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Abstract. The novel severe acute respiratory syndrome-
coronavirus‑2 (SARS‑CoV‑2) which has resulted in the 
COVID‑19 pandemic, infection by which is commonly 
characterized by a sore throat, fever and cough, was first 
reported in Wuhan, China on 31st December 2019. This novel 
disease is mild in certain individuals, usually younger healthy 
individuals, whereas the elder and those with underlying 
health conditions develop severe symptoms and may die as a 
result of the disease or associated complications. Along with 
pneumonia, hypercytokinemia, also termed a cytokine storm, 
is one of the most common pathologies observed in patients 
with COVID‑19. As patients react to the infection with the 
virus differently; in certain individuals, a cytokine storm may 
result in death. At present, there is no cure or widely avail-
able vaccine for the novel coronavirus. However, it has been 
hypothesized that mesenchymal stem cells may assist in the 
treatment/management of the cytokine storm due to their 
immunomodulating properties.
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1. Introduction

The COVID‑19 pandemic caused by the severe acute respira-
tory syndrome (SARS)‑CoV‑2 virus, which was first reported 

on 31st of December in Wuhan, China, has quickly spread 
to 6 continents and hundreds of countries, and is the first 
pandemic caused by a coronavirus (CoV) (1).

CoV are a large family of viruses that can cause disease 
in humans and animals. They are RNA based viruses, exhibit 
positive polarity, and are enveloped and non‑segmented, 
belonging to the Orthocoronavirinae subfamily (2). The total 
genome length of CoV is ~30 Kb. There are different regions 
in the genome, including a 5'‑terminal noncoding region, an 
open reading box 1a/b‑coding region, an S region encoding, a 
spike glycoprotein (S protein), an E region encoding the enve-
lope protein (E protein), an M region encoding the membrane 
protein (M protein), an N region encoding the nucleocapsid 
protein (N protein) and a ‑3'‑terminal non‑coding region (3). 
Genomic sequence analysis of COVID‑19 shows 88% 
similarity with two bat‑derived SARS‑like coronaviruses, 
suggesting its origins in a species other than humans (4,5).

COVID‑19 may pass through mucous membranes, 
particularly the nasal and larynx mucosa, and then enters the 
lungs through the respiratory tract. SARS‑CoV‑2 requires 
the angiotensin‑converting enzyme 2 (ACE2), similar to how 
SARS‑CoV requires ACE‑2 (6), as the virus appears to attack 
organs that express ACE2 (7‑9). The first stage of pathogenesis 
of the virus is the identification ACE2 receptors by its spike 
protein. Thus, cells expressing ACE2 are likely the first cells 
to be infected (10). The ACE2 receptor is widely expressed 
on the surface of numerous types of human cells, particularly 
the alveolar type II cells of the lungs (11,12). Other organs 
which express high quantities of ACE2 receptor are the heart, 
liver, kidneys and digestive organs. In fact, a common cause of 
spread of the virus within a host is that endothelial and smooth 
muscle cells in almost all organs express ACE2 receptors, and 
thus, the virus can enter the bloodstream with relative ease. 
Since any tissue or organ expressing ACE2 may serve as the 
battlefield between the novel coronavirus and immune cells, 
complications such as acute respiratory distress syndrome, 
acute myocardial damage, arrhythmia, acute kidney injury, 
shock and even death may be observed (13,14). It has been 
reported that human‑to‑human transmission of SARS‑CoV 
occurs via the binding between the receptor‑binding domain 
of the virus spikes and cellular ACE2 receptors (5,15).

The clinical spectrum of COVID‑19 symptoms varies 
from asymptomatic or pauci‑symptomatic forms to clinical 
conditions, characterized by respiratory failure requiring 
mechanical ventilation and support in intensive care units, to 
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multiorgan and systemic manifestations such as sepsis, septic 
shock and multiple organ dysfunction syndrome (16,17).

The aim of the present review is to discuss the role of 
mesenchymal stem cells (MSCs), which are known to possess 
regulatory functions on the immune system, as a means of 
alleviating or eliminating the more severe consequences of the 
cytokine storm along with pneumonia, two symptoms most 
commonly associated with death in infected patients.

2. COVID‑19‑induced pneumonia

Pneumonia refers to the filling of air vesicles in the lung with 
an inflammatory fluid. Viruses, bacteria and rarely even fungal 
infections cause pneumonia as a complication of infection. 
These pathogens begin to attack cells that form the lining of the 
lungs and inflame small sacs where gaseous exchange occurs. 
The breathing of a patient becomes shorter and harder, and 
as the cells die, the lungs become filled with fluids and debris 
further reducing breathing capacity, and secondary infections 
can develop as a result. This condition is called pneumonia. 
In severe cases, the patient requires a respirator to assist their 
breathing, although the ventilator may not prove effective in 
some individuals, and this is dependent on the specific reaction 
of a patient's immune system. That is, the response mounted 
by the immune system will dictate a patient's outcome. The 
immune system of critically ill patients becomes overly acti-
vated, a condition called cytokine storm, where a large number 
of white blood cells are activated and release inflammatory 
cytokines that further activate more white blood cells (18,19).

