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Abstract. Adipocytes are a known source of stem cells. They 
are easy to harvest, and are a suitable candidate for autogenous 
grafts. Adipose derived stem cells (ADSCs) have multiple 
target tissues which they can differentiate into, including 
bone and cartilage. In adipose tissue, ADSCs are able to 
differentiate, as well as providing energy and a supply of cyto‑
kines/hormones to manage the hypoxic and lipid/hormone 
saturated adipose environment. The plasminogen activation 
system (PAS) controls the majority of proteolytic activities in 
both adipose and wound healing environments, allowing for 
rapid cellular migration and tissue remodelling. While the 
primary activation pathway for PAS occurs through the uroki‑
nase plasminogen activator (uPA), which is highly expressed 
by endothelial cells, its function is not limited to enabling 
revascularisation. Proteolytic activity is dependent on protease 
activation, localisation, recycling mechanisms and substrate 
availability. uPA and uPA activated plasminogen allows 

pluripotent cells to arrive to new local environments and fulfil 
the niche demands. However, overstimulation, the acquisition 
of a migratory phenotype and constant protein turnover can 
be unconducive to the formation of structured hard and soft 
tissues. To maintain a suitable healing pattern, the proteolytic 
activity stimulated by uPA is modulated by plasminogen 
activator inhibitor 1. Depending on the physiological settings, 
different parts of the remodelling mechanism are activated 
with varying results. Utilising the differences within each 
microenvironment to recreate a desired niche is a valid thera‑
peutic bio‑engineering approach. By controlling the rate of 
protein turnover combined with a receptive stem cell lineage, 
such as ADSC, a novel avenue on the therapeutic opportuni‑
ties may be identified, which can overcome limitations, such 
as scarcity of stem cells, low angiogenic potential or poor host 
tissue adaptation.
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1. Introduction

Epimorphosis, the regeneration of a specific part of an 
organism, such as a limb, does not occur in humans, and is 
limited to regrowth of the tips of the digits (1). The underlying 
process, specifically dedifferentiation (2), provides an inter‑
esting prospect for generation of scaffolds (3), facilitation of 
wound healing (4) and guided tissue regeneration (5,6). Stem 
cell therapy is now a well established field; however, treatments 
based on stem cell therapies are limited, primarily due to the 
ethical concerns regarding the sourcing of appropriate stem 
cells (7). Pluripotent cells are difficult to harvest without prior 
planning, and require the application of differentiation factors, 
several of which have multiple, and occasionally unpredict‑
able effects on the cells (8). Multipotent cells are difficult to 
harvest due to their scarcity within each individuals body and 
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the requirements for cell surface marker screening, prolonged 
incubation to develop colonies and narrow therapeutic range 
limit their use (9). These challenges can also result in poor 
tissue integration and survival (10). By exploring the adipo‑
cytic tissue niche through embryological, physiological 
and pathological processes, the aim of the present review is 
to summarize the potential of dedifferentiation of mature 
adipocytes for therapeutic use. The physiological processes 
governing adipocyte development and adipose tissue mainte‑
nance are summarized to provide an understanding of some of 
the well established baseline physiological processes that serve 
as checks for adipocytic lineage commitment. These checks 
have been shown to possess a degree of pliability, and this is 
subsequently explored. Fundamental signalling elements are 
discussed, to provide an in depth look at pathways involved in 
adipocyte regeneration. The similarities between regeneration 
and growth of adipocyte tissue are compared to the devel‑
opmental potential of the adipose lineage. Furthermore, the 
effects of molecules responsible for maintaining a homeostatic 
balance of the adipose tissue through these developmental, 
regenerative and pathological processes on the adjacent 
vasculature, and the interactions with the immune system are 
examined. To create a possible framework for clinical utiliza‑
tion of these findings, as well as to stimulate further research 
in the field, the potential for modulation of these pathways by 
repurposing currently available techniques used in regenera‑
tive medicine are highlighted.

2. Adipocytes

Origins. Adipocytes are present throughout the body within 
adipose tissue (11). They primarily originate from the 
somitic mesoderm and posterior lateral plate mesoderm, 
and they share their origins with cardiac, vascular, muscle 
and connective tissues embryonically (12). Adipocytes are 
mesenchymal in nature, and they are present at a variety of 
stromal and visceral positions, in response to hormonal, 
physical (13,14) as well as sex‑specific stimuli (15), making 
them adaptable to a wide range of environments. Adipocyte 
tissue is tasked with supporting endothelial glands (16,17) and 
epithelial membranes (18), as well as modulating the immune 
response (19), and they are composed of highly versatile cells. 
An important factor supporting the functional variety of 
adipocytes, which promotes their use in multiple clinical appli‑
cations, is their origin from mesenchymal stem cell (MSC) 
progenitors, similar to that of osteoblasts, chondrocytes and 
myocytes (20).

