
cytoplasm (21,22). They have a more stable structure than 
linear RNAs, with 5’‑3’ polarities and no polyadenylation 
tails (10). CircRNAs can be degraded by RNA exonuclease 
or ribonuclease (RNase) R (23). CircRNAs are enriched in 
exosomes (24).

It is established that circRNAs are relatively common in 
eukaryotic transcriptomics and are stable in intracellularly in 
the cytoplasm and in the blood (7). CircRNAs can be secreted 
into body fluids or developed in exosomes, and as such have 
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emerged as major biomarkers for cancer diagnosis (8,24,25). 
It has been demonstrated that the expression of circRNA is 
specific, and that the molecules serve as miRNA sponges 
to regulate gene expression (5,26‑28). CircRNAs may have 
biological activities by acting as miRNA sponges and/or by 
binding with RNA‑binding proteins (RBPs) and translation 
peptides (5,24,29,30). In the study of cancer, an ongoing 
aim is to identify potential biomarkers that are differentially 
expressed between healthy and cancerous tissues. In this 
regard, there are studies indicating that circRNAs are associ-
ated with the initiation and development of cancer (31‑33).

3. Biogenesis and function of circRNAs

CircRNAs are divided into three groups: Exonic circRNAs, 
intronic circRNAs and exon‑intron circRNAs. Throughout the 
formation of all types of circRNAs, characteristic sequences 
are preserved. Sequences from the downstream and upstream 
regions enable the formation of mature circRNAs following-
back‑splicing by covalently linking in the reverse direction (34). 
While the effect of back‑splicing is less significant for linear 
RNAs due to their durability and half‑life, circRNAs are 
present in excess in cells (35). The first back‑splicing mecha-
nism works due to complementary intron matches that serve 
a role in the formation of exonic circRNA (17). CircRNA 
may interact with other RNA molecules and DNA, including 
mRNA and lncRNA (36,37).

CircRNAs are associated with various diseases, including 
cancer in particular (31,38‑40). It is established that there is an 
association between circRNA and miRNA in various cancers 
(30,31). CircRNAs act as miRNA sponges, RBP sponges and 
transcription and translation regulators. CircRNAs have impor-
tant functions in the regulation of gene expression (5,14,41,42). 
Reportedly there is deregulation of the splicing mechanisms 
in acute myeloid leukemia (AML), leading to abnormalities in 
the expressed circRNAs in leukemia cells; in turn, the altered 
circRNAs can have functions in leukemogenesis (6).

It has been shown that circRNAs can bind to miRNA as 
RNA sponges, and by influencing miRNA activities, may 
increase gene expression and contribute to the development 
of tumours (5,43‑45). In particular, it has been reported that 
circRNAs can increase or suppress the development of cancer 
genes associated with migration, differentiation, proliferation 
and carcinogenesis by suppressing miRNA species (46). For 
instance, among the first circRNAs to be identified, CiRS‑7, 
contains an miR‑7 binding site and acts as an miR‑7 sponge, 
thus reducing the effect of miR‑7 on its target mRNAs (47,48). 
Overexpression of ciRS‑7 in colorectal cancer cells has 
been reported to eliminate the tumor suppressor function of 
miR‑7  (49).Circ‑ZNF609 is also a cancer‑associated gene, 
being observed to inhibit proliferation in colorectal cancer 
cells (50).

4. CircRNAs‑F‑circRNAs in leukemia

CircRNAs have been studied in hematopoietic malignancies 
in primary patient samples. In bone marrow from patients, 
Salzman et al (10) determined that hyperdiploid B‑linage acute 
lymphoblastic leukemia (ALL) in childhood could rearrange 
chromosomal regions using an RNA‑seq method. Furthermore, 

they conducted research on the rearrangement in specialized 
genomic exon regions subject to RNA splicing. In the ALL 
patients, they identified hundreds of genes that could produce 
circRNAs. Fusion genes encoded by abnormal chromosomal 
translocations have been demonstrated to be associated with 
malignant haematological diseases. Chromosomal rear-
rangements in tumour cells affect ncRNA levels through the 
formation of fusion‑circRNAs (f‑circRNAs) (51).

