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Abstract. programmed death‑ligand 1 (pd‑l1) is a transmem‑
brane protein mainly located on cancer cells, including renal 
cell carcinoma, breast, colorectal, gastric and non‑small cell 
lung cancer. pd‑l1 binds to the pd‑1 receptor expressed on 
t lymphocytes to inhibit the activation of t lymphocytes, thus 
allowing tumour cells to escape immune surveillance, leading 
to tumour growth and the poor prognosis of patients with 
cancer. inhibitors targeting the programmed death‑1/pd‑l1 
axis have been widely used in the clinical treatment of a 
variety of solid tumours in recent years. However, the clinical 
efficacy of these inhibitors varies. Studies have demonstrated 
that the effect of the targeted drug is positively associated 
with the expression of pd‑l1 on the tumour membrane. 
Hence, exploring the mechanism of pd‑l1 expression is 
very important for the treatment of tumours. autophagy 
is a physiological process that maintains the stability of the 
internal environment. autophagy degrades aging organ‑
elles and long‑lived proteins and produces nutrients for cell 
recycling. to the best of our knowledge, the present review is 
the first to summarize the research that has been conducted 
on autophagy‑regulated pd‑l1 expression, which may provide 
new avenues for tumour immunotherapy.
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1. Introduction

programmed death‑ligand 1 (pd‑l1), with the gene name 
CD274, was first discovered in interleukin (IL)‑3‑deprived 
lyd9 (murine hematopoietic progenitor) and 2b4‑11 (murine 
t cell hybridoma) cell lines in 1992 (1) and was described 
as b7‑H1 by dong et al (2) in 1999. pd‑l1 is the third 
member of the b7 family that does not bind cd28, cytotoxic 
t‑lymphocyte a4 or inducible co‑stimulator, and has 10‑25% 
homology with b7.1 and b7.2 proteins (2). pd‑l1 is encoded 
by the pdcdl1 gene, which was discovered at p24.1 on human 
chromosome 9. the amino acid sequence of pd‑l1 is encoded 
by 7 exons, which form a protein of ~40 kda. pd‑l1 is a type i 
transmembrane protein, is part of the immunoglobulin (ig) 
superfamily and is composed of igV‑like and igc‑like extra‑
cellular domains, a hydrophobic transmembrane domain and a 
short cytoplasmic tail composed of 30 amino acids. the signal 
transduction mechanisms of pd‑l1 remain unclear (3). the 
most important role of pd‑l1 is binding with programmed 
death‑1 (pd‑1; cd279), a type i transmembrane receptor that 
is 288 amino acids long and was first found on T cells (4). The 
engagement of pd‑l1 and pd‑1 on cancer cells activates src 
homology region 2 domain‑containing phosphatases, which 
inhibit the t cell receptor (tcr) pathway. inhibition of the 
tcr pathway leads to inhibition of t cell activities, including 
proliferation, survival and cytokine production, such as that 
of il‑2, tumour necrosis factor α (tNF‑α) and interferon γ 
(iFN‑γ) (5), as well as the inhibition of b7‑1 and t cell toler‑
ance (6,7). to the best of our knowledge, the present review will 
discuss for the first time how autophagy, a protein degradation 
pathway that regulates homeostasis of cells, also regulates 
pd‑l1 expression on cancer cells.

