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Abstract. The etiology of diabetes is primarily attributed to the 
lack of functioning β cells, which in‑turn leads to insulin defi‑
ciency or insulin resistance, and this ultimately leads to β cell 
dysfunction. Restoring the number and function of β cells is 
an effective means of improving or even curing diabetes. β cell 
regeneration is a potential method for increasing the number of 
functioning β cells. In addition to self‑duplication of pancre‑
atic β cells, β cells can be regenerated from embryonic stem 
cells, human induced pluripotent stem cells and pancreatic 
stem cells. Based on these mechanisms, proliferation and 
differentiation into functional β cells in vitro is one of the 
most promising strategies for treatment of diabetes. Although 
β cell regeneration has significant potential in the treatment 
of insulin‑deficient diabetes, and significant progress has been 
made in this regard, there remains challenges which prevent 
its use in the clinic.

Contents

1. Introduction
2. The molecular mechanisms of β cell regeneration
3. β cell regeneration and treatment strategies for diabetes
4.  Challenges in β cell regeneration strategies for the 

treatment of diabetes
5. Conclusions

1. Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized 
by persistent hyperglycemia, which is primarily divided into 
type 1 diabetes (T1D) and type 2 diabetes (T2D). T1D and 

T2D are caused in whole or in part by an insufficient number 
of normally functioning pancreatic β cells (1‑3). In T1D, 
insulin deficiency is caused by the immune destruction of 
β cells (4). T2D is usually caused by peripheral insulin resis‑
tance and/or β cell dysfunction (5). The factors that control the 
number of β cells include: i) Replication of existing β cells, 
ii) differentiation of new β cells from ducts and extra‑islet 
precursor cells, iii) formation of new β cells from other endo‑
crine cells and iv) β cell apoptosis (6). There are two general 
methods for supplementing β cells, replacement therapy by 
transplanting islets or β cells derived from human embryonic 
stem cells (hESCs)/induced pluripotent stem cells (iPSCs) and 
inducing endogenous regeneration (7). Although significant 
progress has been made in islet transplantation, their remain 
several challenges including the limited number of donors 
for human islets and immune suppression. Therefore, novel 
treatment options and/or means of increasing the number of 
functioning β cells are required (8). The regeneration of β cell 
masses may be useful for management of T1D and T2D. This 
review discusses the mechanisms of β cell regeneration and 
their potential in the treatment of diabetes.

2. The molecular mechanisms of β cell regeneration

Previous studies have shown that there are several internal and 
external factors related to the protection and regeneration of 
pancreatic β cells (8). The modification of different genes plays 
an important role in the regeneration of β cells.

Self‑duplication of pancreatic β cells. The three cell sources 
that have been identified for β cell regeneration include β cell 
neogenesis from progenitor cells (9,10), replication of existing 
β cells (11,12), and transdifferentiation from α and δ islet 
cells (13,14). The insulin receptor substrate 2 (IRS2)/phos‑
phoinositide 3‑kinase (PI3K)/protein kinase B (PKB or Akt) 
signaling pathway plays an important role in the regulation 
of the pancreatic β cell mass. Akt activates cyclin‑dependent 
protein kinase (CDK4) to promote the G1/S transition of 
pancreatic islet β cell cycle and induce the proliferation of 
pancreatic β cells (11). In addition, a study found that inhib‑
iting the expression of cell cycle inhibitor P57 with a lentiviral 
system encoding small hairpin RNA could promote β cell 
proliferation (15). An animal study found that selective inhibi‑
tion of the expression of the specific transcription factor Arx in 
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α cells could result in the transformation of α cells into β cells 
in mice of any age (16).