Pneumonia appears to be the most common severe 
manifestation of COVID‑19, distinguished primarily by 
fever, dry cough, dyspnoea and bilateral infiltrates on chest 
imaging (18). Models to predict outcomes of patients infected 
with COVID‑19 take into account three factors: i)  The 
severity of the infection, host response, physiological reserve 
and comorbidities; ii) the ventilatory responsiveness of the 
patient to hypoxemia and the time elapsed between the onset 
of the disease; and iii)  the unique observations/manifesta-
tions in patients and the capacity of individual hospitals to 
manage patients. The balance between these factors leads to 
the development of a time‑related disease spectrum with two 
primary phenotypes. Type L is characterized by low elastance, 
low ventilation‑to‑perfusion ratio, low lung weight and a low 
capacity to recruit immune system actors. Type H is charac-
terized by high elastance, high right‑to‑left shunt, high lung 
weight and high a high capacity to recruit immune system 
actors (19‑22).

3. Cytokine storm

Cytokine storm syndrome refers to a range conditions which 
ultimately manifests as systemic inflammation, multi‑organ 
failure, hyperferritinemia and, if untreated, often death (23). 
Numerous pathogenic viruses and bacteria have been found to 
induce cytokine storms or hypercytokinemia (24‑26). These 
pathogens disrupt the balance between a physiological and 
pathophysiological inflammatory response, pushing from being 
beneficial to destructive via positive feedback in immune cells 
and upregulation of proinflammatory markers, in particular 
cytokines such as TNF‑α, IL‑1β, IL‑8 and IL‑6. This results 

in symptoms such as hypotension, fever and oedema, and may 
eventually result in organ dysfunction and death (27).

Pathogen‑induced lung injury can progress to acute lung 
injury or its more severe form, acute respiratory distress 
syndrome (ARDS), as observed with patients infected 
with SARS‑CoV or influenza viruses  (28). A hallmark of 
SARS‑CoV‑2 pathogenesis is the presence of a cytokine storm 
in the lungs  (29). One of the primary mechanisms under-
lying development of ARDS is the cytokine storm, a deadly 
uncontrolled systemic inflammatory response resulting from 
the release of large amounts of pro‑inflammatory cytokines 
(IFN‑α, IFN‑γ, IL‑1β, IL‑6, IL‑12, IL‑18, IL‑33, TNF‑α and 
TGF‑β, amongst others) and chemokines (CCL2, CCL3, 
CCL5, CXCL8, CXCL9 and CXCL10, amongst others) by 
immune effector cells in response to SARS‑CoV infec-
tion (14,30‑32). The cytokine storm initiates a violent attack 
by the immune system on the host body, resulting in ARDS 
and multiple organ failure and ultimately death in severe cases 
of SARS‑CoV‑2 infection, similar to that observed in patients 
who were infected with SARS‑CoV and MERS‑CoV (33). 
IL‑1β is a key cytokine driving proinflammatory activity in 
bronchoalveolar lavage fluid of patients with lung injury (28). 
Pathophysiological levels of inflammation in the lungs also 
can have other systemic effects on other organs (34).

4. MSCs

The self‑renewal and differential capacity of stem cells as poten-
tial tools for regeneration, restoration or replacement therapies 
in a variety of disease conditions has been described previ-
ously (35). MSCs are a heterogeneous population of cells with 
the potential to differentiate into a range of somatic lineages, and 
were originally described as adherent cells with a fibroblast‑like 
appearance capable of differentiating into osteocytes, chondro-
cytes, adipocytes, tenocytes and myocytes (36‑38). MSCs also 
support haematopoiesis, possess immunomodulatory proper-
ties and specifically migrate to damaged sites. MSC migration 
is mediated by growth factors, chemokines, adhesion molecules 
and toll‑like receptors (39). MSCs have been successfully used 
to reverse graft‑versus‑host disease in patients receiving bone 
marrow transplants (40,41), particularly in patients diagnosed 
with severe steroid resistance (42‑44). Similarly, in patients 
with systemic lupus erythematosus and Crohn's disease, both 
autologous and allogeneic MSCs are able to suppress inflam-
mation and reduce damage to the kidneys and bowel, possibly 
through the induction of regulatory T cells (45‑48).

Immunomodulatory role of MSCs. Following COVID‑19 
infection‑mediated initiation of immune overreaction in 
the body, the immune system produces large quantities of 
inflammatory factors, causing a cytokine storm, including an 
overproduction of immune cells and cytokines (49). At present, 
there are no specific antiviral treatments recommended for 
treatment of COVID‑19, and no vaccines are currently widely 
available. Antibacterial agents are ineffective due to the viral 
nature of the infection. Thus, therapeutic strategies are limited 
to palliative care and assisted ventilation for patients with 
severe pneumonia (50).