2. PD‑L1 expression level is a potential clinical biomarker 
for PD‑1/PD‑L1 antibodies

considering the role of pd‑l1 in suppressing the activa‑
tion of t cells, it has been an outstanding target for targeted 
tumour therapy during the past few years (8). To be specific, 
obstructing the pd‑l1/pd‑1 signalling pathway by antibodies 
can reactivate exhausted t cells in the tumour microenvi‑
ronment, thus making tumour cells vulnerable to attack by 
cytotoxic t cells (6). currently, the efficacy and safety of 
drugs targeting the PD‑L1/PD‑1 axis have been identified in 
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>1,000 clinical trials, and these drugs have been authorised 
for the treatment of various cancer types, including mela‑
noma (9), Hodgkin's lymphoma (10), non‑small cell lung 
cancer (Nsclc) (11), microsatellite instability‑high renal 
cell carcinoma (12), deficient mismatch repair cancer (13), 
urothelial carcinoma (14), merkel cell carcinoma (15), hepa‑
tocellular carcinoma (16), gastric cancer (17) and head and 
neck squamous cell carcinoma (18). even so, in some tumour 
types, such as non‑msi (microsatellite instability) colorectal 
cancer, prostate cancer, ovarian cancer and breast cancer, the 
clinical efficacy of the drugs targeting pd‑1/pd‑l1 when 
used alone was limited (19). The factors that influenced the 
effective response of PD‑1/PD‑L1 include tumour‑infiltrating 
lymphocyte (til) infiltration and localisation at an early 
stage (20), til activation level (21) and the effect of mutations 
in tumour cells (22). The expression level of PD‑L1 is the first 
factor notably associated with prognosis and clinical effects 
of the drugs targeted to pd‑1/pd‑l1 among various tumours 
such as melanoma, gastric cancer and Nsclc (23‑25). 
among the 45 Fda‑approved drugs across 15 tumour types, 
pd‑l1 was predictive in only 28.9% of cases, and was either 
not predictive (53.3%) or not tested (17.8%) in the remaining 
cases. this indicates that pd‑l1 has some limitations as a 
predictive biomarker; however, it still serves a notable role 
as a biomarker in bladder, Nsclc, triple‑negative breast and 
cervical cancer (26). the expression of pd‑l1 was found to 
be increased among different solid tumours and was associ‑
ated with worse survival, prognosis and treatment responses in 
multiple malignancies such as esophageal, gastric, urothelial 
and colorectal cancer and hepatocellular carcinoma (27,28), 
mostly due to the upregulation of pd‑l1, which created a 
favourable environment for tumour progression by inhibiting 
antitumour immunity (29,30). the mechanisms that regulate 
the expression of pd‑l1 remain unclear. Hence, it is impera‑
tive to broaden understanding of the regulation of pd‑l1 
expression in order to improve the therapeutic efficacy of 
current immune checkpoint blockade drugs, such as pembro‑
lizumab and nivolumab. In addition, greater understanding 
will improve tumour immunotherapy, which will lead to an 
improved prognosis in patients with cancer.

3. Mechanisms of autophagy that regulate the expression 
of PD‑L1

autophagy is a tightly coordinated process that isolates 
misfolded or mutated proteins, damaged or aged organelles 
into a double membrane vesicle called an autophagosome. 
autophagosomes fuse with lysosomes, forming autolyso‑
somes, the contents of which can then be used to degrade the 
components of the autolysosomes (31). Nucleotides, amino 
acids and other nutrients produced by the aforementioned 
degradation process can be recycled by cells. the recycling 
capacity of autophagy is conserved from yeast to humans 
and regulates cellular homeostasis in both physiological and 
pathophysiological contexts. currently, autophagy has been 
classified into 3 forms: i) Macroautophagy, ii) microautophagy 
and iii) chaperone‑mediated autophagy (cma). among these, 
macroautophagy is the dominate type of autophagy, and is a 
common process for the degradation of cytoplasmic compo‑
nents and organelles for nutrient recovery in cell recycling. 

However, microautophagy is a non‑selective degradation 
process that directly swallows intracellular components into 
tubules or lysosomes (32). cma is unlike the other two afore‑
mentioned types of autophagy in that it only participates in 
the degradation of soluble proteins that contain the KFerQ 
sequence motif, such as perilipin2 and pirilipin3 (33). after 
being recognised by the 70‑kda cytoplasmic heat shock 
protein (Hsc70), a complex is formed by these proteins 
in combination with Hsc70 and its chaperones, which are 
transported to the lysosome and interact with the lysosomal 
associated membrane protein‑2a receptor and are degraded by 
acid hydrolase in lysosomes (34).