Regenerating β cells from embryonic stem cells (ESC). ESCs 
possess self‑renewal ability and multi‑directional differen‑
tiation potential. Therefore, human ESCs can be directed to 
differentiate into pancreatic β cells as an alternative approach 
for management of diabetes. To date, several key breakthroughs 
have been made in the efforts to obtain functional β cells from 
hESCs (17,18). The first key breakthrough was the develop‑
ment of the differentiation process that could transform hESCs 
into endocrine cells which could synthesize all the pancreatic 
hormones, including insulin, glucagon, somatostatin, pancre‑
atic peptide and ghrelin (19). Studies have shown that in vitro 
hESC‑derived pancreatic progenitor cells have the ability to 
spontaneously differentiate into functional β cells in vivo, thus 
transplantation of pancreatic progenitor cells has the potential 
to treat T1D (20,21). Pagliuca et al (22) developed an in vitro 
differentiation protocol, which could successfully induce 
hESCs (and iPSCs) into functional human β cells, that is, stem 
cell‑derived β cells; this was also a key breakthrough in the study 
of obtaining functional β cells (22). Another study found that 
transplanting pancreatic progenitor cells derived from hESCs 
into streptozotocin‑induced diabetic mice resulted in mice with 
β cells with relatively complete function and alleviation of a 
hyperglycemic state in the mice (20). However, there remains a 
major obstacle in translating these findings into clinical appli‑
cations; safety issues. Due to the highly proliferative properties 
of stem cells, if not controlled, it can lead to the formation 
of tumors in the body (20). Placing transplanted cells in an 
encapsulation device can alleviate this problem. This device 
can not only allow for removal of the transplanted cells that 
grow into tumors, but also protect them from immune attack. 
Technologies to this effect have made substantial key advances 
in the past few years, allowing hESC‑derived precursor cells to 
differentiate and function in vivo (23‑25).

Regenerating β cells from human (h)iPSCs. In the past decade, 
researchers have developed methods to generate pancreatic 
cells from hPSCs (19‑22). Studies have found that encapsu‑
lated pancreatic progenitor cells can mature into functional 
β cells that can reverse hyperglycemia in mice (23,24,26). 
At present, it is also possible to generate β‑like cells from 
hPSCs, including hiPSCs from T1D patients (22,27,28). iPSCs 
derived from skin fibroblasts from T1D patients can generate 
functional β cells (28). iPSC‑derived β cells from T1D patients 
possessed β cell markers, responded to glucose in vitro and 
in vivo, and prevented alloxan‑induced diabetes. These char‑
acteristics are the same as those of stem cell‑derived β cells 
derived from normal hiPSCs (28). In vitro, Pagliuca et al (22) 
used iPSCs to induce glucose‑responsive mature β‑like cells, 
which expressed the mature pancreatic β cell marker PDX1, 
regulated insulin secretion and improved blood sugar levels in 
mice (22). A study found that the epidermal cells of diabetic 
patients could be transdifferentiated into iPSCs, and then 
further differentiated into islet β‑like cells with a functioning 
glucose response (29).

Regenerating β cells from pancreatic stem cells. In animal 
models, studies have found that pancreatic resection, catheter 

ligation, and chemical or genetically induced pancreatic injury 
can induce the regeneration of pancreatic β cells (9,30,31). The 
purified islets are cultured under various conditions, such that 
multipotent progenitor cells can be enriched and differentiated 
into islet cells (32‑35). Lechner et al (33) used a three‑step 
culture protocol to culture a monolayer of cells expanded from 
pancreatic islets, which resulted in the expansion of pancreatic 
islet cells in vitro and the differentiation of insulin‑secreting 
cell clusters. In addition, several studies have attempted to 
obtain regenerative β cells from cultured pancreatic duct 
cells (36‑38). The pancreatic ductal epithelial cells were 
isolated from non‑obese diabetic mice and successfully differ‑
entiated into islet‑like structures after in vitro culture, and 
when these islet‑like structures were implanted in the kidney 
capsule, they reversed hyperglycemia in diabetic mice (39). 
Bonner‑Weir et al (40) successfully expanded the adult human 
duct tissue and differentiated it into islet‑like clusters that 
could secrete insulin after glucose stimulation (40).

Subsequently, the researchers further optimized the in vitro 
culture conditions and improved the differentiation protocol, 
resulting in notable progress. Membrane proteins such as 
CA19‑9 and CD133, and growth factors such as epidermal 
growth factor (EGF), hepatocyte growth factor (HGF) and 
keratinocyte growth factor (KGF) were found to promote 
the differentiation of ductal cells into insulin‑producing 
β cells (41‑45). For example, the membrane proteins CA19‑9 
and CD133 enable duct‑derived stem cells to be purified by 
flow cytometry (41‑43). Furthermore, the ability of purified 
CA19‑9+ ductal cells to spontaneously differentiate into 
insulin‑producing β cells was increased after co‑culture with 
pancreatic stromal cells (43). EGF, HGF and KGF can further 
stimulate the proliferation of human pancreatic duct‑derived 
stem cells (44,45).