MSCs have been shown to serve an adjuvant role with bene‑
ficial effects as a clinical adjunct in non‑healing ulcers (21), 
tendon scarring (22) and osseous titanium implants (23), as 
well as in a variety of osseous, titanium, polymer and carti‑
laginous scaffolds (24,25). Injected aspirates rich in MSCs 
from bone marrow and adipose harvests have been shown 
to increase the speed of repair and longevity of torn tendons, 
non‑union fractures, and osteoarthritis (26,27). MSCs obtained 
from a variety of sources, such as bone marrow and amniotic 
fluid, share a similar proteome (28). Cell cultures from the 
bone marrow, adipose tissue and umbilical cords also show 
similar growth patterns and cellular architecture, differing 
by the ease of harvest and size of the initial inoculum, which 

affects the subsequent growth rate and viability of cultures and 
grafts (29).

Adipose derived stem cells (ADSCs) are easy to obtain 
due to the abundance of adipose tissue, as well as the fact that 
the isolation time is reported to be as short as 30 min (30). 
The allogenic nature of ADSCs makes them more suitable 
for clinical use compared with the considerably harder to 
harvest umbilical cord MSCs (31), whereas bone marrow 
MSC (BMSCs) require a 24 h incubation to isolate suitable 
cultures on plastic (32).

Mature adipocytes can also be utilised clinically, for 
instance to form dedifferentiated fat (DFAT) cells, using a 
ceiling culture method, which provides a physical dediffer‑
entiation stimulus on the cultured adipocytes. This physical 
stimulus activates the Wnt pathway, resulting in MSC‑like 
protein expression and pluripotency (33). Activation of the Wnt 
pathway causes downstream peroxisome proliferator‑activated 
receptor γ (PPARγ) inhibition (34). In addition to the ceiling 
culture method, there are experimental pharmacological 
approaches such as Chir98014 and Chir99021 that have been 
developed to achieve the same results (35).

ADSCs have been shown to be more versatile in adapting to 
surgical use than BMSCs (36). There is evidence to show that 
the versatility of ADSCs may be due to an intrinsic dediffer‑
entiation potential, which is also partly involved in the wound 
healing response of adipocytes (37). Deeper insights into differ‑
entiation and dedifferentiation may shed light on the adipose 
mechanisms that control the roles of adipocytes in tissue repair.

Differentiation. PPARγ is considered the master regulator of 
proadipogenic differentiation since all stimuli of adipogenesis 
converge on it (38). Activation of PPARγ is both necessary and 
sufficient to induce adipocyte differentiation from MSCs (39). 
PPARγ has also been shown to be responsible for vascu‑
larisation, cardiac and placental development, and monocyte 
function (40,41). There are several molecules that can stimulate 
PPARγ mediated adipogenic differentiation (39,42). These include 

Figure 1. Stimuli mediating differentiation of MSCs to adipocytes. MSC, mesen‑
chymal stem cell.
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a variety of lipids and lipid‑like compounds, including naturally 
occurring polyunsaturated fatty acids (Fig. 1). Co‑stimulators 
such as CCAAT/enhancer binding protein β (CEBPβ) can 
significantly increase the speed of this process.

MSC sensitivity to PPARγ is reliant on a cascade of signal‑
ling factors. Bone morphogenic protein 4 signalling determines 
the adipose lineage, whereas CEBPβ stimulation by insulin 
like growth factor‑1 or glucocorticoids stimulates the preadi‑
pocytes from a growth arrested state to re‑entry back into the 
cell cycle, at which point PPARγ commits them to differentiate 
into terminal adipocytes (43). It is hypothesized that a potent 
factor in the induction of commitment to an adipocyte lineage 
is the environment (44). Plating MSCs at a high density, used 
to mimic heavy loading pressure in a bone environment or 
epiphyseal plates, was shown to preferentially induce differ‑
entiation into osteoblasts, as opposed to low density plating, 
which resulted in adipocytes (45). Similarly, the coculture of 
MSCs with mature adipocytes provides a positive feedback 
mechanism as terminal adipocytes are a source of PPARγ, 
stimulating further MSCs to differentiate into adipocytes (46). 
The molecules responsible for adipocyte differentiation can 
also serve as targets for their dedifferentiation (Fig. 2).