the process of autophagy is achieved in 4 distinct 
stages: i) initiation, ii) nucleation, iii) maturation and 
iv) degradation (35). First is the process of autophagosome 
initiation, which is controlled by the Unc‑51‑like kinase 1 
(UlK)‑autophagy‑related gene 13 (atg13)‑family interacting 
protein 200 kda kinase complex. this complex is negatively 
regulated by the mammalian target of rapamycin complex 1 
(mtorc1) via activation of UlK and amp‑activated protein 
kinase (ampK) (36). second, the phagophore nucleation 
step is achieved by the phosphatidylinositol 3‑kinase (pi3K) 
complex, beclin 1, atg14l, Vps (vesicular protein sorting) 
15, Vps 34, UV radiation resistance associated gene and 
bax interacting factor 1 (36). the proteins participating in 
the process of initiation and nucleation can synergistically 
facilitate the formation of the double membrane structure of 
autophagosomes (36). the type of membranes can originate 
from the mitochondria, plasma membrane or the endoplasmic 
reticulum (37,38). third, is the elongation or expansion step, 
in which the atg5‑atg12‑atg16 complex is formed to elon‑
gate the autophagosome double membranes. simultaneously, 
members of the g‑aminobutyric acid receptor‑associated 
protein and lc3 families of proteins are recruited to the 
membrane after binding to the lipid phosphatidylethanolamine 
(pe). lc3 (atg8)‑i is cleaved by atg4 and in turn conjugated 
with pe by atg3 and atg7 to form lc3‑ii (also known as 
map1lc3b). lc3‑ii can serve as a marker to exhibit the 
quantity of autophagosomes formed at all points of the process. 
Finally, autophagosomes fuse with the lysosomes to degrade 
the substances in autophagosomes by the action of acid prote‑
ases in lysosomes. Moreover, this promotes energy efficiency 
through atp generation and attenuates damage to the cell by 
removing non‑functional proteins and organelles (35).

in 2019, Huang et al (39) found that autophagy can decrease 
pd‑l1 expression both in vivo and in vitro. First, in caecal 
ligation and perforation (clp) mice, with time after clp, the 
lc3 expression in the lung tissue exhibited a downward trend, 
while the expression of pd‑l1 increased markedly. When 
autophagy was induced by rapamycin (rap) pretreatment, 
which enhanced the expression of lc3, the expression of 
pd‑l1 was decreased in clp mice. similarly, in an in vitro 
experiment, when autophagy was inhibited by lipopolysac‑
charide at different time points, the expression of pd‑l1 was 
induced at both mrNa and protein levels in mouse neutro‑
phils when compared with that in the blank control group, 
and peaked at 12 h to levels significantly higher compared 
with those of the blank control group. the expression of lc3 
and p62 was also increased at the same time. However, when 
combined with the autophagy inducer rap, the expression of 
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PD‑L1 and p62 was significantly downregulated, while the 
expression of lc3 was continually increased in mouse neutro‑
phils when compared with the blank control group (39). the 
aforementioned results indicated that the process of autophagy 
may regulate pd‑l1 expression via various pathways. in 
recent years, numerous studies have contributed to elucidating 
the mechanisms through which autophagic flux can influence 
pd‑l1 expression, as described below. the mechanism is 
summarized in Fig. 1.

Autophagy decreases the expression of histone deacetylases 
(HDACs) to downregulate PD‑L1 expression. booth et al (40) 
found that exposure of lung and ovarian tumour cells (‘H’ 
series Nsclc lines, sKoV3, oVcar and pai cells) to 
pemetrexed + sildenafil in vitro decreased the expression of 
various Hdacs (Hdac2, Hdac4, Hdac6 and Hdac9), 
which could be blocked through the knockdown of crucial 
autophagy‑related proteins (ampKα, beclin1 or atG5). the 
degradation of histone deacetylases by pemetrexed + silde‑
nafil is dependent on autophagy. Simultaneously, pemetrexed 
+ sildenafil downregulated the expression of PD‑L1, PD‑L2 
and ornithine decarboxylase (odc), while upregulating the 
expression of mHc class i on lung and ovarian tumour cells. 
By contrast, the killing ability of pemetrexed + sildenafil was 
heightened by the histone deacetylase inhibitors ar42 and 
sodium valproate. at the same time, ar42 and valproate use 
alone quickly decreased the expression of pd‑l1, pd‑l2 and 
odc, while increasing the expression of mHc class i and 
ceramide synthase 6. correspondingly, treatment of syngeneic 
mouse lung cancer cells in vitro with pemetrexed + sildenafil 