There are inherent chromosomal translocations in various 
types of leukemia. A recurrent translocation is PML‑RARA 
in patients with acute promyelocytic leukemia (APL) (52). 
Recently, studies on circRNA expression in AML have been 
conducted. Guarnerio et al (6) demonstrated that circRNAs 
are derived from the transcription of fusion genes that occur 
from chromosomal translocations. Indeed in various studies, 
circRNAs have been associated with many cancers, including 
AML with MLL‑AF9 and promyelocytic leukemia with 
PML‑RARA. Many are established as f‑circRNAs. Abnormal 
expression of circRNAs may be the result of distant inter-
related introns and introns of translational genes that contain 
repeating sequences complementary to each other. Novel 
back‑splicing events are supposed to support their formation 
into abnormal circRNAs (53).

A previous review noted that cancer‑associated fusion 
genes may cause the expression of f‑circRNAs, including 
the pro‑proliferative, proto‑oncogenic f‑circPR and 
f‑circM9_1 (6). You and Conrad (54) determined differently 
expressed f‑circRNAs in APL and AML. Such is in accor-
dance with f‑circRNAs being established to serve an active 
role in haematological events (53). Li et al (53) reported that 
hsa_circ_0004277 in AML patients was downregulated.

Circ‑HIPK2 has been indicated to serve a role as a tran-
scription coactivator in nuclear bodies and is considered to 
have important functions in the formation and development 
of AML (55,56). Li et al (57) demonstrated that expression of 
circ‑HIPK2 affected ATRA‑induced differentiation of APL 
cells. In addition, the expression of circ‑HIPK2 was lower in 
AML cells compared with APL cells, and overexpression of 
circ‑HIPK2 increased differentiation in NB4 cells (APL cells 
with PML‑RARA). Therefore, HIPK2 appeared to be required 
for differentiation of ATRA‑induced APL cells. This suggests 
that circ‑HIPK2 may be a biomarker in APL cells.

There are many chromosomal translocations in several 
types of leukemia. These chromosomal translocations may 
occur due to the instability of the tumour cells’ genome. 
The abnormal chromosomal translocations leading to the 
rearrangement of non‑homologous chromosomes brings two 
separate genes together, giving rise to the production of a 
fusion genome. Chromosomal translocations can encode such 
oncogenic fusion proteins in tumor formation, these proteins 
may be a cause of cancer (58).

While fusion of circular RNA (f‑circRNA) occurs, gene 
fusions can also cause defects in mRNA. For example, 
PML‑RARA and MLL‑AF9 genes are fused, and thus form 
f‑circM9 and f‑circPR. Knockout of f‑circM9 and f‑circPR 
can increase apoptosis in cancer cells and increase drug sensi-
tivity to agents such as arsenic (6). These data indicate that 
f‑circM9 and f‑circPR have a role in haematological malignan-
cies (Fig. 1). Guarnerio et al (6) documented that expression 
of f‑circRNAs (f‑circPR and f‑circM9) in leukemia increased 
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cell proliferation and clonogenicity. They also showed that 
the phenotype of cells with silenced f‑circRNA was reversed. 
Thus, these f‑circRNAs may have pro‑proliferative and 
proto‑oncogenic properties in leukemia. Indeed, it has been 
documented that f‑circRNAs (produced from PML‑RARA 
and MLL‑AF9 fusion genes) have a role in the survival of 
leukemia cells (6).

The f‑circRNAs expressed in human leukemia cells have 
been associated with disease formation (59). However, the 
f‑circRNA does not cause leukemia alone. Combined expres-
sion of F‑circM9 and MLL‑AF9 fusion protein have been 
reported to increase proliferation; notably only cells expressing 
the fusion protein exhibited increased colonies. The expres-
sion of f‑circRNAs may provide protection for tumour cells in 
standard leukemia therapy, including against arsenic trioxide, 
and may also provide survival benefit to leukemic cells during 
standard leukemia treatment with cytarabine (59).