Dedifferentiation. Mature adipocytes have been shown to 
exhibit a plastic phenotype in a variety of conditions (33,37). 
Their dedifferentiation has been shown to function as a 
physiological process in the mammary glands (47) and hair 
cycling (48). It also readily occurs in association with patho‑
logical situations, notably inflammatory diseases (49), dermal 
fibrosis (50), cancer (51) and wound healing (52,53).

Inhibition of the PPARγ molecule is a method of 
forced dedifferentiation of mature adipocytes and has been 
achieved using tumour necrosis factor‑α (TNF‑α) (54) 
and wingless 3a (Wnt3a), a Wnt pathway activator (35). 
Notably, a decrease in PPARγ production in insulin resistant 
adipocytes has also been reported following an increase in 
insulin stimulated release of monocyte chemoattractant 
protein‑1 (MCP‑1) (55). TNF‑α is present in the adipocyte 
environment, where its systemic levels are increased under 
inflammatory conditions such as obesity or insulin resis‑
tance (56), and locally under the same states following release 
of MCP‑1 (57,58).

MCP‑1 stimulation of integrin mediated cell adhesion 
and migration has been shown to be abrogated by a naturally 
occurring truncated soluble urokinase plasminogen activator 
receptor (uPAR) lysis product termed D2D388‑274, which 
inhibits the human formyl peptide receptor like‑1 (FPRL‑1) 
G‑protein coupled receptor (59,60). MCP‑1 is also known to 
signal through a chemokine CC motif receptor 2 G‑protein 
coupled receptor that is present in adipocytes (61). This pattern 
of activation of multiple G‑protein activation coupled recep‑
tors is reminiscent of that observed with alarmins, which are 
damage associated molecular patterns (62). FPRL‑1 activation 
stimulates αvβ3 integrin production (63), whereas D2D388‑274 
formation occurs after urokinase plasminogen activator 
(uPA)‑plasminogen activator inhibitor‑1 (PAI‑1)‑uPAR binding 
within the plasminogen activation system (PAS), and is neces‑
sary for fibroblast‑to‑myofibroblast differentiation (64). There 
are also reports of D2D388‑274 being chemotactic itself, by acti‑
vating FPRL1 with LXA4R, thus highlighting the importance 
of cytokine receptors and PAS in orchestrating inflammatory 
responses (65).

The αvβ3 vitronectin specific integrin has been found 
to allow MSC to activate Wnt signalling and maintain 
pluripotency (66), whereas Wnt signalling in turn activates 
PAI‑1 production and inhibits PPARγ production (67). Since 
MCP‑1‑mediated stimulation of monocyte chemotaxis is reliant 
on FPRL‑1 (59), and this in turn activates Wnt signalling through 
integrin production and activation, it is hypothesized that this 
may be the system by which MCP‑1 exerts an inhibitory effect 
on PPARγ and subsequent adipose dedifferentiation (Fig. 3).

The activation of the Wnt signalling pathway has an 
inhibitory effect on PPARγ production and therefore inhibited 
adipocytic differentiation (68). 5‑Aminoimidazole‑4‑carboxa
mide‑1‑β‑D‑ribofuranoside, an AMP‑activated protein kinase 
activator, enhances lipoprotein receptor‑related protein (LRP)6 
as well as β‑catenin expression, the latter of which activates 
the Wnt/β‑catenin pathway causing inhibition of expression 
of PPARγ, CEPBα, as well as their downstream transcription 
targets, fatty acid binding protein 4 and lipoprotein lipase (69). 
Wnt expression was also found to directly stimulate PAI‑1 
expression (67). Integrin secretion was found to be mediated by 
the Wnt/β‑catenin signalling pathway via LRP (70).

TNF‑α stimulated adipocyte dedifferentiation was found 
to be mediated by PAI‑1, since PAI‑1 deficiency caused an 
upregulation of PPARγ in TNF‑α stimulated cells, resulting in 
abrogation of the dedifferentiation caused by TNF‑α (71). The 
mechanism by which PAI‑1 is upregulated is hypothesized to 
be mediated through TNF receptor stimulated production of 
reactive oxygen species, which ultimately propagates nuclear 
factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) 
PAI‑1 gene activation (72).

Due to the multiple sources indicating PAI‑1 and Wnt 
involvement in dedifferentiation of adipocytes, or maintenance 
of MSC pluripotency, their interaction is discussed further 
below.