enhanced the clinical effects of immune checkpoint inhibitors 
targeting pd‑1 or ctla4 (cytotoxic t lymphocyte‑associated 
protein 4). the aforementioned data demonstrated that 
exposing tumour cells to (pemetrexed + sildenafil) leads to 
tumour cell death and autophagy‑dependent downregulation 
of Hdacs and pd‑l1 and opsonises the remaining tumour 
cells to target antitumour immunotherapy antibodies (40).

dent et al (41) also found that the curcumin + sildenafil drug 
combination caused autophagosomes to form in colon cancer 
cells. Curcumin + sildenafil downregulated the expression of 
numerous Hdac proteins, such as Hdac2 and Hdac3, in 
an autophagy‑dependent manner in colon cancer cells (41). 
in addition, molecular‑knockdown of Hdac2, Hdac3, or 
Hdac2 + Hdac3 by transfection of small interfering rNa 
notably inhibited the expression of pd‑l1 and induced the 
expression of mHc class i (41), which demonstrated that the 
curcumin + sildenafil‑induced decrease in PD‑L1 expression is 
reliant on autophagy‑mediated Hdac degradation.

chen et al (42) found that a new Hdac6 inhibitor, 
mpt0G612, activated autophagy accompanied by lc3b‑ii 
upregulation and p62 downregulation to downregulate pd‑l1 
protein expression, stimulated by iFN‑γ in colorectal cancer 
(CRC) cells. In addition, the findings of the aforementioned 
study demonstrated that MPT0G612 significantly suppressed 
proliferation and viability, and induced apoptosis of crc cells, 
hence exhibiting promising antitumour activity (42). Notably, 
inhibiting the autophagy process by small molecular inhibi‑
tors and shatg5 transfection promoted mpt0G612‑enhanced 
cell apoptosis (42). in addition, inhibiting Hdac6 expression 
decreased the mpt0G612‑induced autophagy in crc cells 

Figure 1. mechanism of autophagy control. autophagy controls pd‑l1 expression via the histone deacetylases, p62/sequestosome‑1/NF‑κb pathway, stat3 
phosphorylation, ATG7/autophagy/FOXO3A/miR‑145 axis and autophagy flux in cancer cells. PD‑1, programmed death‑1; miRNA/miR, microRNA; 
pd‑l1, programmed death ligand‑1; p, phosphorylated; Hdac, histone deacetylase. 
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to further induce tumour cell apoptosis (42). these results 
demonstrated that mpt0G612 can induce cell death through 
inhibition of the Hdac6‑associated pathway, and hence it may 
be a promising drug for enhancing immune checkpoint inhibi‑
tion for the treatment of crc.

booth et al (43) found that the new antitumour drug 
GZ17‑6.02 can kill gastrointestinal (Gi) tumour cells and 
induce autophagy to downregulate pd‑l1 expression. 
GZ17‑6.02 augments autophagosome formation by activating 
ataxia‑telangiectasia mutated (atm), which is responsible 
for phosphorylating nuclear γH2aX and ampKα t172. the 
activation of the atm‑ampK signalling pathway contributed 
to the subsequent inhibition of mtor and dephosphoryla‑
tion of UlK1 s757 to induce autophagy. on interaction with 
5‑fluorouracil, GZ17‑6.02 as an additive killed all the tested GI 
tumour cells and contributed to increased atm phosphorylation, 
enhanced mtor inactivation and autophagosome formation. 
consequently, multiple Hdac proteins and chaperone proteins 
(Hdac2, Hdac4, Hdac6,Hdac9 and heat shock protein 70) 
were degraded via autophagy, and downregulation of Hdac led 
to decreased pd‑l1, ornithine decarboxylase and indole amine 
2,3‑dioxygenase expression, and to the elevated expression of 
mHc class i. the curative effect of the anti‑pd‑1 checkpoint 
inhibitory antibody (anti‑pd‑1 endotoxin‑free antibodies) was 
strengthened when GZ17‑6.02 was used (43).