MSCs are considered a promising tool for cell therapy, in 
particular for management of inflammatory diseases, based 
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on their immunomodulatory properties and paracrine effects 
through trophic factors with anti‑fibrotic, anti‑apoptotic or 
pro‑angiogenic properties (51,52). MSCs regulate the function 
of a broad range of immune cells (52‑59) and are activated by 
inflammatory mediators released from activated immune cells 
(such as IFN‑γ, IL‑1β and TNF‑α) (60,61).

Studies have suggested that MSCs may exhibit immuno-
suppressive or immunomodulatory properties (53,61,62‑65). 
MSCs are hypothesized to possess the ability to reduce 
inflammatory effects and defend against a cytokine storm (66). 
MSCs home in on the injured site due to the presence of local 
cytokine storm, produced by secretion of activated immune 
cells. Activation and migration of MSCs results in secretion of 
multiple immunomodulatory and growth factors. Depending 
on the cytokine signal (acute vs. chronic inflammation), MSCs 
initiate the immunoregulatory response and repair the injured 
site, or are unable to inhibit the persisting chronic inflammatory 
signals being generated as a result of cellular fibrosis (67).

Alleviation of acute respiratory disease and reversal of 
pulmonary fibrosis in SARS‑CoV‑2‑infected patients is medi-
ated by three curative properties of MSCs: i) Directly inducing 
the apoptosis of activated T cells to relieve the aberrant and 
excessive immune responses; ii)  homing toward specific 
sites of injury in the lung to maintain homeostasis as well as 
promote regeneration; and iii) releasing cytokines to diminish 
the inflammatory response and release of extracellular vesicles 
to stimulate tissue repair (Fig. 1) (68). Notably, it has been 
shown that cytokines released by MSCs may potently inhibit 
neutrophil intravasation and enhance the differentiation of 
macrophages (69,70).

Due to a lack of expression of co‑stimulatory molecules 
and HLA‑II, MSCs are regarded as non‑immunogenic cells, 
thus transplantation into an allogeneic host may not require the 
use of immunosuppressive treatments (71,72). Moreover, MSCs 

possess immunomodulatory properties and can suppress and 
inhibit the activation, maturation and proliferation of innate 
and adaptive immune cells (B cells, T cells, NK cells, dendritic 
cells and macrophages) (73).

Following intravenous injection of MSCs (systemic infu-
sion), a proportion of the injected cells are trapped in the 
lung, and this is normally considered a limitation of currently 
used administration methods. However, with regard to treat-
ment of COVID‑19 infection, this may prove beneficial, as 
these trapped MSCs may promote repair of the pulmonary 
microenvironment, protect alveolar epithelial cell regenera-
tion, intercept pulmonary fibrosis and reduce lung dysfunction 
resulting from the COVID‑19 infection and pneumonia (13).

Umbilical cord cells, umbilical cord blood, Wharton's 
jelly, menstrual blood, dental pulp and commercially 
produced‑MSCs are important sources of MSCs that should 
be assessed in clinical trials as potential treatment of patients 
infected with COVID‑19. However, the process of developing 
novel therapeutic strategies and introducing them in a clinical 
setting may result in identification of important practical 
implications/complications which may not have taken into 
consideration beforehand (74).

5. Conclusions

Due to the novel coronavirus, >27 million individuals have 
been infected and almost 900,000 deaths COVID‑19‑realted 
deaths have been repor ted (cor rect as of 8th of 
September,  2020). Whilst certain patients infected with 
COVID‑19 do not shown symptoms, predominantly younger 
healthy individuals, a range of symptoms have been reported, 
which vary from those with mild complaints (mild fever, 
cough and, transient loss of taste or smell, amongst others) to 
more severe symptoms which require admittance to intensive 

Figure 1. Potential mechanism by which MSCs may manage the severe symptoms of COVID‑19 (71). MSC, mesenchymal stem cell; EV, extracellular vesicles; 
NK, natural killer; DC, dendritic cell.
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care and assisted mechanical ventilation. The absence of a 
definitive treatment for management of the disease and the 
absence of a vaccine imposes limitations on the manage-
ment of the spread of the disease, and thus has required 
governmental bodies to rely on more rudimentary measures, 
such as social distancing and lockdowns of certain regions to 
reduce the spread. In addition, the unique immune systems 
of patients react differently, and the extent of the cytokine 
storm produced by an individuals may result in death if 
excessive. It is hypothesized that the use of mesenchymal 
stem cells for their immunomodulatory properties may result 
in improved patient outcomes. As mesenchymal stem cells 
are pluripotent stromal stem cells, they may be successful in 
treatment and management of COVID‑19 infection due to 
their immune regulatory properties, and thus may be useful 
for treating patients who develop more severe symptoms. 
However, additional studies, including clinical trials and 
meta‑analyses are required before widescale adoption in a 
clinical setting.
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