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Abstract. Since 3‑n‑butylphthalide (NBP) was approved by the 
China Food and Drug Administration for the treatment of acute 
ischemia stroke in 2002, a number of studies have investigated 
NBP worldwide. In recent years, NBP has also demonstrated 
potential as treatment of several neurodegenerative diseases, 
which has increased the interest in its mechanisms of protec-
tion and action. Clinical studies and studies that used cell or 
animal models, have directly demonstrated neuroprotective 
effects of NBP via the following mechanisms: i) Inhibiting the 
inflammatory reaction; ii) reducing mitochondrial oxidative 
stress; iii) regulating apoptosis and autophagy; iv) inducing 
resistance to endoplasmic reticulum stress; and v) decreasing 
abnormal protein deposition. Therefore, NBP may be a poten-
tial drug for neurodegenerative diseases, and it is particularly 
important to identify the mechanism of NBP as it may assist 
with the development of new drugs for neurodegeneration. The 
present review summarizes the neuroprotective mechanisms of 
NBP and discusses new perspectives and prospects. The aim 
of the current review is to provide a new summary regarding 
NBP and its associated mechanisms.
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1. Introduction

3‑n‑butylphthalide (NBP), approved by the China Food and 
Drug Administration for the treatment of acute ischemic stroke, 
is a type of compound isolated from the seeds of Chinese 
celery (1). The molecular structure of NBP is presented in 
Fig. 1. Therapy using NBP has been recommended by Chinese 
guidelines for acute ischemic stroke  (2). A randomized 
double‑blind trial (clinical trial no. ChiCTR‑TRC‑09000483) 
reported that NBP significantly improves clinical outcomes, 
including the modified Rankin Scale (3) and National institute 
of Health Stroke Scale scores (4), of patients who experienced 
ischemic stroke (5). In addition, a study demonstrated that 
NBP therapy persistently increases the level of endothelial 
progenitor cells in peripheral blood, ameliorate cerebral blood 
flow and improve neuronal functions (6). Furthermore, NBP 
has been reported to be a safe treatment for cerebral ischemia 
stroke (5‑7). A study has indicated that NBP exhibits protective 
effects in several neurodegenerative diseases (8). However, to 
the best of our knowledge, the neuroprotective mechanism of 
NBP remains unclear. Therefore, the present review discusses 
the potential mechanism of neuroprotective effects of NBP. 
The aim of the current review is to provide further under-
standing regarding the advances of NBP.

2. NBP inhibits the inflammatory reaction

Inflammation, a complex biological response to injury, 
is associated with neurodegenerative diseases, including 
Alzheimer's disease, Parkinson's disease (PD), multiple scle-
rosis, amyotrophic lateral sclerosis, traumatic brain injury 
(TBI) and more (9‑11). NBP has exhibited anti‑inflammatory 
effects in various models of these diseases and certain mecha-
nisms have been identified. NBP has been reported to reduce 
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the inflammatory reaction by inhibiting nucleotide binding 
oligomerization domain like receptor protein 3‑inflamma-
some microglia activation and mitigating the Alzheimer's‑like 
pathology via the nuclear factor erythroid‑2‑related factor 
2‑thioredoxin‑interacting protein‑TXNIP‑thioredoxin axis 
in an APP/PS1 mouse model  (12,13). Furthermore, NBP 
inhibited the inflammatory reaction in lipopolysaccharide 
(LPS)‑induced rats via inhibition of c‑Jun N‑terminal kinase 
activation and the NF‑κB pathway (14,15). NBP was reported 
to improve dyskinesia in a LPS‑induced PD mouse model via 
a reduction in the loss of dopaminergic neurons, activation of 
mouse microglia, an increase in TNF‑α levels and α‑synuclein 
deposition in the black substantia of the mouse midbrain (16). 
Additionally, NBP‑treatment reduces NF‑κB activation 
following TBI (17), and NBP also inhibits the inflammatory 
reaction via the same pathway in spontaneously hypertensive 
rats  (18). Notably, a number of studies have indicated that 
NBP inhibits the inflammatory reaction in other neuroassoci-
ated experimental models, such as an experimental model of 
autoimmune encephalomyelitis of microglia or autoimmune 
myositis in guinea pigs (19,20). In addition, NBP‑treatment 
has been demonstrated to significantly ameliorate cerebral 
ischemia reperfusion‑induced brain injury of Sprague‑Dawley 
(SD) rats by inhibiting toll like receptor 4/NF‑κB‑associated 
inflammation (21). NBP attenuates advanced glycation end 
products‑induced endothelial dysfunction by ameliorating 
inflammatory responses  (22). In summary, there is some 
understanding regarding the mechanism of NBP in the inhibi-
tion of inflammation.