in another study, booth et al (44) found that treatment 
of Nsclc cells with neratinib + Hdac inhibitors (sodium 
valproate) enhanced autophagosome formation and subse‑
quently autolysosome formation by inhibiting the activation of 
mtorc1 and mtorc2, which caused an additive induction 
of cell apoptosis. in addition, knockdown of critical proteins 
beclin1 or atG5 inhibited Hdac inhibitors and neratinib 
from decreasing the expression of erbb1/3/4 and K‑/N‑ras, 
and impaired the neratinib + Hdac inhibitor curative effect. 
Neratinib + Hdac inhibitors decreased the expression of a 
variety of Hdac proteins through autophagy, which led to 
a decrease in the expression of pd‑l1, pd‑l2 and ornithine 
decarboxylase, and enhanced expression of mHc class i (44). 
as neratinib is approved for the treatment of breast cancer, it 
was selected to perform definitive animal studies in the highly 
aggressive 4t1 tNbc mammary carcinoma isolate. Notably, 
the study found that neratinib + Hdac inhibitors could inhibit 
the proliferation of 4t1 breast tumours in vivo, which strength‑
ened the effect of anti‑pd‑1 antibody.

Autophagy regulates PD ‑L1 expression via the 
p 62 /sequ es tos o m e  (S Q S T M) ‑1/N F‑ κB p a thwa y. 
Wang et al (45) discovered that autophagy regulates pd‑l1 
expression via the p62/sQstm1‑NF‑κb signalling pathway in 
gastric cancer. First, autophagy inhibition by small molecular 
inhibitors and small interfering rNas revealed that the pd‑l1 
expression levels were increased in vitro as well as in vivo. in 
addition, inhibition of autophagy enhanced pd‑l1 expression 
promoted by iFN‑γ. While iFN‑γ itself can simultaneously 
induce autophagy (46), it was found that iFN‑γ significantly 
upregulated pd‑l1 expression via activation of the stat1 
signalling pathway independent of autophagy (46). through 
western blotting and flow cytometry, it was demonstrated 
that inhibiting autophagy resulted in the accumulation of 
p62/sQstm1 expression and increased NF‑κb activation. 

correspondingly, inhibition of NF‑κb and knockdown of 
p62/sQstm1 restored overexpression due to blocking of 
autophagic flux. Finally, by using immunohistochemical 
staining, it was demonstrated that the protein levels of lc3 and 
p62/sQstm1 were positively associated with pd‑l1 expres‑
sion among 137 primary tumour samples of gastric cancer. 
the expression level of pd‑l1 was also positively associated 
with the number of infiltrating T cells (45).

Suppression of autophagy upregulates PD‑L1 expression by 
promoting STAT3 phosphorylation. tang et al (47) found that 
stat3 was phosphorylated by microrNa (mir)‑3127‑5p 
through inhibition of autophagosome formation, leading 
to upregulation of pd‑l1 expression in Nsclc cells. 
Knocking down mir‑3127‑5p induced the protein expression 
of lc3, while p62 protein expression decreased markedly, 
indicating an enhanced autophagic flux. By contrast, when 
mir‑3127‑5p was overexpressed in Nsclc cells, autophagy 
was found to be weakened compared with Nsclc cells in 
which mirNa‑3127‑5p had been knocked down (47). When 
autophagy was induced by rap in the mir‑3127‑5p overex‑
pressed cells, lc3 protein expression was enhanced, while 
the protein expression of p62 and pstat3 was decreased 
notably (47). When autophagy was inhibited by wortmannin 
in the mir‑3127‑knockdown cells, it was observed that lc3 
protein expression was decreased, while the expression of 
p62 and pSTAT3 increased significantly (47). In addition, the 
mir‑3127‑5p‑regulated elevated level of pd‑l1 expression 
contributed to immune escape and the chemoresistance of 
lung cancer (47).