5. Hsa_circ_0004277 and leukemia

Hsa_circ_0004277 is located in the region of chromosome 
10: 1125950‑1126416. WDR37 is the gene symbol of hsa_
circ_0004277 (60). WDR37, located on the same chromosome, 
is the linear isoform of Hsa_circ_0004277 (53). This family 
is associated with apoptosis, signalling pathways and cellular 
events including the cell cycle (60). Wei et al (53) identified 
hsa_circ_0004277 as a target and biomarker in the treatment 
of AML. When the circRNA‑miRNA‑mRNA interaction 
for hsa_circ_0004277 has been examined by bioinformatics 
analysis, it has provided insight into the underlying mechanism 
of its function in AML. For instance, while hsa_circ_0035381, 
hsa_circ_0004136 and hsa_circ_0058058 are upregulated, the 
hsa_circ_0017446 and hsa_circ_0004277 are downregulated 
in AML (53). Newly diagnosed cases of AML have been 
found to exhibit downregulated hsa_circ_0004277, while, the 

expression of hsa_circ_0004277 was increased in complete 
remission cases, and the level once again downregulated 
in relapsed/refractory cases. These results indicate that 
hsa_circ_0004277 may be used as a diagnostic marker and 
therapeutic target in AML (53).

6. Conclusions and perspectives

In the current review, we sought to summarize the formation of 
circRNAs and their characteristics and functional properties, 
and the roles of the defined pathogenic circRNAs derived from 
the leukemia fusion genes and hsa_circ_0004277 in leukemia 
cells. Studies on circRNAs for clinical diagnosis and treatment 
are viewed as a guide for translational and clinical medical 
developments. Considering the functions and mechanisms of 
circRNAs, they may be considered among the main topics of 
cancer research. Research on these molecules may provide 
insight into the fundamental molecular events involved. The 
use of circRNAs as diagnostic biomarkers in cases of cancer 
metastasis may be clinically significant. Different cirRNA 
expression profiles correlate with clinical features, including 
tumor stage and recurrence of metastasis, supported by recent 
RNA‑seq studies (61,62). Additionally, circRNAs are estab-
lished as being markedly more stable than linear RNAs.

Different expression profiles of circRNAs have been identi-
fied in studies on tissues and blood. The expression of circRNAs 
is different from that of miRNAs and lncRNAs. By combining 
with various biomarkers, it is possible to model for prognosis 
and increase the accuracy and specificity of diagnosis (63,64). 
The consequences of molecular circuits that control cellular 
differentiation in the hematopoietic system are a topic of study. 
In haematopoiesis, differentiated cell states can be controlled by 
transcriptional circuits linked to each other (65). Recent study 
of f‑circRNAs has revealed the oncogenic roles of abnormal 
circRNAs in leukemogenesis (51). Studies have also shown that 

Figure 1. Roles of the PML-RARA and MLL/AF9 fusion genes in the apoptosis and drug of sensitivity of leukemia cells. PML-RARA and MLL-AF9 
genes become fused, and f-circM9 and f-circPR are formed. Knockout of f-circM9 and f-circPR may increase apoptosis and drug sensitivity. PML-RARA, 
promyelocytic leukemia-retinoic acid receptor α; MLL-AF9, mixed lineage leukemia-ALL1 fused gene from chromosome 9; F- fusion; circ, circular RNA.
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circRNAs may be molecular markers in tumours and affect cell 
death.

CircRNAs have potential in targeted cancer therapy, in 
that they may be used as a sponge for binding to abnormally 
expressed regulatory RNAs and proteins (e.g., RBPs), to 
thus reduce oncogenic activities (66). For instance, certain 
f‑circRNAs have been found to be resistant to chemotherapy 
in leukemia patients. The knocking out of f‑circM9 expression 
in leukemia cells can lead to apoptosis. In another example, 
while hsa_circ_0004277 showed low expression in newly 
diagnosed AML patients, no difference was determined in 
patients following treatment. In patients with recurrent disease, 
hsa_circ_0004277 has been observed to be downregulated (6). 
For this reason, hsa_circ_0004277 may be a diagnostic marker 
in AML. The overall stability of the circRNAs may be useful 
in indicating diseases that can be identified by body fluids.

In conclusion, considering the functions and mechanisms 
of circRNAs, they may be among the main topics in cancer 
research. In particular, circRNAs may be a diagnostic marker 
for leukemia. An improved understanding of circRNA biology 
may provide a guide for novel therapeutic targets.
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