3. PAS

Systemic functions. PAI‑1 is a member of the PAS. The 
primary protease of this system is plasmin, which is respon‑
sible for catalysing the lysis of fibrin, glycoproteins and other 

Figure 2. Significant molecules involved in regulation of PPARγ. 
PPARγ, peroxisome proliferator‑activated receptor γ.
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components of the extracellular matrix (ECM), but requires 
activation from a precursor state (73).

The cleavage of the plasmin precursor, plasminogen, is 
mediated by uPA and the tissue‑type plasminogen activator 
(tPA), activity of both of which is regulated by the PA‑I family 
of proteins, of which PAI‑1 is the most rapidly acting and 
abundant (74).

Under hypoxic conditions, the adipose tissue actively 
utilises the PAS, both in physiological (75) and patholog‑
ical (76) conditions, and this can be exploited to improve our 
understanding of the complexity of this signalling framework. 
Adipocytes secrete increased quantities of uPA under hypoxic 
conditions in order to initiate the degradation of the extracel‑
lular environment, in preparation for macrophages, neutrophils 
and endothelial cells (ECs) necessary for the resolution of the 
hypoxic state (77). In adipose tissue, a distance of 120 µm 
from the capillary is the limit of oxygen diffusion, while a 
single adipose cell can reach sizes of up to 150 µm (78).

uPA activates plasminogen, and can itself initiate the extracel‑
lular remodelling process (79). Once plasminogen is present, the 
ECM degradation begins to cascade. uPA is truncated allowing 
it to form dimers that have a lower affinity to cell surface uPAR, 
causing increased plasminogen and matrix metalloproteinase 
(MMP) activation due to lower PAI‑1 affinity (80).

MMPs are secreted either as membrane anchored or free 
proteins, and in both instances as inactive zymogens, requiring 
lysis for activation (81,82). Plasmin, along with membrane 
bound and soluble uPA can activate MMP extracellularly to 
allow for more specific targeting of the local extracellular 
glycosaminoglycans and peptidoglycans, which is neces‑
sary for correctly guiding the invasion of ECs, host immune 
cells and stem cells (83). The hypoxic stimulus is known to 

potentiate the dedifferentiation of chondrocytes (84), and 
formation of DFAT cells in ceiling culture (85).

In the context of adipose organs, continuous remodelling 
is important physiologically to maintain stability during adap‑
tation to storage capacities of dietary nutrients, and this puts 
pressure on the vasculature and connective tissues (86). These 
pressures are correlated between the adipocytes and ECs, 
which promote both adipocyte‑mediated stimulation of EC 
angiogenesis and EC stimulation of preadipocyte formation 
in vitro (87). Hypoxic conditions arise spontaneously as the 
adipose organ grows to meet the physiological demands (88). 
PAS elements serve a key role in mediating multiple aspects 
of these interactions, which are most clearly observed in 
remodelling events following injury. Adipose harvested MSC 
migration requires uPAR activation (89), whereas PAI‑1 as well 
as αvβ3 are strongly expressed by preadipocytes, resulting in a 
loss of a migratory phenotype and maturation within the cell 
cluster (90).

Hypoxia primed neutrophils start adhering and migrating 
towards the affected ECs (91), whereas uPA activates 
proteolysis in association with intracellular remodelling via 
vitronectin‑integrin binding (92). This allows new blood 
vessels to extend towards the hypoxic locale. There is an 
increased expression of vascular endothelial growth factor 
(VEGF) under hypoxic conditions, either due to colder local 
temperatures (93), trauma or oncogenesis (94). VEGF is also 
known as a vascular permeability factor, as beyond angiogen‑
esis, VEGF often causes a vascular leak, which can lead to 
oedema (95). The increased perfusion towards a hypoxic locale 
by VEGF allows for influx of neutrophils and serum contents, 
high molecular weight proteins (96), such as vitronectin (97) 
and fibronectin (98) (Fig. 4). Subsequently upon exposure to 

Figure 3. Primary pathways identified in the literature, which are either physiologically or pathologically involved in mediating adipocyte dedifferentiation.
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serum components, such as vitronectin and fibronectin, inte‑
grin signalling along with uPA/uPAR activation leads to Wnt 
activation and PAI‑1 secretion (99).