Autophagy increases PD‑L1 mRNA stability and expression 
via the ATG/autophagy/FOXO3A/miR‑145 axis. Zhu et al (48) 
found that the overexpression of atG7 facilitated autophagic 
degradation of FoXo3 in bladder cancer and that the latter 
inhibited mir‑145 transcription, hence elevating pd‑l1 
expression. the results revealed that lower expression of 
mir‑145 decreases its direct engagement to the pd‑l1 mrNa 
3'‑Utr, thus increasing the stability and expression of pd‑l1 
mrNa. by contrast, upregulating the expression of pd‑l1 in 
atG7‑silenced cells mitigated the defects of autophagy induc‑
tion, FoXo3a downregulation and mir‑145 transcription 
attenuation. overexpression of pd‑l1 protein also enhanced 
bladder stem cell‑like properties and the aggressiveness of 
bladder cancer cells (48).

PD‑L1 is degraded on cancer cells via autophagy 
flux. maher et al (49) found that pd‑l1 protein expres‑
sion was suppressed through induction of autophagy by 
rNai‑knockdown of sigma 1 receptor and sigma non‑opioid 
intracellular receptor 1 and small molecule inhibitor of sigma 1 
in triple‑negative breast and androgen‑independent prostate 
cancer cells that express sigma 1. When administered alone, 
the sigma inhibitor 1‑(4‑lodophenyl)‑3‑(2‑adamantyl) guani‑
dine (IPAG) induced autophagic flux, which increased LC3B 
and decreased cell surface pd‑l1 expression in triple‑negative 
breast and androgen‑independent prostate cancer cells, hence 
suppressing the function of the pd‑1‑pd‑l1 axis in t cells 
and cancer cells, indicating that autophagy can facilitate 
the degradation of pd‑l1. in addition, when autophagy was 
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inhibited by rNai‑knockdown of atG5, atG7 and the 
pharmacological inhibitors wortmannin and bafilomycin A1 
(baf a1), ipaG‑mediated degradation of pd‑l1 was blocked. 
this study performed confocal microscopy to observe the 
formation of autophagosomes and degradation of pd‑l1 
during ipaG treatment (43). correspondingly, treatment with 
ipaG promoted the production of autophagosomes which 
was marked by green fluorescent protein (GFp)‑lc3 and 
accelerated their co‑localisation with pd‑l1. cotreatment 
with ipaG and baf a1 contributed to enhanced amounts 
of GFp‑lc3‑positive puncta, which co‑localised with 
pd‑l1‑containing autophagosomes. as aforementioned, in 
the case of using ipaG alone or in conjunction with baf a1, 
the spots of pd‑l1 were demonstrated to co‑localise with 
autophagosomes (49). in summary, the aforementioned study 
illustrated that autophagy is an effective mechanism for ipaG 
to induce pd‑l1 degradation in cells.

liang et al (50) found that verteporfin, a small molecular 
inhibitor, inhibited the expression of pd‑l1 both in vitro 
and in vivo via Golgi‑related autophagy and blockade 
of the stat1/interferon regulatory factor 1/tripartite 
motif‑containing 28 signalling pathway. Firstly, the study 
identified that verteporfin abolished both the mrNa and 
protein expression of pd‑l1. transmission electron micros‑
copy revealed a sharp increase in autophagosomes in the 
cells following treatment with verteporfin, and increased LC3 
lipidation and decreased p62/sQstm1 expression (50). When 
autophagy was inhibited using chloroquine, the decreased 
expression of PD‑L1 induced by verteporfin was reversed (50).