3. NBP reduces mitochondrial oxidative stress

Mitochondria, the site of oxidative metabolism in eukaryotes, 
produce energy through the oxidation of carbohydrates, fats 
and amino acids (23). Therefore, mitochondrial dysfunction in 
the form of oxidative stress may contribute to the pathogenesis 
of various neurodegenerative diseases (24). Oxidative stress is 
considered a condition that is caused by an imbalance between 
pro‑ and antioxidant factors, which leads to molecular and 
cellular damage (25). Oxidative stress serves an essential role 
in the development of age‑related diseases (26). NBP exhibits 
a cumulative beneficial effect on the process of mitochon-
drial damage (27). This section will discuss the mechanisms 
involved in mitochondrial oxidative stress.

Recently, NBP exhibited a powerful effect on antioxidant 
stress in some different models. NBP inhibited oxidative 
stress in K141N‑induced SH‑SY5Y cells and in LPS‑induced 
rats through activation of the Kelch‑like ECH‑associating 
protein 1 Nrf2‑related factor 2‑antioxidant response element 
signaling pathway (15,28). Similarly, NBP reduced oxidative 
damage to provide neuroprotection in mice following TBI 
and in rats following carbon monoxide poisoning (29,30). In 
addition, NBP protects against cerebral ischemia‑reperfusion 
injury by decreasing antioxidant stress via the ERK signaling 
pathway (31). NBP also protects against H2O2‑induced injury in 
neural stem cells by activation of the PI3K/Akt and the Mash1 
signaling pathways (32). Furthermore, NBP has been reported 
to increase superoxide dismutase and catalase activity, and 
reduce malondialdehyde activity in the experimental autoim-
mune myositis (EAM) model, NBP directly protects muscle 

mitochondria and muscle cells from oxidative damage (33). 
However, the protective effect of NBP on mitochondrial func-
tion is not only limited to neurodegeneration, but also appears 
in cardiovascular diseases. A study suggested that NBP exerts 
a cardioprotective effect on cardiac ischemic injury via the 
regulation of mitochondrial function both using in vivo and 
in vitro experiments (34). In summary, the antioxidant effect 
of NBP has been widely recognized.

4. NBP regulates apoptosis and autophagy

Apoptosis and autophagy are basic biological phenomena of 
cells, which serve essential roles in removing abnormal cells 
in multicellular organisms. Disorders in the apoptosis and 
autophagy processes may cause the occurrence of neurop-
athy (35). The neuroprotective effect of NBP via the regulation 

Figure 1. Molecular structure of 3‑n‑butylphthalide.

Figure 2. Neuroprotective mechanisms of NBP. NBP, 3‑n‑butylphthalide.
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Table I. Neuroprotective mechanisms of 3‑n‑butylphthalide.

A, Inflammation inhibition

Author, year	 Study subject	 Method	 Molecular mechanism	 Refs.

Wang et al, 2018	 APP/PS1 mice	 Transgenic	 NLRP3 inflammasome activation inhibition	 (13)
	 A172, SH‑SY5Y 	 LPS induced	 NLRP3 inflammasome activation inhibition
Yang et al, 2018	 SD rats	 LPS induced	 NF‑κB pathway inhibition	 (14)
Zhao et al, 2016	 C57BL/6 mice	 LPS induced	 Downregulation of JNK activation	 (15)
Zhao et al, 2017	 C57BL/6 mice	 Traumatic brain injury	 NF‑κB pathway inhibition	 (17)
Wang et al, 2018	 EAE	 Neuroantigen‑specific	 Suppression of PGAM5	 (19)
		  proinflammatory T cells induced
Zhang et al, 2016	 SD rats	 Cerebral ischemia reperfusion	 Increased HGF expression	 (21)
		  induced
Liu et al, 2017	 HUVECs	 Advanced glycation end	 RAGE/NF‑κB pathway inhibition	 (22)
		  product induced

B, Reduction of mitochondrial oxidative stress

Author, year	 Study subject	 Method	 Molecular mechanism	 Refs.