3. β cell regeneration and treatment strategies for diabetes

In recent years, researchers have explored the use of β cell 
regeneration techniques to treat diabetes in animal models 
and humans. Abdel Aziz et al (46) found that curcumin 
could inhibit  the  infiltration of  lymphocytes  into  the  islets 
of Langerhans and maintain the number of pancreatic islets 
and β cells. They also demonstrated that curcumin exerted a 
hypoglycemic effect by lowering fasting blood glucose (FBG) 
concentrations, and increasing serum insulin and C‑peptide 
levels. Studies have found that in vitro expansion of human 
duct tissues and subsequent differentiation of pancreatic islet 
cells were observed after 3‑4 weeks of pancreatic duct tissue 
culture. Additionally, insulin production increased signifi‑
cantly and functional islet‑like structures were formed (32,40). 
Animal studies have found that using inducible diphtheria 
toxin A to ablate β cells or small molecule glucokinase activa‑
tors can increase β cell proliferation in elderly mice by a factor 
of 2‑3X (47). Pancreatic ducts can be used as β cell progenitors 
in adult mice. Mice expressing paired box 4 (Pax4) ectopically 
in glucagon‑expressing cells can continuously form new α cells 
through ductal epithelial cells, and these can be transformed 
into β cells, allowing for repeated recovery from toxin‑induced 
diabetes (16,48‑50). There are multiple strategies to promote 
the process of transdifferentiation from pancreatic duct cells 
to β cells, including the transgene overexpression of IFN‑γ 
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in β cells (51), the upregulated expression of TGF‑α in the 
pancreatic duct (52), deletion of SCF‑type E3 ubiquitin ligase 
substrate recognition component (also known as Fbw7) of the 
complex of SKP1, CUL1, and F‑box protein (also known as 
SCF) type ubiquitin ligase (53) and ectopic expression of Pax4 
in glucagon‑positive cells (49).

Acinar cells are the most abundant pancreatic cell type and 
are a potential source of β cell regeneration. If the acinar cells 
are co‑cultured with the growth factors EGF and leukemia 
inhibitory factor, the newly formed β cells can restore normo‑
glycemia in the alloxan‑induced diabetic mouse model (54). 
The transient cytokine mixture of EGF and ciliary neuro‑
trophic factor activates the Stat3 signaling pathway in mice, 
causing the acinar cells to transform into β cells, which can 
reverse alloxan‑induced diabetes (55).

A study found that human insulin can be detected 7 weeks 
after transplantation of pancreatic islet progenitor cells into an 
animal model, exhibiting a 17‑fold increase in insulin produc‑
tion after 8 weeks, while the biomass of the encapsulated cells 
remained unchanged during this period. It was also shown 
that there was sufficient concentrations of human insulin in 
the encapsulated cells for 20 weeks after transplantation. 
These results indicate that the islet progenitor cells isolated 
from encapsulated hESCs hold significant promise as cell 
replacement therapies for insulin‑dependent diabetes (24).

4. Challenges in β cell regeneration strategies for the 
treatment of diabetes

Using pluripotent stem cells, including hESCs and iPSCs, 
proliferation and differentiation into functional β cells in vitro 
is one of the most promising treatment strategies for diabetes. 
However, there remain considerable challenges regarding 
the regeneration of β cells in vitro, including host immune 
response‑immune rejection of transplanted stem cell‑derived 
β cells and autoimmunity against β cells, resulting in the loss of 
the original β cells in T1D recipients. However, hiPSC‑derived 
β cells from T1D patients can be used as an autologous source 
of cell replacement therapy, thereby eliminating the problem 
of systemic immunosuppression (28). A study found that gene 
editing could be used to generate hPSCs that are ‘invisible’ to 
the immune system and can escape allogeneic rejection (56). 
This may allow cells to escape autoimmune destruction. 
Using animal models, progress has been made in inducing 
immune tolerance (17). The combination of β cell regenera‑
tion and immune tolerance induction can allow for long‑term 
therapeutic benefits  in patients with T1D. Finally, whether 
the results of animal models are suitable, and the developed 
methods are translatable to humans is also a question that 
needs to be further studied. Although some clinical trials 
have been performed, there remains a dearth of large‑sample, 
multi‑center prospective randomized controlled trials.

5. Conclusions

Restoring the number and function of pancreatic islet β cells in 
patients is potentially one the most effective means of curing 
diabetes. The use of β cell replacement therapy for human 
pancreatic islet transplantation faces several challenges, such 
as the limited number of donors and suppressing the host 

immune response to allow integration of the transplanted cells. 
Regenerating β cells from ESCs, hiPSCs and pancreatic stem 
cells may become a novel option for the treatment of diabetes.
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