4. Discussion

t cell immunity is essential for homeostasis of the body, 
as it identifies antigens and kills cells with gene mutations 
or with aberrant pathology, which includes tumour cells. 
Unfortunately, excessive activation of uncontrolled t cells 
can also kill normal tissue cells, contributing to autoim‑
mune diseases such as rheumatoid arthritis (51). therefore, 
preventing autoimmunity by regulating activated t cells is an 
important feature of immune homeostasis. the co‑inhibitory 
immune checkpoints, which include ctla4‑cd80, 
pd‑1‑pd‑l1, galectin‑9‑t cell immunoglobulin mucin‑3 
and tcr‑lymphocyte activation gene 3, can regulate the 
activity of t cells under normal physiological conditions (52). 
However, upregulation of these inhibitory checkpoints leads 
to the immune microenvironment becoming immunosup‑
pressed (53), which can cause immune tolerance and immune 
escape. The PD‑1‑PDL1 axis has been particularly identified 
as the most clinically significant, as antibodies against it have 
led to benefits in a variety of cancer types such as NSCLC, 
melanoma and gastric cancer (9,11,17). inhibition of pd‑l1 
expression on tumour cells heightens immunosurveillance 
and decreases the immune checkpoint function derived from 
pd‑l1 (5). Hence, it is critical to explore the mechanisms that 
regulate the expression of pd‑l1.

in the past ten years, the mechanisms that regulate pd‑l1 
expression via different pathways have been explored. First, 
the genomic alternation/rearrangements in chromosome 
9p24.1, on which CD274 is located, have been identified to 
upregulate pd‑l1 expression (54‑58). it has been reported in 

the literature that amplification and mutations in the Janus 
kinase (JaK) family promote the upregulation of pd‑l1 
expression by inducing its mrNa expression (55,59). the 
increase in activity of the JaK2/stat signalling pathway 
resulting from gene mutations also increases pd‑l1 expres‑
sion (55,59). dNa double‑strand breaks also upregulate 
pd‑l1 expression by activating the stat signalling pathway 
via the kinases atm/atm and rad3‑related/checkpoint 
kinase 1 (60,61). the expression of pd‑l1 was induced by 
disrupting the cd274 3'Utr as well, by using crispr tech‑
nology/cas9 or mirNas, such as mir‑200, mir‑34a, mir‑152 
and mir‑424 (62‑65). epigenetic regulation, histone acetyla‑
tion and methylation boost pd‑l1 expression on melanoma 
and pancreatic cancer cells (66‑68). in addition, oncogenic 
transcription factors, for example mYc, can combine with the 
pd‑l1 promoter to enhance pd‑l1 expression in hepatocel‑
lular carcinoma, human melanoma and Nsclc cell lines (69). 
anaplastic lymphoma kinase can promote pd‑l1 expression 
via stat3 (70). besides mYc and alK, the mutated and 
amplified HIF1/2α (hypoxia‑inducible factor 1/2‑α), NF‑κb, 
phosphatase and tensin homologue/pi3K, mitogen‑activated 
protein kinase and epidermal growth factor receptor onco‑
genic pathways can upregulate pd‑l1 mrNa expression on 
melanoma, ovarian cancers and lung squamous carcinoma 
cells (71‑76). in addition, the iFN‑γ/JaK/stat1 inflam‑
matory pathway is used by cancer cells to enhance pd‑l1 
mRNA expression (77,78). Several inflammatory cytokines, 
such as toll‑like receptor 3, tNF‑α, transforming growth 
factor β, iFN‑α/β and il‑4/6/17/27 have been demonstrated 
to upregulate pd‑l1 mrNa expression on tumour cells or 
tumour‑associated stromal cells (78‑85). post‑transcriptional 
modifications, such as N‑linked glycosylation (86), 
serine/threonine and tyrosine phosphorylation (87), polyu‑
biquitination (88) and palmitoylation (89) have been found to 
serve significant roles in protein stability, as well as PD‑L1 
translocation regulation.

the present study demonstrated that autophagy can be 
induced by various molecules to downregulate pd‑l1 through 
NF‑kb, stat3, Hdac6 or the degradation of autophagic 
flux. Whether autophagy can regulate pd‑l1 expression 
through MYC, ALK, HIF1/2, several inflammatory cytokines, 
or other mechanisms remains to be investigated. oncogenic 
pathways, such as pi3K/aKt and ras/raf/meK/erK, can 
induce autophagy and also regulate pd‑l1 expression, which 
suggests that these pathways may regulate pd‑l1 expression 
via autophagy.