Yang et al, 2017	 SH‑SY5Y 	 Missense mutations	 Increased Nrf2 expression	 (28)
Liu et al, 2017	 ICR mice	 Traumatic brain injury	 Nrf2‑ARE pathway activation	 (29)
Li et al, 2015	 SD rats	 Carbon monoxide poisoned	 Keap1/Nrf2 pathway activation	 (30)
Zhu et al, 2018	 ICR mice	 Cerebral ischemia reperfusion	 ERK signaling inhibition	 (31)
		  injury
Wang et al, 2018	 NSCs from SD rats	 Hydrogen peroxide induced	 PI3K/Akt and Mash1 pathway activation	 (32)
Chen et al, 2017	 Guinea pigs	 Experimental autoimmune	 Enhanced Na+‑K+ and	 (33)
		  myositis	 Ca2+‑Mg2+ ATPase activities
Tian et al, 2017	 H9C2 	 Hydrogen peroxide induced	 Enhanced Nrf‑1 and TFAM expression	 (34)

C, Regulation of apoptosis and autophagy

Author, year	 Study subject	 Method	 Molecular mechanism	 Refs.

Zhao et al, 2017	 C57BL/6 mice	 Traumatic brain injury	 Downregulated caspase‑3 and ‑9 expression	 (17)
Liu et al, 2017	 HUVECs	 Advanced glycation end	 Regulation of Bcl‑2 expression	 (22)
		  product induced
Lei et al, 2014	 SH‑SY5Y 	 β‑amyloid induced	 Regulation of Bcl‑2, caspase‑3 and	 (37)
			   ‑9 expression
Xu et al, 2017	 C57BL/6 mice	 Repeated cerebral ischemia	 Bcl‑2/Bax elevation	 (38)
		  reperfusion
Xiang et al, 2014	 APP/PS1 mice	 Transgenic	 BDNF/TrkB/PI3K/Akt pathway regulation	 (39)

D, Resistance to endoplasmic reticulum stress

Author, year	 Study subject	 Method	 Molecular mechanism	 Refs.

Liao et al, 2018	 SD rats	 Doxorubicin induced	 GRP78, CHOP and caspase‑12 expression	 (41)
			   regulation
Niu et al, 2018	 SD rats	 Bilateral surgical ligation of	 GRP78, CHOP and caspase‑12	 (42)
		  common carotid arteries	 expression regulation
Zheng et al, 2017	 SD rats	 Laminectomy performed at T9 	 ATF‑4, ATF‑6, XBP‑1, PDI, GRP78, 	 (43)
			   CHOP and cleaved‑caspase 12 attenuation
	 HBMECs	 Thapsigargin induced	 ATF‑4, ATF‑6, XBP‑1, PDI, GRP78, 
			   CHOP and cleaved‑caspase 12 attenuation
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of apoptosis and autophagy has been demonstrated. Treatment 
with NBP has been reported to reduce apoptotic cell death 
by increasing the levels of cleaved caspase‑3 and caspase‑9 
following TBI (17). Furthermore, NBP blocks neural apoptosis 
in areas surrounding cortical contusions on the brain that are 
induced by TBI (29). The neuroprotective mechanism of NBP 
involves the mitochondrial apoptotic pathway. NBP inhibits 
HSPB8 K141N mutation‑induced neurotoxicity, attenuates 
β‑amyloid‑induced toxicity in SH‑SY5Y cells, and protects 
rat cardiomyocytes from ischemia or reperfusion through 
regulating mitochondrion‑mediated apoptosis  (28,36,37). 
Furthermore, certain studies have demonstrated the inhibition 
of apoptosis by NBP via the Akt pathway. One study reported 
that NBP activates Akt/mTOR signaling to inhibit neuronal 
apoptosis and autophagy in mice with repeated cerebral 
ischemia reperfusion injury (38). Another study demonstrated 
that NBP improves cognitive impairment of APP/PS1 mice 
by inhibiting apoptosis via the PI3K/AKT pathway  (39). 
Additionally, NBP reduces the number of apoptotic cells by 
regulating Bcl‑2 in HUVECs and an EAM model (22,33).

5. NBP resists endoplasmic reticulum stress

ERS is characterized by incorrect folding and aggregation of 
unfolded proteins in the endoplasmic reticulum lumen and a 
disturbance of the calcium balance, which can activate the 
unfolded protein response and lead to disturbance of the cell 
function and cell death (40). In recent years, certain studies have 
reported an anti‑ERS effect of NBP. One study demonstrated 
that NBP inhibits doxorubicin‑induced ERS in SD rats (41). 

In addition, NBP alleviates vascular cognitive impairment by 
regulating ERS and the Sonic hedgehog/Patched homolog 1 
signaling pathway in SD rats (42). Both of these studies agreed 
that NBP attenuates ERS through regulating the expression of 
78‑kDa glucose‑regulated protein (GRP78), CCAAT‑enhancer 
binding protein homologous protein (CHOP) and caspase‑12. 
Furthermore, NBP also inhibits ERS by attenuating acti-
vating transcription factory (ATF)‑4, ATF‑6, X‑box binding 
protein 1, protein disulfide isomerase, GRP78, CHOP and 
cleaved‑caspase‑12 in a spinal cord injury (SCI) model, which 
may improve functional recovery and prevent disruption of the 
blood‑spinal cord barrier (43,44). However, this mechanism 
has only recently been identified; therefore, there is limited 
literature about it. Further research on this mechanism may 
lead to new findings.