Self‑regulation and signal propagation. PAI‑1 is found bound to 
vitronectin, in a latent state which prevents its autolysis (100,101). 
The affinity of PAI‑1 is lower to vitronectin than it is to uPA. 
This can result in the release of PAI‑1 from vitronectin upon 
secretion of uPA, making vitronectin available to bind to inte‑
grins, which co‑localise to uPAR on the lipid raft and mediate 
uPA stimulated extracellular proteolysis and motility (102).

The uPA/uPAR/integrin complex allows for directional 
endocytosis and proteolysis along the path of ECM degrada‑
tion. The presence of PAI‑1 at the uPA/uPAR/integrin complex 
can cause LRP‑mediated intracellular recycling. This severs 
the extracellular connection of uPA/uPAR/integrin and vitro‑
nectin to the degrading ECM, and thus reduces the mobility 
caused by uPA/uPAR/integrin association (103).

Vitronectin cellular attachment is mediated by inte‑
grin αvβ3, which can also act in concert with αvβ5 to bind 
fibronectin (104). Vitronectin itself is secreted by the liver 
and the central nervous system (105), and is primarily found 
in the serum, although it is present in trace amounts in the 
ECM (106), particularly in the lamina elastica of vessels (107). 
Fibronectin is more commonly found in areas of high cellular 
growth or turnover (108), such as in a wound (109). Collagen, 
the third major ECM component, which binds to the cell 
surface via integrins, is abundant throughout the ECM, its 
function is altered as a result of changes in the function with 
its conformation and composition (110).

Atherosclerotic vessels are a common complication of 
hypoxia inducing conditions, such as obesity and diabetes (111). 
Studies have shown that cold induced catabolism and hypoxia 
inducible factor (HIF) expression by adipocytes inhibits the 
formation of atherosclerotic plaques through lipid diges‑
tion (112). Hypoxia inducible factor expression is known to 
stimulate PAI‑1 expression (113). However, increased PAI‑1 
expression results in a hypofibrinolytic state, which leads to 
fibrosis and thrombosis of the fatty plaques (114). The inhi‑
bition of low‑density lipoproteins by statins can reduce the 
adipocytic commitment of fibroblast progenitors into adipose 
cells (115) resulting in reduced atherosclerotic plaque forma‑
tion (116). HIF expression can also stimulate PAI‑1 expression 
resulting in angiogenesis (117). Increased vitronectin pres‑
ence at sites of vessel injury, such as atherosclerotic plaques, 
are expected to be involved in the mechanism underlying of 
increased platelet adhesion, and coupled with the increased 
PAI‑1 secretion, it may serve as an explanation for the rapid 
thrombosis at these loci (118), much beyond the rate of PAI‑1 
induced angiogenesis.

Integrin binding to collagen and fibronectin can increase 
the secretion of uPA, uPAR and PAI‑1; however, αvβ3 binding 
to vitronectin was found to downregulate uPA and uPAR 
antigen levels and upregulate PAI‑1 (99) (Fig. 5). The attach‑
ment of the uPA/uPAR complex to vitronectin and other ECM 
proteins is performed via binding of the complex to integrins, 
which is activated by the ECM proteins (119).

Role in differentiation. PAI‑1 is secreted by ADSCs and 
osteoblasts derived from ADSCs (120). Elevated levels of 

Figure 4. The adipocyte tissue niche and hypoxia resulting from growth, hyperplasia or damage to the vasculature. The resulting response is magnified 
showing vascular ingress towards the hypoxic location, vascular perfusion, neutrophil infiltration and ECM degradation. The primary molecules regulated by 
the hypoxic environment are highlighted. ECM, extracellular matrix.
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PAI‑1 secretion from adipose cells have also been observed 
during inflammatory states, such as at post‑surgical abdominal 
sites (121), in murine models of obesity in both gonadal and 
subcutaneous adipocytes (122), and in aged (24‑month‑old 
murine) ADSCs (123).

The integrin binding site on vitronectin is shared by PAI‑1, 
suggesting an interaction between signalling pathways (124). It 
has been shown that the extracellular signal‑regulated kinase 
pathway is stimulated by αvβ5 integrin during chondrocyte 
dedifferentiation (125). Integrin αvβ1 has been identified in 
the proteome of dedifferentiated chondrocytes (126), whereas 
αvβ3 has been reported to mediate dedifferentiation of smooth 
muscle cells under hypoglycaemic conditions (127).