mtor is a major negative regulator of autophagy (90), 
which can be inhibited by rap to reduce the expression of 
pd‑l1 (91). When the pi3K/aKt signalling pathway, as the 
main modulator upstream of mtorc1 (92) is activated, this 
can phosphorylate tuberous sclerosis complex 2 to abolish the 
formation of the tsc1/2 complex, hence activating mtor to 
inhibit autophagy (93). When the pi3K‑aKt pathway is acti‑
vated by epidermal growth factor and iFN‑γ, it induces pd‑l1 
expression (91,94,95). Furthermore, the pi3K‑aKt pathway 
also can regulate pd‑l1 expression in the absence of iFN‑γ 
in various cancer types, such as Nsclc, crc, glioma, breast 
cancer and melanoma cells (72,76,91,94,96), which suggests 
that this regulation occurs, at least in part, by changing the 
mrNa expression of pd‑l1 (74,97).



Gao and cHeN:  aUtopHaGY reGUlates pd‑l1 eXpressioN iN caNcer6

in addition, the meK‑erK signalling pathway has been 
identified frequently to be activated in a variety of cancer types 
such as hepatocellular carcinoma and colon cancer (98,99). 
meK‑erK is located on the outer surface of autophago‑
somes and promotes the production of beclin1 protein by 
inducing the lipidation of lc3‑i to lc3‑ii, hence enhancing 
autophagy (100). in addition, the meK/erK module 
promotes autophagy via the ampK‑meK/erK‑tsc‑mtor 
signalling pathway (101). continuous activation of the 
Ras/Raf/MEK/ERK pathway may enhance the autophagy flux 
in cells, and mrNa levels of lc3b and sQstm1 are also 
increased (102). When the meK‑erK pathway was inhibited 
by chemical or genetic inhibitors, pd‑l1 transcription induced 
by iFN‑γ was inhibited in multiple myeloma cells (103). in 
concert with this, when the meK‑erK signalling pathway was 
activated by phorbol myristate acetate, pd‑l1 expression was 
enhanced. by contrast, when meK was inhibited in tumours, 
pd‑l1 expression was decreased in mouse‑derived breast 
cancer cell lines (103,104). inhibition of the meK‑erK signal‑
ling pathway abrogates increased pd‑l1 expression stimulated 
by tlr ligands, which has been observed in various cancer 
cells and antigen presenting cells, such as myeloma, bladder 
cancer, lymphoma and dendritic cells (94,97,98,103,105‑107). 
Higher mutation rates of ras and excessive activation of the 
ras pathway have been demonstrated to increase pd‑l1 
expression among human lung and colorectal tumours (108). 
besides, autophagy, as a pro‑survival tumour mechanism, 
can be mediated by pd‑l1 to escape the immune system. 
it has been reported that pd‑l1 induces autophagy via 
mtorc signalling to promote the proliferation of ovarian 
cancer cells (109). as aforementioned, activated autophagy 
may reversely upregulate the pd‑l1 expression through the 
atG/autophagy/FoXo3a/mir‑145 axis, forming a positive 
feedback loop to create a favourable environment for tumour 
progression.

as discussed above, the mechanisms that autophagy uses 
to regulate pd‑l1 expression were reviewed. autophagy can 
both positively and negatively regulate the pd‑l1 expres‑
sion on cancer cells. However, whether oncogenic pathways, 
such as pi3K/aKt and ras/raf/meK/erK, regulate pd‑l1 
expression via autophagy needs to be further elucidated. in 
addition, the mechanism by which autophagy effects pd‑l1 
expression remains to be further clarified in future studies.

in conclusion, autophagy can regulate pd‑l1 expression in 
a number of cancer types via various mechanisms. Joint use 
of autophagy regulators and drugs targeting the pd‑1/pd‑l1 
axis may enhance the therapeutic effect, hence improving the 
prognosis of patients with cancer.
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