6. NBP decreases abnormal protein deposition

Abnormal protein deposition is closely associated with 
numerous neurodegenerative diseases  (45), such as 
Alzheimer's disease, which is associated with amyloid‑β 
(Aβ) and tau proteins; and PD, which is associated with 
α‑synuclein (46). A study has demonstrated that NBP signifi-
cantly reduces total cerebral Aβ plaque deposition and lowers 
Aβ levels in brain homogenates in a triple‑transgenic mouse 
model of Alzheimer's disease via directing amyloid precursor 
protein processing toward a non‑amyloidogenic pathway (47). 
Furthermore, NBP treatment inhibited tau hyperphos-
phorylation in AβPP/PS1 mice, which may improve cognitive 
impairment (48). NBP enhances a 1‑methyl‑4‑phenylpyridini-

Table I. Continued.

D, Resistance to endoplasmic reticulum stress

Author, year	 Study subject	 Method	 Molecular mechanism	 Refs.

He et al, 2017	 SD rats	 Laminectomy performed at T9	 ATF‑4, ATF‑6, XBP‑1, PDI, GRP78, 	 (44)
			   CHOP and cleaved‑caspase 12 attenuation
	 PC12	 Thapsigargin induced	 ATF‑4, ATF‑6, XBP‑1, PDI, GRP78,
			   CHOP and cleaved‑caspase 12 attenuation

E, Reduced abnormal protein deposition

Author, year	 Study subject	 Method	 Molecular mechanism	 Refs.

Peng et al, 2010	 3xTg‑AD mice	 Transgenic	 Direction of APP processing towards a	 (47)
			   non‑amyloidogenic pathway
Peng et al, 2012	 AβPP/PS1 mice	 Transgenic	 Tau hyperphosphorylation inhibition	 (48)
Chen et al, 2018	 C57BL/6 mice	 LPS induced	 Reduction of α‑synuclein deposition	 (16)
Huang et al, 2010	 PC12 	 MPP+ toxicity induced	 Reduction of α‑synuclein deposition	 (49)

LPS, lipopolysaccharide; SD, Sprague Dawley; JNK, c‑Jun N‑terminal kinase; HGF, hepatocyte growth factor; PGAM5, PGAM family 
member 5; RAGE, receptor for advanced glycation end‑product; Nrf, nuclear respiratory factor; ARE, antioxidant response element; Keap1, 
Kelch‑like ECH‑Associating protein 1; Mash1, mammalian achaete scute homolog‑1; TFAM, human mitochondrial transcription factor A; 
ICR, Institute of Cancer Research; NSC, neural stem cell; BDNF, brain derived neurotrophic factor; TrkB, Tyrosine receptor kinase B; GRP78, 
glucose regulated protein 78; XBP‑1, X‑box‑binding protein 1; PDI, protein disulfide isomerase; APP, amyloid precursor protein; ATF, acti-
vating transcription factory; CHOP, CCAAT‑enhancer binding protein homologous protein; MPP+, 1‑methyl‑4‑phenylpyridiniumion.
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umion‑induced cellular model and a LPS‑induced mice model 
of PD via reducing the accumulation of α‑synuclein (16,49). 
However, the molecular mechanisms of how NBP reduces 
the accumulation of α‑synuclein and inhibits tau hyperphos-
phorylation remain unclear. Furthermore, to the best of our 
knowledge, there is no associated study that provides the 
clinical evidence that NBP is effective in multiple sclerosis or 
Lewy body dementia via attenuating abnormal protein depo-
sition. Potentially, new findings can be revealed in additional 
neurodegenerative diseases.

7. Conclusion

In summary, current studies suggest that NBP serves a neuro-
protective role through inhibiting inflammation, protecting 
mitochondrial function, alleviating oxidative stress, regulating 
apoptosis, resisting ERS and decreasing the abnormal protein 
deposition (Fig. 2). Details on specific molecular mechanisms 
are presented in Table I. Taken together, it is suggested that 
NBP provides a promising therapeutic strategy for neuro-
degenerative diseases. In further studies, the mechanism of 
action of NBP may be further clarified, and the understanding 
regarding its potential uses may be expanded.
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