The uPA/PAI‑1 complex on the uPAR causes 
clathrin/LRP1‑mediated recycling (128,129); however, uPAR 
also undergoes constant rapid macropinocytic recycling, 
independent of the uPA/PAI‑1 complex (130). A similar 
mechanism that induces cellular migration has been reported 
when β1‑integrin colocalizes to LRP1 (131). Integrin/LRP 
signalling is mediated by growth factor receptor‑bound‑2 (132) 
as well as integrin linked kinase (133), both of which were 
found to stimulate Wnt signalling (132,133). LRP1 upregula‑
tion occurs under multiple pathological conditions, such as 
idiopathic pulmonary arterial hypertension, hypoxia‑exposed 
mice and monocrotaline‑treated rats. The homeostatic func‑
tion of maintaining smooth muscle cell (SMC) proliferation 
seems to be controlled by LRP1‑mediated promotion of 
SMC dedifferentiation (134). LRP5/6 activation is known 
to stimulate Wnt signalling, which in turn stimulates renal 
epithelial dedifferentiation (135). Interestingly LRP1 signal‑
ling was found to be crucial in the production of PPARγ and 
adipocyte differentiation, whereas silencing LRP1‑mediated 
dietary lipid internalisation abrogated this (136). Therefore, 
PAI‑1‑stimulated LRP1 recycling could prevent lipid‑mediated 
PPARγ production.

Wnt‑1 inducible signalling pathway protein 1 (WISP1) is 
a downstream mediator of Wnt signalling (137) that has been 
found to be closely associated with integrins. αvβ5 activation 
is now known as a mediator of WISP1 in acute respiratory 
distress syndrome lung injury (138). A separate study has 
confirmed these findings across integrins αvβ5 and αvβ3 (139). 
Upregulated WISP1 was found to stimulate αvβ1 expression in 
transfected BMSCs (140). αvβ3 also allowed MSCs to activate 
the Wnt/β‑catenin pathway (66).

The phosphatidylinositol 3‑kinase (PI3K)/protein kinase B 
(AKT) signalling pathway is necessary to stimulate adipocyte 
differentiation from 3T3‑L1 preadipocytes in the absence of 
other inputs, as AKT1 can stimulate PPARγ production (141). 
uPA and uPAR downregulation inhibits the PI3K/AKT 
pathway (142). The downregulation of AKT by uPA/uPAR 
RNA inhibition results in upregulation of PAI‑1 (143). In fact, 
PAI‑1 is a strong regulatory mechanism of adipocyte differen‑
tiation, as microRNA (miRNA)‑mediated inhibition of PAI‑1 
secretion in ADSCs was sufficient to stimulate differentiation 
into adipocytes (144). miRNAs are mRNA binding and modu‑
lating sequences, and have been strongly associated with both 
stimulating adipocytic differentiation of 3T3‑L1 cells (144,145) 
and inhibiting it (146). The pre‑miRNA requires endonuclease 
activation. Once active, they can stimulate gene expression. 
miR‑130 (147) and miR‑27b (146) were found to stop adipocyte 
differentiation by inhibiting PPARγ production via targeting 
coding and untranslated mRNA regions. Stimulating the differ‑
entiation by miRNA has been found via other pathways, namely 
miR‑21 inhibition of TGFBR2 secretion (148), miR‑17‑92 reduc‑
tion of tumour‑suppressor Rb2/p130 (145), and possibly miR‑143 
mediated reduction of ERK5 production (149). Embryonic stem 
cell differentiation into adipocytes is also inhibited by other 
uPA inhibitors, such as amiloride (150).

The change in uPAR colocalization to integrins from 
α3β1 to αvβ5 blocks the uPA signalling and activation of 

Figure 5. PAS activity is dependent on the microenvironment and available complex elements. PAS, plasminogen activation system.
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ERK or AKT (151), which functionally represents a shift 
from a laminin rich environment to a vitronectin rich environ‑
ment. Interestingly, Wnt signalling can be inhibited by α3β1 
complexes (152), while activation of αvβ5 complexes stimulates 
Wnt signalling (153). uPAR complex internalisation by the cell 
can result in Wnt mediated β‑catenin gene transcription due 
to nuclear colocalization, suggesting that uPAR in complex 
with β‑catenin can be a potent activator of stemness (154). 
PI3K/AKT signalling appears more independent of uPAR 
internalisation, and tends towards maturation. αvβ3/vitronectin 
complexes have been shown to activate a PI3K/AKT induced 
stemness profile, whereas while α3β1/Laminin inhibits 
this (155) (Fig. 6). PAI‑1/LRP mediated clathrin recycling of 
the uPA/uPAR complex and the vitronectin/αvβ3 complex 
can be simultaneous due to different binding sites between 
PAI‑1/uPA and PAI‑1/LRP, while uPA/uPAR itself also has 
a separate integrin binding domain. The resultant vacuole is 
internalised with the plasma membrane, and is isolated from 
the ECM, allowing only for non‑ECM dependent signalling.

Clinical applications. Wound closure is initiated by thrombin, 
which activates fibrinogen to create a fibrin clot (156). The 

activation of uPA, uPAR and PAI‑1 has been suggested as the 
mechanism underlying MSC invasiveness into a fibrin clot of 
a wound (157). Fibronectin is an extracellular glycoprotein, 
which creates a provisional matrix for cellular adhesion to a 
wound environment via integrin binding (158). This in turn, 
has been shown to stimulate uPA, uPAR and PAI‑1 secre‑
tion (99). Adipocytes bind to fibronectin via integrins (159). 
Preadipocyte differentiation into adipocytes is marked by a loss 
of the attachment to ECM components resulting in a rounded 
shape, increased lipid content and reduced Wnt/βcatenin 
signalling (160).

Fully differentiated adipocytes were reported to lower 
PAI‑1 concentration, and the subsequent addition of PAI‑1 to 
an osteoblast/fully differentiated adipocyte coculture did not 
cause spontaneous transition of adipocytes to osteoblasts (161). 
Nonetheless, PAI‑1 has been found to push differentiated MSC 
lineages, of not only adipocytes but also fibroblasts, back into 
the partially dedifferentiated growth arrest state (162), as well 
as being necessary for dedifferentiating osteosarcoma (163) 
into more malignant stem like cells, suggesting the prevalence 
of this molecule in maintaining pluripotency. It is also worth 
noting that the dedifferentiating stimulus wrought by PAI‑1 
may partially explain why it is involved in several types of 
tumours associated with a poor prognosis (104).

4. Perspectives

Whilst detection of increased secretion of PAS components 
within the tissue can be indicative of oncogenesis (74,143) and 
diabetic dysregulation in obese patients (61), localised activa‑
tion is both physiological and necessary for maintenance and 
healthy tissue development. Currently, the fast‑developing 
fields of aesthetic and regenerative medicine, as well as 
dentistry, are keenly focused on the bio‑engineering potential 
of natural products. Transplants of adipocytes, platelet rich 
fibrin or platelet rich plasma are used for acceleration of 
healing, aiming to stimulate fibroblasts or osteoblasts, and 
multiple approaches are often combined to increase their effec‑
tiveness (164). It is hypothesized that adipocytes primed with 
PAS system components may be used to improve outcomes 
of bone regeneration, soft connective tissue regeneration and 
wound healing.

Instances where establishing a sufficient blood supply 
is of high concern, such as an osseoinductive transplant, a 
collagenous cellular carrier implant, or for procedures such as 
bone distraction, extensive surgical flaps, or any other surgical 
intervention where scarring and grafting is an issue, may 
benefit from the possible therapeutic applications of receptive 
stem cells. When the protraction of healing is necessary to 
allow for complete angiogenesis, and adequate deposition of 
ECM to support the unformed tissue, uPA can ensure that the 
microenvironment is maintained in a state of turnover (129). 
Degradation of the ECM increases permeability to both 
cells and signalling molecules. However, local inflammatory 
mediators tend to stimulate ECM degradation and uPA release. 
However, at present, the clinical use for uPA alone is limited to 
acellular pathologies, such as large thrombi (165) or thinning 
of tuberculous pleural thickening (166).

The ability for adipocytes to secrete uPA and PAI‑1 to 
modulate and maintain their pluripotent microenvironment 

Figure 6. PAI‑1/LRP mediated clathrin recycling of the uPA/uPAR complex 
and the activation of the vitronectin/αvβ3 complex can be simultaneous 
due to the different binding sites between PAI‑1/uPA and PAI‑1/LRP, and 
uPA/uPAR itself also has a separate integrin binding domain. The resultant 
vacuole is internalised with the plasma membrane, and is isolated from the 
ECM, allowing only for non‑ECM dependent signalling. PAI, plasminogen 
activator inhibitor 1; LRP, lipoprotein receptor‑related protein; uPA, uroki‑
nase plasminogen activator; uPAR, uPA receptor.
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has been explored, and this may be conducive in wound 
healing or bio‑engineering stents (77). It is hypothesized that 
balancing the vascularisation and remodelling properties of 
uPA, with the dedifferentiating properties of PAI‑1 production 
and recycling in association with integrins may be achieved 
by cultivating an adipocyte harvest in the right ECM protein 
environment (89).

The MSC like fraction can be boosted by synthetically 
overloading harvested adipocytes with PAI‑1 or any of the 
other Wnt activating PPARγ inhibitors and re‑introducing 
this population into a wound or surgical microenvironment 
in order to become more susceptible to local differentiation 
factors and conduit healing or growth (157).

Alternatively, whole tissue adequately prepared to stimulate 
activation of the PAS, such as in a wound healing or hypoxic 
environment, may create a DFAT rich graft which would be 
significantly more conducive to local cellular populations or 
ECM architectures in mesenchymal lineage use cases (21).

For directed mobility via extracellular degradation, there 
needs to be present a steady stream of uPA to counteract any 
baseline PAI‑1 secretion, to overcome the background PAI‑1 
recycling of the uPA/uPAR/integrin complex, which under‑
goes intracellular recycling along with LRP and downstream 
targets. Such interventions are difficult to perform in vivo due 
to the delicate nature of surgical sites. Thus, it is more prudent 
to identify self‑regulating stents, which can stabilise harvested 
adipocytes in a required state (3).

PAI‑1 is found to be stable for 145 h when bound to vitro‑
nectin, and for 2 h when expressed in isolation in vitro (167). 
This suggests that PAI‑1 can cause a dormant inhibition of 
cellular motility during a latent phase of the cell cycle when 
there are no uPA stimulating environmental queues. However, 
when uPA is released, the motility, sensing, and endocytic 
potential inhibited by the latent PAI‑1 secretion could explain 
a physiological receptiveness to changes observed during 
pathological processes tending to homeostasis (150).

Studies have shown that platelet rich plasma with ADSCs 
can significantly improve tissue incorporation of synthetic 
scaffolds and their neovascularisation (168). Additionally, 
ADSCs with platelet rich fibrin (PRF) have exhibited a 
certain degree of improvement in restoring salivary function 
following gland irradiation, which neither ADSC nor PRF 
alone achieved (164). This effect could be due to the presence 
of fibrin in the platelet rich plasma, which in turn activates 
uPA and PAI‑1 secretion through integrin activation of Wnt. 
Fibrin has been shown to enhance Wnt signalling (169,170), 
whereas PRF‑stimulated BMSC healing of alveolar bone 
defects was found to be mediated by expression of Wnt3a (171), 
further suggesting the promising clinical applications of this 
approach. The high vitronectin content of plasma, which has 
a selective PAI‑1 up‑regulatory mechanism, could account for 
the multipotent stimuli that modifies the local cell population 
for faster healing outcomes.

5. Conclusions

Adipocytes can be seen as a versatile cell lineage which harbour 
mesenchymal stem potential in the form of MSCs, ADSCs and 
the induced DFAT cells. The formation of the latter has been 
found to rely on inhibition of PPARγ. Wnt signalling has been 

shown to be stimulated by TNF‑α and integrins, notably αvβ3 
via fibrin. The proteolytic cascade activated by PAS during 
inflammation is mediated by multiple Wnt activators, acting 
on Wnt to stimulate uPA release for ECM degradation, PAI‑1 
release for endocytosis, uPAR for localisation to LRP, and 
integrins to provide motility and directional specificity.

Since Wnt activation also inhibits PPARγ expression, 
there is a high chance that adipose cells exposed to a fibrin 
or vitronectin rich wound environment would undergo 
dedifferentiation. PAI‑1 expression has also been linked to 
dedifferentiation, which could be explained by its ability 
to stimulate endocytotic clathrin basket mediated recycling 
of uPA/uPAR/integrin complexes. After wound resolution, 
in order to reach homeostasis and inhibit uPA mediated 
extracellular ECM degradation, PAI‑1 needs to be released 
following its internalisation, suggesting that activation of 
Wnt signalling is necessary in wound healing in order to 
produce PAI‑1, and consequently inhibit PPARγ. Coupled 
with Wnt mediated stimulation of PAS expression to allow 
for remodelling of the ECM and cellular motility, there is a 
strong suggestion that Wnt is central to the success and high 
versatility of adipose tissue and more importantly DFAT 
cells in pilot studies. An initial dedifferentiating priming of 
adipose to DFAT cells from a lipoaspirate harvest in a PRF 
could be followed by cytokine, mineral or ECM exposure to 
initiate target cell differentiation prior to clinical use, taking 
the DFAT cells one step closer to use in a clinically appli‑
cable environment.
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